ChipFind - документация

Электронный компонент: Q68000-A9124

Скачать:  PDF   ZIP
GaAs MMIC
CGY 94
_______________________________________________________________________________________________________
Siemens Aktiengesellschaft
pg. 1/9
17.10.95
HL EH PD 21
Preliminary Datasheet
* Power amplifier for GSM or AMPS application
* Fully integrated 2 stage amplifier
* Operating voltage range: 2.7 to 6 V
* 2 W output power at 3.6 V
* Overall power added efficiency 46 %
* Input matched to 50
, simple output match
ESD:
Electrostatic discharge sensitive device,
observe handling precautions!
Type
Marking
Ordering code
(taped)
Package 1)
CGY 94
CGY 94
Q68000-A9124
MW 12
Maximum ratings
Characteristics
Symbol
max. Value
Unit
Positive supply voltage
VD
9
V
Negative supply voltage
2
)
VG
-8
V
Supply current
ID
2
A
Channel temperature
TCh
150
C
Storage temperature
Tstg
-55...+150
C
Pulse peak power dissipation
duty cycle 12.5%, ton=0.577ms
PPulse
9
W
Total power dissipation
(Ts
81 C)
Ts: Temperature at soldering point
Ptot
5
W
Thermal Resistance
Channel-soldering point
RthChS
14
K/W
1) Plastic body identical to SOT 223,
dimensions see chapter Package Outlines
2) V
G
= -8V only in combination with V
TR
= 0V; V
G
= -6V while V
TR
0V
GaAs MMIC
CGY 94
_______________________________________________________________________________________________________
Siemens Aktiengesellschaft
pg. 2/9
17.10.95
HL EH PD 21
Functional block diagram:
Control circuit:
The drain current ID of the CGY 94 is
adjusted by the internal control circuit.
Therefore a negative voltage (-4V...-6V)
has to be supplied at VG. For transmit
operation VTR must be set to 0V. During
receive operation VTR should be dis-
connected (shut off mode).
Pin #
Configuration
1
VG
Negative voltage at control circuit (-4V...-6V)
2
VTR
Control voltage for transmit mode (0V) or receive mode (open)
3,4,5,10
GND 2
RF and DC ground of the 2nd stage
6,9
GND 1
RF and DC ground of the 1st stage
7
VD1
Positive drain voltage of the 1st stage
8
RFin
RF input power
11
GND 3
Ground for internal output matching
12
VD2, RFout
Positive drain voltage of the 2nd stage, RF output power
DC characteristics
Characteristics
Symbol Conditions
min
typ
max
Unit
Drain current stage 1
IDSS1
VD=3V, VG=0V, VTR n.c.
0.6
0.9
1.3
A
stage 2
IDSS2
2.7
4.1
5.9
A
Drain current with
active current control
ID
VD=3V, VG=-4V, VTR=0V
-
1.1
-
A
Transconductance
gfs1
VD=3V, ID=350mA
0.25
0.32
-
S
(stage 1 and 2)
gfs2
VD=3V, ID=700mA
1.1
1.3
-
S
Pinch off voltage
Vp
VD=3V, ID<500
A
(all stages)
-3.8
-2.8
-1.8
V
Pin (8)
Pout (12)
GND1 (6, 9)
GND2
VD1 (7)
VD2 (12)
VG (1)
GND3 (11)
Control
Circuit
VTR (2)
(3, 4, 5, 10)
GaAs MMIC
CGY 94
_______________________________________________________________________________________________________
Siemens Aktiengesellschaft
pg. 3/9
17.10.95
HL EH PD 21
Electrical characteristics
(TA = 25C , f=0.9 GHz, ZS=ZL=50 Ohm, VD=3.6V, VG=-4V, VTR pin connected to
ground, unless otherwise specified; pulsed with a duty cycle of 10%, ton=0.33ms)
Characteristics
Symbol
min
typ
max
Unit
Supply current
VD=3.0V; Pin=10dBm
IDD
-
1.18
-
A
Negative supply current
(normal operation)
IG
-
2
-
mA
Shut-off current
VTR n.c.
ID
-
400
-
A
Negative supply current
(shut off mode, VTR pin n.c.)
IG
-
10
-
A
Gain
Pin=-5dBm
G
27.0
29.0
-
dB
Power gain
VD=3.6V; Pin=10dBm
G
22.8
23.6
-
dB
Output Power
VD=3.0V; Pin=10dBm
Po
31.5
32.3
-
dBm
Output Power
VD=3.6V; Pin=10dBm
Po
32.8
33.6
-
dBm
Output Power
VD=5V; Pin=10dBm
Po
34.5
35.5
-
dBm
Overall Power added Efficiency
VD=3.0V; Pin=10dBm
43
48
-
%
Overall Power added Efficiency
VD=3.6V; Pin=10dBm
42
47
-
%
Overall Power added Efficiency
VD=5V; Pin=10dBm
41
46
-
%
Harmonics
(Pin=10dBm, CW)
2f
0
VD=3.6V; (Pout=33.1dBm)
3f
0
-
-
-
-
-49
-45
-
-
dBc
dBc
Input VSWR
VD=3.6V;
-
-
1.5 : 1
2.0 : 1
-
GaAs MMIC
CGY 94
_______________________________________________________________________________________________________
Siemens Aktiengesellschaft
pg. 4/9
17.10.95
HL EH PD 21
AAA
AAA
AAAA
AAAA
AAAA
AAA
AAA
AAA
AAA
AAAA
AAAA
AAA
AAA
AAAA
AAAA
AAAA
A
A
A
AAA
AAA
AAA
AAA
AAA
AAAA
AAAA
AAAA
AAA
AAA
AAA
AAA
AAA
AAA
AAAA
AAAA
AAAA
AAA
AAA
AAA
AAAA
AAAA
AAAA
AAA
AAA
AAA
AAAA
AAAA
AAAA
AAAA
AAA
AAA
AAA
AAA
AAAA
AAAA
AAAA
AAA
AAA
AAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAA
AAA
AAA
AAA
AAA
AAA
AAAA
AAAA
AAAA
AAA
AAA
AAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAA
AAA
AAAA
AAAA
AAA
AAA
AAAA
AAAA
AAA
AAA
AAAA
AAAA
AAAA
AAAA
AAA
AAA
AAAA
AAAA
AAAA
AAAA
Pout and PAE vs. Pin
(VD=3.6V, VG=-4V, VTR=0V, f=900GHz, pulsed with a duty cycle of 10%, ton=0.33ms)
15
20
25
30
35
40
45
-5
0
5
10
15
Pin [dBm]
Pout [dBm]
0
10
20
30
40
50
60
PAE [%]
Pout [dBm]
AAAAAAAAA
PAE [%]
AAA
AAA
AAA
AAA
AAAA
AAAA
AAAA
AAAA
AAA
AAA
AAAA
AAAA
AAAA
A
A
A
AAAA
AAAA
AAA
AAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAA
AAA
AAA
AAA
AAA
AAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAA
AAA
AAA
AAA
AAA
AAA
AAAA
AAAA
AAAA
AAA
AAA
AAA
AAAA
AAAA
AAAA
AAAA
AAA
AAA
AAA
AAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAA
AAA
AAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAA
AAA
AAAA
AAAA
AAAA
AAAA
AAA
AAA
AAA
AAA
AAAA
AAAA
AAA
AAA
Pout and PAE vs. Pin
(VD=5V, VG=-4V, VTR=0V, f=900GHz, pulsed with a duty cycle of 10%, ton=0.33ms)
15
20
25
30
35
40
45
-5
0
5
10
15
Pin [dBm]
Pout [dBm]
0
10
20
30
40
50
60
PAE [%]
Pout [dBm]
AAAA
AAAA
AAAA
AAAA
A
A
PAE [%]
GaAs MMIC
CGY 94
_______________________________________________________________________________________________________
Siemens Aktiengesellschaft
pg. 5/9
17.10.95
HL EH PD 21
S-Parameter at VD=3.6V and Pin=9dBm
(VG=-4V, VTR=0V, pulsed with a duty cycle of 10%)
S-Parameter at VD=5V and Pin=9dBm
(VG=-4V, VTR=0V, pulsed with a duty cycle of 10%)
-30
-25
-20
-15
-10
-5
0
5
10
15
20
25
30
750
770
790
810
830
850
870
890
910
930
950
f [M Hz]
Mag [dB]
MAG(s11)
MAG(s21)
-30
-25
-20
-15
-10
-5
0
5
10
15
20
25
30
750
770
790
810
830
850
870
890
910
930
950
f [M Hz]
Mag [dB]
MAG(s11)
MAG(s21)
GaAs MMIC
CGY 94
_______________________________________________________________________________________________________
Siemens Aktiengesellschaft
pg. 6/9
17.10.95
HL EH PD 21
Performance of internal bias control circuit
(VTR=0V)
0,4
0,6
0,8
1,0
1,2
1,4
1,6
1,8
2,0
2,2
2,4
2,6
2,8
3,0
2,0
2,5
3,0
3,5
4,0
4,5
5,0
5,5
6,0
-Vg / V
ID / A
ID (VD=3.0V)
ID (VD=6.0V)
GaAs MMIC
CGY 94
_______________________________________________________________________________________________________
Siemens Aktiengesellschaft
pg. 7/9
17.10.95
HL EH PD 21
Total Power Dissipation Ptot=f(T
S
)
Permissible pulse load P
tot_max
/P
tot_DC
= f(t_p)
GaAs MMIC
CGY 94
_______________________________________________________________________________________________________
Siemens Aktiengesellschaft
pg. 8/9
17.10.95
HL EH PD 21
Test circuit board:
Note:
By changing the position of the
6.8 pF capacitor at pin # 12 it is
possible to tune the board for
max. Pout or max. PAE. To
achieve the maximum output
power place the capacitor close
to the CGY94. For a better PAE
increase the distance between
the capacitor and the CGY94
device (2-5mm).
Principal circuit:
Pin (8)
Pout (12)
GND1 (6, 9)
GND2
VD1 (7)
VD2 (12)
VG (1)
GND3 (11)
Control
Circuit
VTR (2)
(3, 4, 5, 10)
1nF
1nF
4.7uF
1nF
43nH
6.8pF
VTR
VG
+VD
IN
OUT
2) Coilcraft SMD Spring Inductor
distribution by Ginsbury Electronic GmbH, Am Moosfeld 85 D-81829 Mnchen, Tel. 089/45170-223
43nH
GaAs MMIC
CGY 94
_______________________________________________________________________________________________________
Siemens Aktiengesellschaft
pg. 9/9
17.10.95
HL EH PD 21
APPLICATION - HINTS
1. CW - capability of the CGY94
Proving the possibility of CW - operation there must be known the total power dissipation of the
device. This value can be found as a function of the temperature in the datasheet (page 7). The
CGY94 has a maximum total power dissipation of Ptot = 5 W.
As an example we take the operating point with a drain voltage VD = 3 V and a typical drain current
of ID=1.0 A. So the maximum DC - power can be calculated to:
P
V
I
W
DC
D
D
= =
3
This value is smaller than 5 W and CW - operation is possible.
By decoupling RF power out of the CGY94 the power dissipation of the device can be further
reduced. Assuming a power added efficiency (PAE) of 40 % the total power dissipation Ptot can be
calculated using the following formula:
P
P
PAE
W
W
tot
DC
=
-
=
-
=
(
)
(
.
)
.
1
3
1 0 40
1 8
2. Operation without using the internal current control
If you don' t want to use the internal current control, it is recommended to connect the negative
supply voltage at pin 1 (VTR) instead of pin 2 (VG). In that case VG is not connected.
3. Biasing and use considerations
Biasing should be timed in such a way, that the gate voltage (VG) is always applied before the drain
voltage (VD), and when returning to the standby mode, the drain voltage has to be removed before
the gate voltage.