by SEMIKRON
0898
B 6
7
Absolute Maximum Ratings
Values
Symbol Conditions
1)
Units
V
CES
V
CGR
I
C
I
CM
V
GES
P
tot
T
j
, (T
stg
)
V
isol
humidity
climate
R
GE
= 20 k
T
case
= 25/75 C
T
case
= 25/75 C; t
p
= 1 ms
per IGBT, T
case
= 25 C
AC, 1 min.
DIN 40040
DIN IEC 68 T.1
600
600
70 / 50
140 / 100
20
250
40 ... +150 (125)
2500
Class F
40/125/56
V
V
A
A
V
W
C
V
Inverse Diode
I
F
= I
C
I
FM
= I
CM
I
FSM
I
2
t
T
case
= 25/80 C
T
case
= 25/80 C; t
p
= 1 ms
t
p
= 10 ms; sin.; T
j
= 150 C
t
p
= 10 ms; T
j
= 150 C
75 / 50
140 / 100
440
970
A
A
A
A
2
s
Characteristics
Symbol Conditions
1)
min.
typ.
max.
Units
V
(BR)CES
V
GE(th)
I
CES
I
GES
V
CEsat
V
CEsat
g
fs
V
GE
= 0, I
C
= 1,5 mA
V
GE
= V
CE
, I
C
= 1 mA
V
GE
= 0
T
j
= 25 C
V
CE
= V
CES
T
j
= 125 C
V
GE
= 20 V, V
CE
= 0
I
C
= 30 A
V
GE
= 15 V;
I
C
= 50 A
T
j
= 25 (125) C
V
CE
= 20 V, I
C
= 50 A
V
CES
4,5
20
5,5
0,1
3
1,8(2,0)
2,1(2,4)
6,5
1,5
100
2,5(2,8)
V
V
mA
mA
nA
V
V
S
C
CHC
C
ies
C
oes
C
res
L
CE
per IGBT
V
GE
= 0
V
CE
= 25 V
f = 1 MHz
2800
300
200
350
30
pF
pF
pF
pF
nH
t
d(on)
t
r
t
d(off)
t
f
E
on
E
off
V
CC
= 300 V
V
GE
= 15 V / +15 V
3)
I
C
= 50 A, ind. load
R
Gon
= R
Goff
= 22
T
j
= 125 C
50
40
300
30
2,5
1,8
ns
ns
ns
ns
mWs
mWs
Inverse Diode
8)
V
F
= V
EC
V
TO
r
t
I
RRM
Q
rr
I
F
= 50 A
V
GE
= 0 V;
T
j
= 25 (125 C)
T
j
= 125 C
T
j
= 125 C
I
F
= 50 A; T
j
= 125 C
2)
I
F
= 50 A; T
j
= 125 C
2)
1,45(1,35)
10
31
3,2
1,7
0,9
15
V
V
m
A
C
Thermal characteristics
R
thjc
R
thjc
R
thch
per IGBT
per diode
per module
0,5
1,0
0,05
C/W
C/W
C/W
SEMITRANS
M
Superfast NPT-IGBT
Modules
SKM 50 GB 063 D
Features
N channel, homogeneous Silicon
structure (NPT- Non punch-
through IGBT)
Low tail current with low
temperature dependence
High short circuit capability, self
limiting if term. G is clamped to E
Pos. temp.-coeff. of V
CEsat
50 % less turn off losses
9)
30 % less short circuit current
9)
Very low C
ies
, C
oes
, C
res
9)
Latch-up free
Fast & soft inverse CAL diodes
8)
Isolated copper baseplate using
DCB Direct Copper Bonding
Technology without hard mould
Large clearance (10 mm) and
creepage distances (20 mm)
Typical Applications
Switching (not for linear use)
Switched mode power supplies
UPS
Three phase inverters for servo /
AC motor speed control
Pulse frequencies also above
10 kHz
1)
T
case
= 25 C, unless otherwise
specified
2)
I
F
= I
C
, V
R
= 300 V,
di
F
/dt = 800 A/
s, V
GE
= 0 V
3)
Use V
GEoff
= 5... 15 V
8)
CAL = Controlled Axial Lifetime
Technology
9)
Compared to PT-IGBT
Cases and mech. data
B 6
12
GB
SEMITRANS 2
by SEMIKRON
B 6 8
SKM 50 GB 063 D
0796
M50GB 06.X LS -6
0
2
4
6
8
10
12
0
100
200
300
400
500
600
700
V
CE
V
I
CSC
/I
C
allowed numbers of
short circuits: <1000
time between short
circuits: >1s
di/dt= 300 A/s
900 A/s
1500 A/s
M50GB 06.X LS -5
0
0,5
1
1,5
2
2,5
0
100
200
300
400
500
600
700
V
CE
V
I
Cpuls
/I
C
M50GB 06.X LS -4
0,1
1
10
100
1000
1
10
100
1000
10000
V
CE
V
I
C
A
t
p
=12s
100s
1ms
10ms
M50GB 06.X LS -3
0
1
2
3
4
5
6
0
20
40
60
80
100
120
R
G
E
mWs
E
on
E
off
M50GB 06.X LS -2
0
1
2
3
4
5
6
7
8
0
20
40
60
80
100
120
140
I
C
A
E
mWs
E
on
E
off
M50GB 06.X LS -1
0
50
100
150
200
250
300
0
20
40
60
80
100
120
140
160
T
C
C
P
tot
W
Fig. 3 Turn-on /-off energy = f (R
G
)
Fig. 4 Maximum safe operating area (SOA) I
C
= f (V
CE
)
Fig. 1 Rated power dissipation P
tot
= f (T
C
)
Fig. 2 Turn-on /-off energy = f (I
C
)
Fig. 5 Turn-off safe operating area (RBSOA)
Fig. 6 Safe operating area at short circuit I
C
= f (V
CE
)
T
j
= 125 C
V
CE
= 300 V
V
GE
= 15 V
R
G
= 22
1 pulse
T
C
= 25 C
T
j
150 C
T
j
= 125 C
V
CE
= 300 V
V
GE
= 15 V
I
C
= 50 A
T
j
150 C
VGE = 15 V
tsc
10 s
L < 35 nH
I
C
= 50 A
T
j
150 C
V
GE
= 15 V
R
Goff
= 22
I
C
= 50 A
Not for
linear use
by SEMIKRON
B 6 9
M50GB 06.X LS -12
0
20
40
60
80
100
0
2
4
6
8
10
12
14
V
GE
V
I
C
A
M 50 GB 0 6 .X LS -10
0
20
40
60
80
100
0
1
2
3
4
5
V
CE
V
I
C
A
17V
15V
13V
11V
9V
7V
M5 0 GB 0 6.X LS -9
0
20
40
60
80
100
0
1
2
3
4
5
V
CE
V
I
C
A
17V
15V
13V
11V
9V
7V
M5 0 GB 0 6.X LS -8
0
10
20
30
40
50
60
70
80
0
20
40
60
80
100
120
140
160
T
C
C
I
C
A
P
cond(t)
= V
CEsat(t
) I
C(t)
V
CEsat(t)
= V
CE(TO)(Tj)
+ r
CE(Tj)
I
C(t)
V
CE(TO)(Tj)
1,2 - 0,001 (T
j
25) [V]
typ.: r
CE(Tj)
= 0,018 + 0,00008 (T
j
25) [
]
max.: r
CE(Tj)
=
0,026 + 0,00008 (T
j
25) [
]
valid for V
GE
= + 15
[V]; I
C
0,3 I
Cnom
Fig. 9 Typ. output characteristic, t
p
= 250 s; T
j
= 25 C
Fig. 10 Typ. output characteristic, t
p
= 250 s; T
j
= 125 C
Fig. 8 Rated current vs. temperature I
C
= f (T
C
)
+2
1
Fig. 11 Saturation characteristic (IGBT)
Calculation elements and equations
Fig. 12 Typ. transfer characteristic, t
p
= 80 s; V
CE
= 20 V
T
j
= 150 C
V
GE
15V
B 6
10
0898
by SEMIKRON
SKM 50 GB 063 D
M 5 0GB06.XLS-18
0
0,2
0,4
0,6
0,8
0
20
40
60
80
100
I
F
A
E
of fD
mJ
40
25
80
15
R
G
=
10
M 5 0GB06.XLS-17
0
20
40
60
80
0
0,4
0,8
1,2
1,6
2
V
F
V
I
F
A
T
j
=125C typ.
T
j
=25C typ.
T
j
=125C max.
T
j
=25C max.
M 5 0GB06.XLS-16
10
100
1000
0
20
40
60
80
100
120
R
G
t
ns
t
dof f
t
don
t
r
t
f
M 5 0GB06.XLS-15
10
100
1000
0
20
40
60
80
100
120
I
C
A
t
ns
t
dof f
t
don
t
r
t
f
M 5 0GB06.XLS-14
0,01
0,1
1
10
0
10
20
30
40
V
CE
V
C
nF
C
ies
C
oes
C
res
M 5 0GB06.XLS-13
0
2
4
6
8
10
12
14
16
18
20
0
40
80
120
160
Q
Gate
nC
V
GE
V
100V
300V
Fig. 13 Typ. gate charge characteristic
Fig. 14 Typ. capacitances vs.V
CE
V
GE
= 0 V
f = 1 MHz
Fig. 15 Typ. switching times vs. I
C
Fig. 16 Typ. switching times vs. gate resistor R
G
Fig. 17 Typ. CAL diode forward characteristic
Fig. 18 Diode turn-off energy dissipation per pulse
T
j
= 125 C
V
CE
= 300 V
V
GE
= 15 V
I
C
= 50 A
induct. load
I
Cpuls
= 50 A
T
j
= 125 C
V
CE
= 300 V
V
GE
= 15 V
R
Gon
= 22
R
Goff
= 22
induct. load
V
CC
= 300 V
T
j
= 125 C
V
GE
= 15 V
by SEMIKRON
B 6 11
0898
M 50 GB 0 6 .X LS -24
0
1
2
3
4
5
6
0
1000
2000
3000
4000
5000
di
F
/dt
A/s
Q
rr
C
I
F
=
50 A
38 A
25 A
13 A
40
25
80
15
R
G
=
10
75 A
M50GB 06.X LS -23
0
20
40
60
80
0
1000
2000
3000
4000
di
F
/dt
A/s
I
RR
A
40
25
80
15
R
G
=
10
M50GB 06.X LS -22
0
20
40
60
80
0
20
40
60
80
100
I
F
A
I
RR
A
40
25
80
15
R
G=
10
M 50 GB 0 6 .X LS -20
0,001
0,01
0,1
1
0,00001
0,0001
0,001
0,01
0,1
1
s
Z
thJC
K/W
D=0,5
0,2
0,1
0,05
0,02
0,01
single pulse
t
p
M 50 GB 0 6 .X LS -19
0,001
0,01
0,1
1
0,00001
0,0001
0,001
0,01
0,1
1
t
p
s
Z
thJC
K/W
D=0,50
0,20
0,10
0,05
0,02
0,01
single pulse
Fig. 19 Transient thermal impedance of IGBT
Z
thJC
= f (t
p
); D = t
p
/ t
c
= t
p
f
Fig. 20 Transient thermal impedance of
inverse CAL diodes Z
thJC
= f (t
p
); D = t
p
/ t
c
= t
p
f
Fig. 22 Typ. CAL diode peak reverse recovery
current I
RR
= f (I
F
; R
G
)
Fig. 23 Typ. CAL diode peak reverse recovery
current I
RR
= f (di/dt)
Fig. 24 Typ. CAL diode recovered charge
V
CC
= 300 V
T
j
= 125 C
V
GE
= 15 V
I
F
= 50 A
V
CC
= 300 V
T
j
= 125 C
V
GE
= 15 V
V
CC
= 300 V
T
j
= 125 C
V
GE
= 15 V
B 6
12
0898
by SEMIKRON
SKM 50 GB 063 D
SEMITRANS 2
Case D 61
UL Recognized
File no. E 63 532
SKM 50 GB 063 D
Dimensions in mm
Case outline and circuit diagram
Mechanical Data
Symbol Conditions
Values
Units
min.
typ.
max.
M
1
M
2
a
w
to heatsink, SI Units(M6)
to heatsink, US Units
for terminals, SI Units(M5)
for terminals, US Units
3
27
2,5
22
5
44
5
44
5x9,81
160
Nm
lb.in.
Nm
lb.in.
m/s
2
g
This is an electrostatic discharge
sensitive device (ESDS).
Please observe the international
standard IEC 747-1, Chapter IX.
Eight devices are supplied in one
SEMIBOX A without mounting hard-
ware, which can be ordered separa-
tely under Ident No. 33321100 (for
10 SEMITRANS 2)
Larger packing units of 20 or 42 pie-
ces are used if suitable
Accessories
B 6 4
SEMIBOX
C 1.