SEMITRANS
M
IGBT Modules
SKM 200 GA 123 D
*)
SKM 200 GB 123 D
SKM 200 GB 123 D1
6)
SKM 200 GAL 123 D
6)
SKM 200 GAR 123 D
6)
GA
GB
GAL
GAR
Features
MOS input (voltage controlled)
N channel, Homogeneous Si
Low inductance case
Very low tail current with low
temperature dependence
High short circuit capability,
self limiting to 6 * I
cnom
Latch-up free
Fast & soft inverse CAL
diodes
8)
Isolated copper baseplate
using DCB Direct Copper Bon-
ding Technology
Large clearance (13 mm) and
creepage distances (20 mm).
Typical Applications:
B6 - 153
Switching (not for linear use)
1)
T
case
= 25
C, unless otherwise
specified
2)
I
F
= I
C
, V
R
= 600 V,
di
F
/dt = 1500 A/
s
,
V
GE
= 0 V
3)
Use V
GEoff
= -5 ... -15 V
5)
See fig. 2 + 3; R
Goff
= 5,6
6)
The free-wheeling diodes of the
GAL and GAR types have the
data of the inverse diodes of
SKM 300 GA 123 D
7)
V
isol
= 4000 V
rms
on request
8)
CAL = Controlled Axial Lifetime
Technology.
Cases and mech. data
B6-154
*) SEMITRANS 4
B6-168
SEMITRANS 3
6)
6)
Characteristics
Symbol
Conditions
1)
min.
typ.
max.
Units
V
(BR)CES
V
GE
= 0, I
C
= 4 mA
V
CES
V
V
GE(th)
V
GE
= V
CE
, I
C
= 6 mA
4,5
5,5
6,5
V
I
CES
V
GE
= 0
T
j
= 25
C
0,2
3
mA
V
CE
= V
CES
T
j
= 125
C
12
mA
I
GES
V
GE
= 20 V, V
CE
= 0
1
A
V
CEsat
I
C
= 150 A V
GE
= 15 V;
2,5(3,1)
3(3,7)
V
V
CEsat
I
C
= 200 A T
j
= 25 (125)
C
2,8(3,6)
V
g
fs
V
CE
= 20 V, I
C
= 150 A
95
S
C
CHC
per IGBT
700
pF
C
ies
V
GE
= 0
10
13
nF
C
oes
V
CE
= 25 V
1,5
2
nF
C
res
f = 1 MHz
0,8
1,2
nF
L
CE
20
nH
t
d(on)
V
CC
= 600 V
220
400
ns
t
r
V
GE
= -15 V / +15 V
3)
100
200
ns
t
d(off)
I
C
= 150 A, ind. load
600
800
ns
t
f
R
Gon
= R
Goff
= 5,6
70
100
ns
E
on
5)
T
j
= 125
C
24
mWs
E
off
5)
17
mWs
Inverse Diode
8)
V
F
= V
EC
I
F
= 150 A V
GE
= 0 V;
2,0(1,8)
2,5
V
V
F
= V
EC
I
F
= 200 A T
j
= 25 (125)
C
2,25(2,05)
V
V
TO
T
j
= 125 C
1,2
V
r
T
T
j
= 125
C
5
7
m
I
RRM
I
F
= 150 A; T
j
= 25 (125)
C
2)
55(80)
A
Q
rr
I
F
= 150 A; T
j
= 25 (125)
C
2)
8(20)
C
FWD of types "GAL", "GAR" "123D1"
8)
6)
V
F
= V
EC
I
F
= 150 A V
GE
= 0 V;
1,85(1,6)
2,2
V
V
F
= V
EC
I
F
= 200 A T
j
= 25 (125) C
2,0(1,8)
V
V
TO
T
j
= 125 C
1,2
V
r
T
T
j
= 125
C
3
5,5
m
I
RRM
I
F
= 150 A; T
j
= 25 (125)
C
2)
60(90)
A
Q
rr
I
F
= 150 A; T
j
= 25 (125)
C
2)
8(23)
C
Thermal Characteristics
R
thjc
per IGBT
0,09
C/W
R
thjc
per diode / FWD "GAL; GAR"
0,25/0,18
C/W
R
thch
per module
0,038
C/W
Absolute Maximum Ratings
Values
Symbol
Conditions
1)
... 123 D
... 123 D1
Units
V
CES
1200
V
V
CGR
R
GE
= 20 k
1200
V
I
C
T
case
= 25/80
C
200 / 180
A
I
CM
T
case
= 25/80
C; t
p
= 1 ms
400 / 360
A
V
GES
20
V
P
tot
per IGBT, T
case
= 25
C
1380
W
T
j
, (T
stg
)
40 . . .+150 (125)
C
V
isol
AC, 1 min.
2 500
7)
V
humidity
DIN 40 040
Class F
climate
DIN IEC 68 T.1
40/125/56
Inverse Diode
FWD
6)
I
F
= I
C
T
case
= 25/80
C
200 / 130
260 / 180
A
I
FM
= I
CM
T
case
= 25/80
C; t
p
= 1 ms
400 / 360
400 / 360
A
I
FSM
t
p
= 10 ms; sin.; T
j
= 150 C
1450
1800
A
I
2
t
t
p
= 10 ms; T
j
= 150 C
10 500
24 200
A
2
s
by SEMIKRON
0898
B 6 149
by SEMIKRON
B 6 150
SKM 200 GA 123 D...
0898
T
j
= 125 C
V
CE
= 600 V
V
GE
= + 15 V
R
G
= 5,6
1 pulse
T
C
= 25 C
T
j
< 150 C
Not for
linear use
T
j
< 150 C
V
GE
= + 15 V
t
sc
< 10
s
L < 25 nH
I
CN
= 150 A
T
j
= 125 C
V
CE
= 600 V
V
GE
= + 15 V
I
C
= 150 A
T
j
< 150 C
V
GE
= 15 V
R
Goff
= 5,6
I
C
= 150 A
Fig. 1 Rated power dissipation P
tot
= f (T
C
)
Fig. 2 Turn-on /-off energy = f (I
C
)
Fig. 3 Turn-on /-off energy = f (R
G
)
Fig. 4 Maximum safe operating area (SOA) I
C
= f (V
CE
)
Fig. 5 Turn-off safe operating area (RBSOA)
Fig. 6 Safe operating area at short circuit I
C
= f (V
CE
)
1
10
100
1000
1
10
100
1000
10000
10ms
1ms
100us
t(p)=
20us
IC [A]
1502iu.vpo
VCE [V]
0
0.5
1
1.5
2
2.5
0
500
1000
1500
ICpuls/IC
1502rso.vpo
VCE [V]
0
2
4
6
8
10
12
0
500
1000
1500
Note:
*Allowed numbers of
short circuit:<1000
*Time between short
circuit:>1s
ICSC/ICN
1502soas.vpo
VCE [V]
by SEMIKRON
B 6 151
0898
T
j
= 150 C
V
GE
> 15 V
P
cond(t)
= V
CEsat(t)
. I
C(t)
V
CEsat(t)
= V
CE(TO)(Tj)
+ r
CE(Tj)
. I
C(t)
V
CE(TO)(Tj)
1,5 + 0,002 (T
j
- 25) [V]
typ.: r
CE(Tj)
= 0,0066 + 0,000027 (T
j
- 25) [
]
max.: r
CE(Tj)
= 0,0100 + 0,000033 (T
j
- 25) [
]
valid for V
GE
= + 15
+
2
-
1
[V]; I
C
> 0,3 I
Cnom
Fig. 8 Rated current vs. temperature I
C
= f (T
C
)
Fig. 9 Typ. output characteristic, t
p
= 80
s; 25 C
Fig. 10 Typ. output characteristic, t
p
= 80
s; 125 C
Fig. 11 Saturation characteristic (IGBT)
Fig. 12 Typ. transfer characteristic, t
p
= 80
s; V
CE
= 20 V
Calculation elements and equations
0
20
40
60
80
100
120
140
160
180
200
0
1
2
3
4
17V
15V
13V
11V
9V
7V
IC [A]
1502us3.vpo
VCE [V]
0
20
40
60
80
100
120
140
160
180
200
0
1
2
3
4
17V
15V
13V
9V
7V
11V
IC [A]
1502us7.vpo
VCE [V]
0
40
80
120
160
200
240
280
320
0
2
4
6
8
10
12
IC [A]
1502gf3.vpo
VGE [V]
by SEMIKRON
B 6 152
SKM 200 GA 123 D...
0898
V
GE
= 0 V
f = 1 MHZ
T
j
= 125 C
V
CE
= 600 V
V
GE
= + 15 V
I
C
= 150 A
induct. load
I
Cpuls
= 150 A
T
j
= 125 C
V
CE
= 600 V
V
GE
= + 15 V
R
Gon
= 5,6
R
Goff
= 5,6
induct. load
Fig. 15 Typ. switching times vs. I
C
Fig. 16 Typ. switching times vs. gate resistor R
G
Fig. 17 Typ. CAL diode forward characteristic
Fig. 18 Diode turn-off energy dissipation per pulse
Fig. 13 Typ. gate charge characteristic
Fig. 14 Typ. capacitances vs.V
CE
0
2
4
6
8
10
12
14
16
18
20
0
200
400
600
800
1000
1200
600V
800V
VGE [V]
1502Qg3.vpo
QG [nC]
0.1
1
10
100
0
10
20
30
40
Ciss
Coss
Crss
C [nF]
1502C.vpo
VCE [V]
10
102
0
100
200
300
400
tdon
tdoff
tr
tf
1502tic.vpo
IC [A]
38
9
10
102
103
104
0
20
40
60
tdoff
tdon
tr
tf
t [ns]
1502trg.vpo
5* >:
:@
0*%;/6
,
$
(
411
P-
30
#
*
'
&&
'
%
M
S
'
*(
[ '
by SEMIKRON
B 6 153
0796