by SEMIKRON
0898
B 6
157
Absolute Maximum Ratings
Values
Symbol Conditions
1)
Units
V
CES
V
CGR
I
C
I
CM
V
GES
P
tot
T
j
, (T
stg
)
V
isol
humidity
climate
R
GE
= 20 k
T
case
= 25/85 C
T
case
= 25/85 C; t
p
= 1 ms
per IGBT, T
case
= 25 C
AC, 1 min.
DIN 40040
DIN IEC 68 T.1
1200
1200
290 / 200
580 / 400
20
1350
40 ... +150 (125)
2500
Class F
40/125/56
V
V
A
A
V
W
C
V
Inverse Diode
I
F
= I
C
I
FM
= I
CM
I
FSM
I
2
t
T
case
= 25/80 C
T
case
= 25/80 C; t
p
= 1 ms
t
p
= 10 ms; sin.; T
j
= 150 C
t
p
= 10 ms; T
j
= 150 C
195 / 130
580 / 400
1450
10 500
A
A
A
A
2
s
Characteristics
Symbol Conditions
1)
min.
typ.
max.
Units
V
(BR)CES
V
GE(th)
I
CES
I
GES
V
CEsat
V
CEsat
g
fs
V
GE
= 0, I
C
= 4 mA
V
GE
= V
CE
, I
C
= 6 mA
V
GE
= 0
T
j
= 25 C
V
CE
= V
CES
T
j
= 125 C
V
GE
= 20 V, V
CE
= 0
I
C
= 150 A
V
GE
= 15 V;
I
C
= 200 A
T
j
= 25 (125) C
V
CE
= 20 V, I
C
= 150 A
V
CES
4,5
62
5,5
0,4
12
2,1(2,4)
2,5(3,0)
6,5
14
0,32
2,45(2,85)
V
V
mA
mA
A
V
V
S
C
CHC
C
ies
C
oes
C
res
L
CE
per IGBT
V
GE
= 0
V
CE
= 25 V
f = 1 MHz
11
1,6
0,8
700
15
2
1
20
pF
nF
nF
nF
nH
t
d(on)
t
r
t
d(off)
t
f
E
on
E
off
V
CC
= 600 V
V
GE
= 15 V / +15 V
3)
I
C
= 150 A, ind. load
R
Gon
= R
Goff
= 7
T
j
= 125 C
75
50
520
50
21
19
ns
ns
ns
ns
mWs
mWs
Inverse Diode
8)
V
F
= V
EC
V
F
= V
EC
V
TO
r
t
I
RRM
Q
rr
I
F
= 150 A
V
GE
= 0 V;
I
F
= 200 A
T
j
= 25 (125) C
T
j
= 125 C
2)
T
j
= 125 C
2)
I
F
= 150 A; T
j
= 125 C
2)
I
F
= 150 A; T
j
= 125 C
2)
2,0(1,8)
2,25(2,05)
1,1
78
19,5
2,5
1,2
7
V
V
V
m
A
C
Thermal characteristics
R
thjc
R
thjc
R
thch
per IGBT
per diode
per module
0,09
0,25
0,038
C/W
C/W
C/W
SEMITRANS
M
Low Loss IGBT Modules
SKM 200 GB 124 D
Features
MOS input (voltage controlled)
N channel, homogeneous Silicon
structure NPT-IGBT (Non punch
through)
Low saturation voltage
Low inductance case
Low tail current with low
temperature dependence
High short circuit capability,
self limiting to 6 * I
cnom
Latch-up free
Fast & soft inverse CAL diodes
8)
Isolated copper baseplate using
DCB Direct Copper Bonding
Technology without hard mould
Large clearance (12 mm) and
creepage distances (20 mm)
Typical Applications
B 6
161
Switching (not for linear use)
Inverter drives
UPS
1)
T
case
= 25 C, unless otherwise
specified
2)
I
F
= I
C
, V
R
= 600 V,
di
F
/dt = 1500 A/
s, V
GE
= 0 V
3)
Use V
GEoff
= 5... 15 V
8)
CAL = Controlled Axial Lifetime
Technology
Cases and mech. data
B 6
162
GB
SEMITRANS 3
by SEMIKRON
B 6 158
SKM 200 GB 124 D
0898
M200G124.X LS -6
0
2
4
6
8
10
12
0
200
400
600
800
1000
1200
1400
V
CE
V
I
CSC
/I
C
allowed numbers of
short circuits: <1000
time between short
circuits: >1s
di/dt= 1000 A/s
3000 A/s
5000 A/s
M200G124.X LS -5
0
0,5
1
1,5
2
2,5
0
200
400
600
800
1000
1200
1400
V
CE
V
I
Cpuls
/I
C
M200G124.X LS -4
1
10
100
1000
1
10
100
1000
10000
V
CE
V
I
C
A
t
p
=10s
100s
1ms
10ms
M200G124.X LS -3
0
10
20
30
40
50
60
70
80
90
0
10
20
30
40
50
60
R
G
E
mWs
E
on
E
off
M200G124.X LS -2
0
10
20
30
40
50
60
70
0
50
100
150
200
250
300
350
I
C
A
E
mWs
E
on
E
off
M200G124.X LS -1
0
200
400
600
800
1000
1200
1400
0
20
40
60
80
100
120
140
160
T
C
C
P
tot
W
Fig. 3 Turn-on /-off energy = f (R
G
)
Fig. 4 Maximum safe operating area (SOA) I
C
= f (V
CE
)
Fig. 1 Rated power dissipation P
tot
= f (T
C
)
Fig. 2 Turn-on /-off energy = f (I
C
)
Fig. 5 Turn-off safe operating area (RBSOA)
Fig. 6 Safe operating area at short circuit I
C
= f (V
CE
)
T
j
= 125 C
V
CE
= 600 V
V
GE
= + 15 V
R
G
= 7
1 pulse
T
C
= 25 C
T
j
150 C
T
j
= 125 C
V
CE
= 600 V
V
GE
= + 15 V
I
C
= 150 A
T
j
150 C
V
GE
= 15 V
t
sc
10 s
L < 25 nH
I
C
= 150 A
T
j
150 C
V
GE
= 15 V
R
Goff
= 7
I
C
= 150 A
Not for
linear use
by SEMIKRON
B 6 159
0898
M200G124.X LS -12
0
50
100
150
200
250
300
0
2
4
6
8
10
12
14
V
GE
V
I
C
A
M 20 0G1 24 .X LS -1 0
0
50
100
150
200
250
300
0
1
2
3
4
5
V
CE
V
I
C
A
17V
15V
13V
11V
9V
7V
M2 0 0G1 24 .X LS -9
0
50
100
150
200
250
300
0
1
2
3
4
5
V
CE
V
I
C
A
17V
15V
13V
11V
9V
7V
M2 0 0G1 24 .X LS -8
0
50
100
150
200
250
300
0
40
80
120
160
T
C
C
I
C
A
P
cond(t)
= V
CEsat(t)
I
C(t)
V
CEsat(t)
= V
CE(TO)(Tj)
+ r
CE(Tj)
I
C(t)
V
CE(TO)(Tj)
1,3 + 0,0005 (T
j
25) [V]
typ.: r
CE(Tj)
= 0,0053 + 0,000017 (T
j
25) [
]
max.: r
CE(Tj)
= 0,0077 + 0,000023 (T
j
25) [
]
valid for V
GE
= + 15
[V]; I
C
> 0,3 I
Cnom
Fig. 9 Typ. output characteristic, t
p
= 80 s; 25 C
Fig. 10 Typ. output characteristic, t
p
= 80 s; 125 C
Fig. 8 Rated current vs. temperature I
C
= f (T
C
)
+2
1
Fig. 11 Saturation characteristic (IGBT)
Calculation elements and equations
Fig. 12 Typ. transfer characteristic, t
p
= 80 s; V
CE
= 20 V
T
j
= 150 C
V
GE
15V
by SEMIKRON
B 6 160
SKM 200 GB 124 D
0898
M200G124.X LS -18
0
2
4
6
8
10
0
40
80
120
160
200
240
I
F
A
E
offD
mJ
17
10
40
6
R
G
=
4
M200GB 124.X LS -17
0
50
100
150
200
0
1
2
3
V
F
V
I
F
A
T
j
=125C, typ.
T
j
=25C, typ.
T
j
=125C, max.
T
j
=25C, max.
M200G124.X LS -16
10
100
1000
10000
0
10
20
30
40
50
60
R
G
t
ns
t
doff
t
don
t
r
t
f
M200G124.X LS -15
10
100
1000
0
50
100
150
200
250
300
350
I
C
A
t
ns
t
doff
t
don
t
r
t
f
M200G124.X LS -14
0,1
1
10
100
0
10
20
30
V
CE
V
C
nF
C
ies
C
oes
C
res
M200G124.X LS -13
0
2
4
6
8
10
12
14
16
18
20
0
200
400
600
800
1000
1200
Q
Gate
nC
V
GE
V
600V
800V
Fig. 13 Typ. gate charge characteristic
Fig. 14 Typ. capacitances vs.V
CE
V
GE
= 0 V
f = 1 MHz
Fig. 15 Typ. switching times vs. I
C
Fig. 16 Typ. switching times vs. gate resistor R
G
Fig. 17 Typ. CAL diode forward characteristic
Fig. 18 Diode turn-off energy dissipation per pulse
T
j
= 125 C
V
CE
= 600 V
V
GE
= 15 V
I
C
= 150 A
induct. load
R
thjc
= 0,005
I
Cpuls
= 150 A
T
j
= 125 C
V
CE
= 600 V
V
GE
= 15 V
R
Gon
= 7
R
Goff
= 7
induct. load
V
CC
= 600 V
T
j
= 125 C
V
GE
= 15 V
by SEMIKRON
B 6 161
0898
M2 0 0G1 24 .X LS -2 4
0
5
10
15
20
25
30
35
0
2000
4000
6000
8000
di
F
/dt
A/s
Q
rr
C
I
F
=
150 A
110 A
75 A
40 A
17
10
40
6
R
G
=
4
200 A
M200G124.X LS -23
0
40
80
120
160
200
240
280
0
1000
2000
3000
4000
5000
6000
7000
di
F
/dt
A/s
I
RR
A
17
10
40
6
R
G
=
4
M200G124.X LS -22
0
40
80
120
160
200
240
280
0
40
80
120
160
200
240
I
F
A
I
RR
A
17
10
40
6
R
G=
4
M 20 0G1 24 .X LS -1 9
0,0001
0,001
0,01
0,1
1
0,00001
0,0001
0,001
0,01
0,1
1
t
p
s
Z
thJC
K/W
D=0,50
0,20
0,10
0,05
0,02
0,01
single pulse
M2 0 0G1 24 .X LS -2 0
0,0001
0,001
0,01
0,1
1
0,00001
0,0001
0,001
0,01
0,1
1
s
Z
thJC
K/W
D=0,5
0,2
0,1
0,05
0,02
0,01
single pulse
t
p
Fig. 19 Transient thermal impedance of IGBT
Z
thJC
= f (t
p
); D = t
p
/ t
c
= t
p
f
Fig. 20 Transient thermal impedance of
inverse CAL diodes Z
thJC
= f (t
p
); D = t
p
/ t
c
= t
p
f
Fig. 22 Typ. CAL diode peak reverse recovery
current I
RR
= f (I
F
; R
G
)
Fig. 23 Typ. CAL diode peak reverse recovery
current I
RR
= f (di/dt)
Fig. 24 Typ. CAL diode recovered charge
Typical Applications
include
Switched mode power supplies
DC servo and robot drives
Inverters
DC choppers
AC motor speed control
UPS Uninterruptable power supplies
General power switching applications
Electronic (also portable) welders
V
CC
= 600 V
T
j
= 125 C
V
GE
= 15 V
V
CC
= 600 V
T
j
= 125 C
V
GE
= 15 V
I
F
= 150 A
V
CC
= 600 V
T
j
= 125 C
V
GE
= 15 V
by SEMIKRON
B 6 162
SKM 200 GB 124 D
0898
SEMITRANS 3
Case D 56
UL Recognized
File no. E 63 532
SKM 200 GB 124 D
Dimensions in mm
Case outline and circuit diagram
Mechanical Data
Symbol Conditions
Values
Units
min.
typ.
max.
M
1
M
2
a
w
to heatsink, SI Units
(M6)
to heatsink, US Units
for terminals, SI Units
(M6)
for terminals, US Units
3
27
2,5
22
5
44
5
44
5x9,81
325
Nm
lb.in.
Nm
lb.in.
m/s
2
g
This is an electrostatic discharge
sensitive device (ESDS).
Please observe the international
standard IEC 747-1, Chapter IX.
Three devices are supplied in one
SEMIBOX A without mounting
hardware, which can be ordered
separately under Ident No.
33321100 (for 10 SEMITRANS 3).
Larger packing units of 12 and 20
pieces are used if suitable
Accessories
B 6
4.
SEMIBOX
C
1.