ChipFind - документация

Электронный компонент: PC922

Скачать:  PDF   ZIP
PC922
PC922
High Power OPIC Photocoupler
s
Features
1. Built-in base amplifier for inverter drive
O1
: MAX. 0.5A ( DC ) )
3. High isolation voltage between input
4. High noise reduction type
5. High speed response ( t
PHL
, t
PLH
: MAX. 5
s )
6. High sensitivity ( I
FLH
: MAX. 3mA )
s
Applications
1. Inverter controlled air conditioners
2. Small capacitance general purpose inver-
O2P
: MAX. 2.0A ( pulse ) )
and output ( V
iso
ters
s
Absolute Maximum Ratings
Internal connection diagram
Anode
Interface
Amp
Tr1
Tr2
PC922
mark
s
Outline Dimensions
( Unit : mm)
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.
"
"
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1 Anode
2 Cachode
3 NC
4 NC
7 GND
2. High power ( I
(I
( Ta= T
opr
unless otherwise specified)
*1 Ta = 25C
*2 Pulse width <= 5
s, Duty ratio : 0.01
Ta = 25C
*4 For 10 seconds
Parameter
Symbol
Rating
Unit
Input
Forward current
I
F
25
mA
V
R
6
V
Output
Supply voltage
V
CC
18
V
O
1
output current
I
O1
0.5
A
I
O1P
1.0
A
O
2
output current
I
O2
0.6
A
I
O2P
2.0
A
O
1
output voltage
V
O1
18
V
Power dissipation
P
O
500
mW
P
tot
550
mW
V
iso
T
opr
- 20 to + 80
C
T
stg
- 55 to + 125
C
T
sol
260
C
Total power dissipation
Operating temperature
Storage temperature
*1
Reverse voltage
*2
O
1
peak output current
*2
O
2
peak output current
*3
Isolation voltage
*4
Soldering temperature
7. Recognized by UL, file No. E64380
5 000
An OPIC consists of a light-detecting element and signal-
processing circuit integrated onto a single chip.
* " OPIC " ( Optical IC ) is a trademark of the SHARP Corporation.
g Lead forming type
gg TV
( I type ) and taping reel type ( P type ) are also available. (
PC922I/PC922P
)
: 5 000V
rms
)
V
rms
*3 40 to 60% RH, AC for 1 minute,
5 O
1
6 O
2
8 V
CC
=
0 to 13
6.5
0.5
1.2
0.3
0.85
0.2
0.5
TYP.
3.5
0.5
3.4
0.5
0.5
0.1
2.54
0.25
9.66
0.5
7.62
0.3
0.26
0.1
( VDE 0884 ) approved type is also available as an option.
PC922
s
Truth Table
Input
O
2
Output
Tr. 1
Tr. 2
ON
High level
ON
OFF
OFF
Low level
OFF
ON
*5 I
FLH
( Ta = T
opr
unless otherwise specified )
Parameter
Symbol
Conditions
MIN.
TYP.
MAX.
Unit
Fig.
Input
V
F1
T
a
= 25C, I
F
= 5mA
-
1.1
1.4
V
-
V
F2
T
a
= 25C, I
F
= 0.2mA
0.6
0.9
-
V
-
Reverse current
I
R
T
a
= 25C, V
R
= 3V
-
-
10
A
-
Terminal capacitance
C
t
T
a
= 25C, V = 0, f = 1kHz
-
30
250
p
F
-
Output
Operating supply voltage
V
CC
5.4
-
13
V
-
O
1
low level output voltage
V
O1L
V
CC
= 6V, I
O1
= 0.4A,
R
L2
= 10
, I
F
= 5mA
-
0.2
0.4
V
1
O
2
high level output voltage
V
O2H
V
CC
= 6V, I
O2
= - 0.4A,
I
F
= 5mA
4.5
5.0
-
V
2
O
2
low level output voltage
V
O2L
V
CC
= 6V, I
O2
= 0.5A, I
F
= 0
-
0.2
0.4
V
-
O
1
leak current
I
O1L
V
CC
= 13V, I
F
= 0
-
-
200
A
3
O
2
leak current
I
O2L
V
CC
= 13V, I
F
= 5mA
-
-
200
A
4
High level supply current
I
CCH
T
a
= 25C, V
CC
= 6V, I
F
= 5mA
-
9
13
mA
-
V
CC
= 6V, I
F
= 5mA
-
-
17
mA
-
Low level supply current
I
CCL
T
a
= 25C, V
CC
= 6V, I
F
= 0
-
11
15
mA
-
V
CC
= 6V, I
F
= 0
-
-
20
mA
-
Transfer
charac-
teristics
*5
" Low
High " threshold
input current
I
FLH
T
a
= 25C, V
CC
= 6V,
R
L1
= 5
, R
L2
= 10
0.3
1.5
3.0
mA
5
V
CC
= 6V, R
L1
= 5
R
L2
= 10
0.2
-
5.0
mA
5
Isolation resistance
R
ISO
Ta = 25C, DC = 500V
5 x10
10
10
11
-
-
"Low
High " propagation delay time
t
PLH
T
a
= 25C, V
CC
= 6V
I
F
= 5mA R
L1
= 5
R
L2
= 10
-
2
5
s
6
-
2
5
s
"High
Low " propagation delay time
t
PHL
-
0.2
1
s
t
r
-
0.1
1
s
Response time
t
f
Instantaneous common
mode rejection voltage
CM
H
T
a
= 25C, V
CM
= 600V
(peak )
I
F
= 5mA, R
L1
= 470
, R
L2
= 1k
,
V
O2H
= 0.5V
-
-
V/
s
7
Instantaneous common
mode rejection voltage
CM
L
T
a
= 25C, V
CM
= 600V
(peak )
I
F
= 0, R
L1
= 470
, R
= 1k
V
O2L = 0.5V
-
-
V/
s
7
Rise time
Fall time
s
Electro-optical Characteristics
Forward voltage
"Output : High level "
"Output : Low level "
L2
represents forward current when output goes from low to high.
40 to 60% RH
- 1 500
1 500
PC922
s
Test Circuit
Fig. 2
Fig. 4
Fig. 6
Fig. 7
Fig. 1
Fig. 3
Fig. 5
1
2
8
5
6
7
V
PC922
PC922
V
7
6
5
8
2
1
I
F
R
L2
I
O1
V
CC
I
F
I
O2
V
CC
PC922
7
6
5
8
2
1
A
1
2
8
5
6
7
A
PC922
I
F
V
CC
I
F
V
CC
1
2
8
6
5
7
PC922
47
1
2
8
5
6
7
PC922
V
variable
A
V
IN
t
r
=
t
f
Z
O
=
50
V
O2
V
CC
R
L2
R
L1
V
CC
R
L2
R
L1
I
F
PC922
7
6
5
8
2
1
SW
B
(peak)
GND
GND
V
IN
t
PLH
t
PHL
t
f
t
r
10
%
90
%
V
O2
R
L1
R
L2
V
O2
V
CC
V
CM
+
-
V
CM
V
CM
SW at B, I
F
=0
V
O2L
V
O2L
V
O2H
V
O2H
CM
H
V
O2
CM
H
V
O2
50
%
50
%
5
10
30
25
20
15
0
- 25 - 20
0
25
50
75
100
80
Ambient temperature T
a
(C)
Fig. 8 Forward Current vs.
Ambient Temperature
A
=
0.01
s
waveform
waveform
waveform
waveform
SW at A, I
F
=
3mA
waveform
Forward current I
F
(
mA
)
PC922
0
300
0
25
50
75
100
80
400
600
200
100
500
Ambient Temperature
Power dissipation P
O
(
mW
)
Ambient temperature T
a
(C)
0
300
0
25
50
75
100
80
600
200
100
500
400
550
Ambient Temperature
Power dissipation P
tot
(
mW
)
Ambient temperature T
a
(C)
25C
0C
0
1
2
5
10
20
50
100
200
500
0.5
1.0
1.5
2.0
2.5
3.0
3.5
50C
Fig. 10 Forward Current vs. Forward Voltage
F
(
mA
)
T
a
= 75C
- 20C
0.7
Relative threshold input current
0.8
0.9
1.2
1.1
1.0
Input Current vs. Supply Voltage
0.6
Relative threshold input current
0.8
1.6
0
25
50
100
- 25
75
1.4
1.2
1.0
Ambient temperature T
a
(C)
Fig.11
"
Low
High
"
Relative Threshold
0.01
0.1
1.0
0.02
0.05
0.2
0.5
0.005
0.01
0.02
0.05
0.1
0.2
0.4
Fig.13 O
1
Low Level Output Voltage vs.
O
1
Low level output voltage V
(
V
)
O
1
Output current I
O1
(A)
- 20
Forward voltage V
F
(V)
V
CC
= 6V
I
FLH
= 1
T
a
= 25C
Fig.12
"
Low
High
"
Relative Threshold
Input Current vs. Ambient
Temperature
6
8
14
4
10
12
Supply voltage V
CC
(V)
O
1
Output Current
V
CC
= 6V
I
FHL
= 1
T
a
= 25C
V
CC
= 6V
R
L2
= 10
I
F
= 5mA
T
a
= 25C
Fig. 9-a Power Dissipation vs.
Fig. 9-b Power Dissipation vs.
Forward current I
O1L
- 20
PC922
0
- 25
0.5
100
0
25
50
75
0.1
0.2
0.3
0.4
0.4A
0.1A
Ambient Temperature
Ambient temperature T
a
(C)
Fig.14 O
1
Low Level Output Voltage vs.
O
1
Low level output voltage V
(V
)
4.8
0
- 0.1
4.9
- 0.2
- 0.3
- 0.4
- 0.5
- 0.6
5.0
5.1
5.2
5.3
5.4
O
2
output currrent I
O2
(A)
O
2
high level output voltage V
O2H
(V
)
0.005
0.01
0.4
0.1
1.0
0.02
0.05
0.2
0.5
0.01
0.02
0.05
0.1
0.2
O
2
output current I
2
(A)
Fig.17 O
2
Low Level Output Voltage vs.
O
2
Output Current
O
2
Low level output voltage V
O2L
(V
)
4.8
- 25
5.4
100
0
25
50
75
4.9
5.0
5.1
5.2
- 0.4A
- 0.5A
5.3
Ambient Temperature
O
2
high level output voltage V
O2H
(V
)
Ambient temperature T
a
(C)
Fig.16 O
2
High Level Output Voltage vs.
0
- 25
0.5
100
0
25
50
75
0.1
0.2
0.3
0.4
0.5A
0.1A
Fig.18 O
2
4
4
14
14
6
8
10
12
6
8
10
12
25C
80C
Supply Voltage
T
a
= - 20C
Supply voltage V
CC
(V)
High level supply current I
CCH
(
mA
)
V
CC
= 6V
R
L2
= 10
I
O1
= 0.5A
V
CC
= 6V
I
O2
= - 0.1A
V
CC
= 6V
I
F
= 5mA
T
a
= 25C
O
2
Low level output voltage V
O2L
(V
)
I
O2
= 0.6A
V
CC
= 6V
Fig.15 O
2
High Level Output Voltage vs.
O
2
Output Current
Ambient temperature T
a
( C)
O1L
V
CC
= 6V
T
a
= 25C
Low Level Output Voltage vs.
Ambient Temperature
Fig.19 High Level Supply Current vs.
PC922
6
4
16
14
6
8
10
12
8
10
12
14
25C
80C
Supply Voltage
Low level supply current I
CCL
(
mA
)
Supply voltage V
CC
(V)
0
1
2
3
5
6
5
10
15
20
25
0
4
25C
- 20C
25C
- 20C
t
PHL
t
PLH
Fig.21 Propagation Delay Time vs.
Forward Current
PHL
, t
PLH
(
s
)
Forward current I
F
( mA )
T
a
= 80C
T
a
= 80C
0
1
2
3
4
5
0
25
50
75
100
- 25
Ambient Temperature
Fig.22 Propagation Delay Time vs.
PHL
, t
PLH
Ambient temperature T
a
(C)
0.1
0.2
0.2
0.5
1
2
5
10
20
0.5
1
2
5
10
DC
O
2
peak output current I
O2P
(A
)
O
2
low level output voltage V
O2L
(V)
I
02
MAX. ( Pulse )
I
02
MAX. ( Continuous )
V
CC
(
MAX.
)
DC ( T
a
= 80C)
Cathode
+
5V
Anode
PC922
+
GND
O
2
O
1
V
CC
+
Load
6V
E
C
B
Power transistor
module
TTL, microcomputer, etc.
s
Precautions for Use
CC
and GND near the device in order to stabilize power supply line.
( 2) Handle this product the same as with other integrated circuits against static electricity.
T
a
= - 20C
V
CC
= 6V
R
L1
= 5
R
L2
= 10
100ms
*
10ms
*
1ms
*
*
s
Application Circuit
V
CC
= 6V
R
L1
= 5
R
L2
= 10
I
F
= 5mA
*
Single
osc.pulse
T
a
= 25C
Fig.20 Low Level Supply Current vs.
Propagation delay time t
(
s
)
( 1) It is recommended that a by-pass capacitor of more than 0.01
F is added between V
Fig.23 O
2
Peak Output Current vs.
O
2
Low Level Output Voltage
1s
( 3) As for other general cautions, refer to the chapter " Precautions for Use " .
Propagation delay time t
t
PLH
t
PHL