ChipFind - документация

Электронный компонент: CXA1166

Скачать:  PDF   ZIP
1
CXA1166K
E90406-ST
8-bit 250 MSPS Flash A/D Converter
Description
The CXA1166K is an 8-bit ultrahigh-speed flash
A/D converter IC capable of digitizing analog signals
at a maximum rate of 250 MSPS. The digital I/O
level of this A/D converter is compatible with the
ECL 100K/10KH/10K.
This IC is pin-compatible with the conventional
CXA1076AK/CXA1176K/CXA1176AK, and can
replace the conventional models easily. Compared
with the conventional models, the CXA1166K has a
greatly improved performance because of the new
circuit design and carefully considered layout.
Features
Differential linearity error: 0.5 LSB or less
Integral linearity error: 0.5 LSB or less
Built-in integral linearity compensation circuit
Ultrahigh-speed operation with maximum conver-
sion rate of 250 MSPS
Low input capacitance: 18pF
Wide analog input bandwidth: 250MHz (full-scale
input, standard)
Single power supply: 5.2V
Low power consumption: 1.4W (Typ.)
Low error rate
Good temperature characteristics
Capable of driving 50
loads
Structure
Bipolar silicon monolithic IC
Applications
Digital oscilloscopes
Other apparatus requiring ultrahigh-speed A/D
conversion
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by
any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the
operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
68 pin LCC (Ceramic)
61
62
63
64
65
66
67
68
1
2
3
4
5
6
7
8
9
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
AV
EE
AGND
V
IN1
V
IN1
AGND
V
RM
AGND
V
IN2
V
IN2
AGND
D2
D2
D3
D3
DGND2
DGND2
DGND1
D4
D4
D5
D5
AGND
AV
EE
V
RB
V
RBS
AV
EE
AV
EE
CLK
CLK
MINV
D7
D7
D6
D6
DV
EE
AGND
AV
EE
V
RT
V
RTS
AV
EE
AV
EE
LINV
OR
OR
D0
D0
D1
D1
DV
EE
Pin Configuration (Top View)
Pins without name are NC pins (not connected internally).
2
CXA1166K
Absolute Maximum Ratings (Ta = 25C)
Supply voltage
AV
EE
, DV
EE
7 to +0.5
V
Analog input voltage
V
IN
2.7 to +0.5
V
Reference input voltage
V
RT
, V
RB
, V
RM
2.7 to +0.5
V
| V
RT
V
RB
|
2.5
V
Digital input voltage
MINV, LINV, CLK, CLK
4 to +0.5
V
| CLK CLK |
2.7
V
V
RM
pin input current
I
VRM
3 to +3
mA
Digital output current
ID
0
to ID
7
, IOR, ID
0
to ID
7
, IOR
30 to 0
mA
Storage temperature
Tstg
65 to +150
C
Operating Conditions
Min.
Typ.
Max.
Unit
Supply voltage
AV
EE
, DV
EE
5.5
5.2
4.95
V
AV
EE
DV
EE
0.05
0
0.05
V
AGND DGND
0.05
0
0.05
V
Reference input voltage
V
RT
0.1
0
0.1
V
V
RB
2.2
2.0
1.8
V
Analog input voltage
V
IN
V
RB
V
RT
Operating temperature
Tc
20
100
C
3
CXA1166K
Block Diagram
255
126
127
128
129
191
192
193
254
63
64
65
1
2
CLOCK
DRIVER
r
5
r
1
r
3
r/2
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r/2
D7 (MSB)
D6
D4
D3
D5
D2
D1
D0 (LSB)
OUTPUT
ENCODE LOGIC
MINV
V
RT
V
RM
V
RB
CLK
CLK
LINV
Comparator
r
4
V
RBS
r
2
V
RTS
V
IN1
V
IN2
0
D7
D6
D4
D3
D5
D2
D1
OR
OR
1
D0
64
65
54
55
52
49
50
39
40
35
34
33
2
3
31
32
29
30
21
22
19
20
14
15
12
13
6
7
4
5
4
CXA1166K
Pin Description
Pin
No.
Symbol
I/O
Standard
voltage level
Equivalent circuit
Description
1
LINV
I
ECL
Polarity selection other than
MSB and overrange.
(Refer to the table of input
voltage vs. Digital output)
Low level is maintained with
left open.
33
MINV
I
ECL
Polarity selection for MSB
(Refer to the table of input
voltage vs. Digital output)
Low level is maintained with
left open.
64
V
RT
I
0V
Reference voltage
(Top) (0V typ.)
65
V
RTS
O
0V
Reference voltage sense
(Top)
52
V
RM
I
V
RB
/2
Reference voltage mid-point.
Can be used for linearity
compensation.
39
V
RBS
O
2V
Reference voltage sense
(Bottom)
40
V
RB
I
2V
Reference voltage (Bottom)
54
55
V
IN1
49
50
V
IN2
I
V
RTS
to
V
RBS
Analog input.
Pins 49, 50 and Pins 54, 55
should be connected
externally.
35
CLK
I
ECL
34
CLK
I
ECL
CLK input
Complementary CLK input.
ECL threshold potential
(1.3V) is maintained with
left open.
The complementary input is
recommended for stable
operation at high speed
though the operation only
with the CLK input is
possible when the CLK
input is left open.
r
r
r
r
LINV
DGND1
DV
EE
1.3V
MINV
or
18
1
33
28
8
To
Comparator
r/2
r
1
r
r
r
r /2
r
4
r
3
r
2
V
RT
V
RM
V
RB
r
5
V
RTS
V
RBS
64
65
25
39
40
AGND
V
IN1
V
IN2
43, 48, 51, 53, 56, 61
128 to 255
To Comp
0 to 127
54
55
49
50
r
r
r
r
r
r
DGND1
CLK
CLK
DV
EE
18
35
34
8
28
5
CXA1166K
31
32
29
30
21
22
19
20
14
15
12
13
6
7
4
5
2
3
D
7
D
7
D
6
D
6
D
5
D
5
D
4
D
4
D
3
D
3
D
2
D
2
D
1
D
1
D
0
D
0
OR
OR
O
O
O
O
O
O
O
O
O
ECL
MSB and complementary
MSB output
D
1
to D
6
: Output
D
1
to D
6
: Complementary
output
LSB and complementary
LSB output
Overrange output;
Low level for overrange.
Overrange complementary
output;
High level for overrange.
37, 38,
42, 58,
62, 66,
67
AV
EE
5.2V
Analog supply.
Internally connected with
DV
EE
(resistance: 4 to 6
).
43, 48,
51, 53,
56, 61
AGND
0V
Analog ground.
Separated from DGND.
8
28
DV
EE
5.2V
Digital supply.
Internally connected with
AV
EE
(resistance: 4 to 6
).
18
DGND1
0V
Digital ground
16
17
DGND2
0V
Digital ground for output
drive
41, 44,
45, 46,
47, 57,
59, 60,
63
NC
--
No connected.
It is recommended to connect
these pins to AGND.
9, 10,
11, 23,
24, 25,
26, 27,
36, 68
NC
--
No connected.
It is recommended to connect
these pins to DGND.
DGND2
DV
EE
Di
Di
16
17
8
28
DGND2
Internal
Analog
Circuit
Internal
Digital
Circuit
DGND1
AGND
Di
Di
DV
EE
AV
EE
4 to 6
61
43
48
51
53
56
18
16 17
42
62
37
38
58
66
67
8
28
For stable operation, all of these pins must be connected on the corresponding PCB pattern.
Pin
No.
Symbol
I/O
Standard
voltage level
Equivalent circuit
Description
6
CXA1166K
Electrical Characteristics
(AV
EE
= DV
EE
= 5.2V, V
RT
, V
RTS
= 0V, V
RB
, V
RBS
= 2V, Ta = 25C)
Item
Resolution
DC characteristics
Integral linearity error
Differential linearity error
Analog input
Analog input capacitance
Analog input resistance
Input bias current
Reference inputs
Reference resistance
Residual resistance
1
r
1
r
2
r
3
r
4
r
5
Digital inputs
Logic High level
Logic Low level
Logic High current
Logic Low current
Input capacitance
Switching characteristics
Maximum conversion rate
Aperture jitter
Sampling delay
Output delay
Clock High pulse width
Clock Low pulse width
Digital output
Logic High level
Logic Low level
Output rise time
Output fall time
Dynamic characteristics
Input bandwidth
SNR
Error rate
Differential gain error
Differential phase error
Power supply
Supply current
Power consumption
3
E
IL
E
DL
C
IN
R
IN
I
IN
R
REF
r
1
r
2
r
3
r
4
r
5
V
IH
V
IL
I
IH
I
IL
Fc
Taj
Tds
Tdo
T
PW1
T
PW0
V
OH
V
OL
Tr
Tf
SNR
DG
DP
I
EE
Pd
V
IN
= 1V + 0.07Vrms
V
IN
= 1V
V
IN
= 1V
V
IH
= 0.8V
V
IL
= 1.6V
R
L
= 50
to 2V
T
PW1
+ T
PW0
= 4.0ns
R
L
= 50
to 2V
R
L
= 50
to 2V
R
L
= 50
to 2V
R
L
= 50
to 2V
V
IN
=2Vp-p
Input = 1kHz, FS
Clock = 250MHz
Input = 62.499MHz, FS
Clock = 250MHz
Input = 49.999MHz, FS
Error > 16LSB
Clock = 200MHz
Input = 62.499MHz, FS
Error > 16LSB
Clock = 250MHz
NTSC 40IRE mod.
ramp, Fc = 250MSPS
50
20
83
0.1
300
0.5
300
0.1
1.13
0
50
250
0.4
1.8
1.8
1.8
1.00
200
44
30
360
8
18
120
125
0.6
500
2.0
500
0.6
4
9
1.4
2.5
0.6
0.6
46
35
10
8
1.0
0.5
270
1.4
0.5
0.5
450
182
2.0
700
5.0
700
2.0
1.50
70
50
2.4
3.2
1.60
1.5
1.5
10
9
10
6
1.9
bits
LSB
LSB
pF
k
A
V
V
A
A
pF
MSPS
ps
ns
ns
ns
ns
V
V
ns
ns
MHz
dB
dB
TPS
2
TPS
2
%
deg
mA
W
Symbol
Condition
Min.
Typ.
Max.
Unit
{
{
}
{
{
1 See Block Diagram.
2 TPS: Times Per Sample
3 Pd = I
EE
V
EE
+
R
REF
(V
RT
V
RB
)
2
}
7
CXA1166K
Input Voltage vs. Digital Output
V
IN
0V
1V
2V
0
1
127
128
254
255
0 0 0 ...... 0 0
0 0 0 ...... 0 0
0 0 0 ...... 0 1
:
:
0 1 1 ...... 1 1
1 0 0 ...... 0 0
:
:
1 1 1 ...... 1 0
1 1 1 ...... 1 1
1 1 1 ...... 1 1
0
1
1
1
1
:
:
1
1
1
1 0 0 ...... 0 0
1 0 0 ...... 0 0
1 0 0 ...... 0 1
:
:
1 1 1 ...... 1 1
0 0 0 ...... 0 0
:
:
0 1 1 ...... 1 0
0 1 1 ...... 1 1
0 1 1 ...... 1 1
0 1 1 ...... 1 1
0 1 1 ...... 1 1
0 1 1 ...... 1 0
:
:
0 0 0 ...... 0 0
1 1 1 ...... 1 1
:
:
1 0 0 ...... 0 1
1 0 0 ...... 0 0
1 0 0 ...... 0 0
1 1 1 ...... 1 1
1 1 1 ...... 1 1
1 1 1 ...... 1 0
:
:
1 0 0 ...... 0 0
0 1 1 ...... 1 1
:
:
0 0 0 ...... 0 1
0 0 0 ...... 0 0
0 0 0 ...... 0 0
Step
MINV 1
LINV 1
D7 D0
D7 D0
D7 D0
D7 D0
0
1
1
0
0
0
V
RT
= V
RTS
= 0V, V
RM
= 1V or Open, V
RB
= V
RBS
= 2V
Timing Diagram
Tr
Tf
80%
20%
80%
N + 1
20%
N
N 1
Td
Tpw0
Tpw1
N
N + 1
Analog input
CLK
CLK
Digital output
Tds
N + 2
OR
0
1
1
1
1
:
:
1
1
1
OR
0
1
1
1
1
:
:
1
1
1
OR
0
1
1
1
1
:
:
1
1
1
OR
8
CXA1166K
Electrical Characteristics Measurement Circuit
Integral Linearity Error Measurement Circuit
Differential Linearity Error Measurement Circuit
DUT
CXA1166K
A<B A>B
Comparator
Buffer
Controller
DVM
8
8
"1 "
"0"
00000
to
11110
V
IN
+ V
V
S2
S1
S1:ON when A<B
S2: ON when A>B
A8
to
A1
A0
B8
to
B1
B0
Sampling Delay Measurement circuit
Aperture Jitter Measurement circuit
Aperture Jitter Measurement Method
CXA1166K
OSC1
:Variable
OSC2
Logic
Analizer
60MHz
60MHz
Amp
ECL
Buffer
CLK
V
IN
8
fr
1024
samples
V
IN
(LSB)
CLK
V
IN
CLK
t
t
0V
1V
2V
129
128
127
126
125
Sampling timing fluctuation
( = aperture jitter)
When the distribution of the output codes is
(unit: LSB) If
the maximum slew rate point is sampled with the clock signal
having the same frequency as that of the analog input signal,
Aperture jitter (Taj) is defined as follows:
Taj =
/ =
/ ( )
t
2
256
2
f
9
CXA1166K
Error Rate Measurement Circuit
Comparator
A<B
Pulse
Counter
CXA1166K
Signal
Source
ECL
Latch
ECL
Latch
1/16
+
Signal
Source
2Vp p Sine Wave
f
CLK
V
in
CLK
CLK
8
DATA 16
A
B
f
CLK
4
1kHz
Differential Gain Error Measurement Circuit
Differential Phase Error Measurement Circuit
ECL
Latch
10bit
D/A
Vector
Scope
Amp
NTSC
Signal
Source
SG (CW)
50
CLK
CLK
8
8
V
BB
Decimator
(CX20202A 1)
DUT
CXA1166K
Power Supply Current Measurement Circuit
Analog Input Bias Current Measurement Circuit
I
IN
A
A
1V
I
EE
2V
5.2V
61
60
10
43
27
44
26
1
9
CXA1166K
10
CXA1166K
Notes on Operation
The CXA1166K is an ultra-high speed A/D converter featuring ECL level of input/output for the logic block. In
order to derive the most from its high-speed performance, the characteristic impedance should be matched
properly.
The outputs are designed to drive a load terminated to 2V at 50
. An excellent transmission characteristic
can be yielded by designing the printed circuit board with a 50
characteristic impedance.
Yielding its top performance is difficult on the printed circuit board with a characteristic impedance of 100
or
more.
The power supply and ground pattern greatly affect the characteristics of the converter. The higher the
frequency, the more important these connections become. The general precautions are as follows.
Make the pattern of the power supply and ground as wide as possible. Using a ground plane inner layer by
using a multilayer printed circuit board is recommended.
lsolate the AGND, DGND pins and the AV
EE,
DV
EE
from one another on the pattern in order to safeguard
against interaction. Connect the AGND and DGND pins at one place using a ferrite-bead filter to prevent
DC offset. The same processing is requited for the AV
EE
and DV
EE
pins.
When mounting the A/D converter on the socket, use the one of shortest leads. The QFP socket, the type
name IC61-0684-048, manufactured by YAMAICHI ELECTRONICS CO., LTD. is recommended.
The V
IN
analog input pins have somewhat large input capacitance (approximately 18pF) for high-frequency
circuits. In order to drive them with an excellent frequency response, it is necessary to safeguard against any
deterioration in performance resulting from parasitic capacitance and parasitic inductance by using a high-
capacity drive circuit, keeping the wiring as short as possible, and using chip parts as resistors and
capacitors, for instance. The drive circuit shown in the Application Circuit has a virtually flat frequency
response up to approximately 170MHz. C89, R11 and C15 have been inserted mainly to expand the
bandwidth, while R10 has been inserted mainly to suppress operational amplifier oscillation and block
peaking of the frequency response. Since the optimal values of these elements differ depending on the
printed circuit board pattern and mounting condition of the A/D converter socket used, they must be
determined on the basis of experimentation.
Connect all four V
IN
pins directly and as short as possible. Unlike the CXA1176, it is not necessary to insert
resistance of several ohms for each pin.
The voltage at the V
RT
and V
RB
reference voltage pins and the reference voltage inside these pins differ
slightly due to residual resistance. V
RTS
and V
RBS
are provided to detect the reference voltage inside the pins.
The overrange reference voltage is 1/2 LSB down from V
RTS
; the lowest input voltage at which the output
code changes is 1/2 LSB up from V
RBS
.
Provide adequate by-pass capacitors for V
RT
and V
RB
to protect them from high-frequency noise. Normally,
V
RT
is connected to AGND of an inner layer of the printed circuit board. Using a chip capacitor (approximately
0.1F), make the by-pass from V
RB
to AGND as short as possible. C22 (1F), in the Application Circuit is for
suppressing the oscillation of the reference voltage generation circuit.
11
CXA1166K
Unlike the CXA1176, V
RTS
and V
RBS
are connected to the reference resistors via resistors of approximately
500
. Since these resistors may be eliminated in the future improved versions of this converter, use a
reference voltage generation circuit which is adaptable to their elimination. The reference voltage generation
circuit (the section composed of IC12_2, etc.) in the Application Circuit is recommended.
Although V
RM
is provided to compensate for the integral linearity error, there is no need for such
compensation. It is recommended that it is kept open.
OR and OR are output pins for indicating that the input is over range. They are not inverted by MINV or LINV.
Noise in MINV and LINV results in misoperation, the cause of which is extremely difficult to track down. Keep
these pins open in cases where low level setting voltage alone is sufficient. When high level voltage input is
required, provide the shortest possible by-pass from them to DGND using chip capacitors (approximately
0.1F). Input voltages of 0.5V to 1.0V for high level and 1.6V to 2.5V for low level are recommend. Do
not make the direct connection to DGND when high level voltage is input.
Inputting differential signals is recommended for the CLK and CLK clock input pins. Although operation is
possible by driving only the CLK pin, doing so involves the risk that the characteristics may become unstable
near the maximum speed. This is because the internal operation of the A/D converter depends on both clock
rise and fall.
When the CLK pin is not used, by-pass it to DGND using a capacitor (approximately 0.1F). At this time,
approximately 1.3V voltage will be generated at this pin. However, the driving capacity is too weak for this to
be used as the V
BB
threshold voltage. It cannot drive even one ECL input load.
This converter is designed to be used at the clock duty cycle of 50%. The deviation from this condition will
subtly affect the performance of the A/D converter but the degree of the affection is not so great as to require
adjustment. The "Error rate vs. Clock duty cycle characteristics" graph shows an example of these changes
in the converter's performance.
Increasing chip temperature will cause the supply current and also the error rate to rise. Adding to these
reasons, in order to prolong the converter's service life, provide an adequate means of cooling. See the
"Maximum conversion frequency vs. Temperature characteristics" and "Supply current vs. Temperature
characteristics" graphs. The reference data for thermal resistance is shown in the "Thermal resistance of the
converter mounted on a board" graph. Note that the actual thermal resistance will differ greatly depending on
the mounting conditions.
Since the CXA1166K is a high-speed IC, take adequate measures to prevent electrostatic breakdown. For
further details on these measures, refer to "Precautions for IC Application" in Sony's Data book.
Sony's SPECL series is used as the logic ICs in the Application Circuit to investigate the maximum
performance of the CXA1166K. For normal applications, lower speed logic ICs can be used according to the
applied frequency.
12
CXA1166K
Example of Representative Characteristics
V
IN
pin input capacitance vs.
Voltage characteristics
C
IN
-- Input capacitance [pF]
25
20
15
10
2
0
1.5
0.5
V
IN
-- Input voltage [V]
I
IN [
A
]
200
100
0
2.0
1.0
0
1.5
0.5
V
IN
-- Input voltage [V]
V
IN
pin input resistance vs.
Voltage characteristics
Analog input resistance [k
]
150
100
2.0
1.0
0
1.5
0.5
125
V
IN
--
Input voltage [V]
Thermal resistance at on-board condition
ja -- Thermal resistance [C/W]
50
40
30
0
1.0
2.0
3.0
Air velocity [m/s]
Socket for AMP173061-5
(without heat sink)
Socket for AMP173257-3
(with heat sink)
Socket for YAMAICHI
ELECTRONICS IC61-0684-048
1
V
IN
pin input current vs.
Voltage characteristics
13
CXA1166K
V
IN
pin input current vs. Temperature characteristics
Tc -- Case temperature [C]
V
IN
-- Input current [
A]
200
150
100
50
0
50
0
50
100
150
Resistor string current vs. Temperature characteristics
Tc -- Case temperature [C]
Resistor string current [mA]
50
0
50
100
150
12
14
16
18
20
22
24
CLK open voltage vs. Temperature characteristics
Tc -- Case temperature [C]
CLK open voltage [V]
50
0
50
100
150
1.25
1.3
1.35
1.4
1.45
14
CXA1166K
V
OH
vs. Temperature characteristics
Tc -- Case temperature [C]
V
OH
[V]
50
0
50
100
150
0.7
0.8
0.9
1.0
1.1
V
OL
vs. Temperature characteristics
Tc -- Case temperature [C]
V
OL
[V]
50
0
50
100
150
1.7
1.8
1.9
2.0
2.1
SNR vs. Input frequency response characteristics
Input frequency [MHz]
SNR [dB]
1
10
100
50
45
40
35
25
30
15
CXA1166K
Harmonic distortion vs. Input frequency response characteristics
Input frequency [MHz]
Harmonic distortion [dB]
0.1
1
10
100
1000
30
40
50
60
80
70
2nd harmonic distortion
3rd harmonic distortion
Clock frequency : 250MHz
Maximum conversion rate vs.
Temperature characteristics
CLK [MHz]
300
250
200
150
Ta -- Ambient temperature [C]
Error rate = 10
8
TPS
Input frequency = CLK frequency/4 1kHz
16LSB or more error
75
125
25
25
16
CXA1166K
Supply current vs. Temperature characteristics
Tc -- Case temperature [C]
Supply current [mA]
50
0
50
100
150
200
250
300
350
Error rate vs. Clock duty cycle
Error rate [TPS]
10
7
10
8
10
9
CLK duty cycle [%]
30
40
50
25
35
45
60
55
65
70
Input frequency = 125MHz, full-scale
Clock frequency = 250MHz
16LSB or more error
CLK frequency [MHz]
200
250
300
10
7
10
8
10
9
10
10
Error rate vs. Conversion rate
Error rate [TPS]
Input frequency = CLK frequency/41kHz
16LSB or more error
17
CXA1166K
8-bit, 250 MSPS ADC Evaluation Board
The CXA1166K PCB is a tool for customers to evaluate the performance of the CXA1166K (8-bit, 250MHz,
high-speed A/D converter). In addition to indispensable features such as the reference voltage generator, this
tool equips the input voltage offset generator, clock decimator, output date latches, 10-bit high-speed DAC,
and 20-pin cable connector for digital outputs. This evaluation board is designed to facilitate evaluation.
Features
Resolution: 8 bits
Maximum conversion rate: 250 MSPS
Supply voltage: 5.2V, 4.5V, 2.0V, +5.0V
Clock level converter: Sine wave to ECL level signal
Reference voltage adjustment circuit for A/D converter
Built-in clock frequency decimation circuit: 1/1 to 1/128
Fig. 1. Block Diagram
DATA
LATCH
LINV MINV
V
RB
V
IN
CLK
CXA1166K
Vin
OFFSET
DECIMATOR
D/A
CONVERTER
SW3
CLK
SW4
SW5
L
H
AMP.IN
53
J1
DIGITAL OUT
(CONNECTOR)
2 (CLK.CLK)
CLK
D/A OUT
1/1 to 1/128
AGND
X
( 2)
DELAY
SW2
SW1
CLK
51
H
L
INV
8 (D
7
to D
0
)
8 (D
7
to D
0
)
8 (D
7
to D
0
)
8 (D
7
to D
0
)
+ 5V (A)
5.2V (A)
5.2V (D)
2V (D)
DGND
0.1
4.5V (D)
SW6
V
R2
(2k)
V
R1
(2k)
V
R3
(2k)
V
RB
2V
18
CXA1166K
Supply Current
Item
Min.
Typ.
Max.
Unit
5.2V
+5.0V
4.5V
2.0
0.65
17
0.9
0.7
0.9
40
1.1
0.9
A
mA
A
A
Analog Input (AMP. IN)
Item
Min.
Typ.
Max.
Unit
Input voltage
(AMP.IN)
Input impedance
2.0
50
0
V
(
Adjustable with VR1)
Clock input (CLK)
Item
Min.
Typ.
Max.
Unit
Input voltage
(Peak to Peak)
Input impedance
2.0
50
Vp-p
Digital output (Digital OUT)
ECL level
Output Code Table
1: ECL High level, 0: ECL Low level
V
IN
1 1 1 ...... 1 1
1 1 1 ...... 1 0
:
:
1 0 0 ...... 0 0
0 1 1 ...... 1 1
:
:
0 0 0 ...... 0 1
0 0 0 ...... 0 0
0V
:
:
:
:
:
:
:
:
2V
1 0 0 ...... 0 0
1 0 0 ...... 0 1
:
:
1 1 1 ...... 1 1
0 0 0 ...... 0 0
:
:
0 1 1 ...... 1 0
0 1 1 ...... 1 1
0 1 1 ...... 1 1
0 1 1 ...... 1 0
:
:
0 0 0 ...... 0 0
1 1 1 ...... 1 1
:
:
1 0 0 ...... 0 1
1 0 0 ...... 0 0
0 0 0 ...... 0 0
0 0 0 ...... 0 1
:
:
0 1 1 ...... 1 1
1 0 0 ...... 0 0
:
:
1 1 1 ...... 1 0
1 1 1 ...... 1 1
MINV (SW5)
LINV (SW4)
0
1
0
0
1
0
1
1
19
CXA1166K
Fig. 2. Timing Diagram
N 1
N
N 2
N 1
N
Tdh
1.8ns
(Typ)
Tdh
1.8ns
(Typ)
N
N 2
N 4
N + 1
A/D input pin
(AMP. IN)
PCB input pin
A/D clock
A/D output
PCB output pin
(For 1/1 decimation)
PCB output pin
(For 1/1 decimation)
PCB output pin
(For 1/2 decimation)
PCB output pin
(For 1/2 decimation)
Vin
CLK
CLK
CLK
D7 to D0
CLKN
CLK
D7 to D0
D7 to D0
CLKN
CLK
D7 to D0
N + 2
N
Adjustment Methods and Notes on Operation
1) V
IN
Offset (VR1)
The volume to adjust the AMP. IN signal range (0V center assumed) with the A/D converter input range.
2) A/D Full Scale (VR2)
The volume to adjust A/D converter V
RB
voltage (2V typ.).
3) Linearity (VR3)
The volume to adjust the VRM (linearity) voltage by shorting the J1.
20
CXA1166K
4) D/A Full Scale (VR4)
The volume to adjust the bottom of D/A output full scale voltage (1V typ.)
5) SW1 and SW2
Selection switches to adjust the clock delay. These switches enable clock delay to be stepped to any one of
128 settings (binary code of "0000000" to "1111111") through binary input. Approximately 163ps is delayed
per one step. Normal evaluation requires the binary code of "0000000" (all of OFF), so that these switches
are not mounted for shipment.
6) SW3 (Decimation)
The switch to select clock frequency decimation. Selection settings are as follows.
H = ECL High level ; L = ECL Low level
7) SW4
The switch for LINV High/Low.
8) SW5
The switch for MINV High/Low.
9) SW6 (D/A INV)
The switch for D/A converter output inversion.
SW3
3
2
Decimation
ratio
L
L
L
L
H
H
H
H
L
L
H
H
L
L
H
H
L
H
L
H
L
H
L
H
1/1
1/2
1/4
1/8
1/16
1/32
1/64
1/128
1
21
CXA1166K
10) The waveform monitoring pins P6 through P39 are designed to make connection to GND easily in order to
reduce distortion when monitoring the waveform with an oscilloscope. As shown in the diagram below, the
distance between the measuring point and GND is 300mil, and each is equipped with a through hole of
1.2mm. When a Tektronix ground chip (part No. 013-1185-00) is mounted on the tip of a probe, the
signal GND positions match.
11) D/A converter (IC9) input data (waveform monitoring pins P28 to P35) are the negative logic signals of the
decimated A/D converter outputs. Those are inverted again in the D/A converter so that the direction
(rise/fall) of reproduced waveform can agree with the A/D input signal's.
12) In order to maintain the accuracy of the reproduced waveform (waveform from A/D to D/A), set the
decimator such that the clock frequency of the D/A converter (IC9: CX20201A-1) is less than 100MHz.
13) The input bandwidth weighs with the design of this PCB analog input circuit. Therefore, the SNR (signal-to-
noise ratio) should be less significant. The input circuit example to improve the SNR is shown in Fig.4. See
the measured data in Fig.s 6 to 8 for the SNR and the input circuit characteristics.
14) The part number of the digital output connector mounted on the PCB is KEL 8830E-020-170S. A
corresponding connector and cable assembly is JUNKOSHA KB0020MCG50B1.
1.2mm
Monitoring point
GND
Fig. 3.
22
CXA1166K
From offset circuit
V
IN2
V
IN2
V
IN1
V
IN1
560
240
68
30
120
CLC409
2
3
6
3pF
5pF
AGND
AGND
V
RB
( 2V)
AMP. IN
Fig. 4. Example of SNR Improvement Circuit
23
CXA1166K
Fig. 5. Schematic Diagram
: CHIP CAPACITOR
R3
510
VR1
2k
R5
240
R6
1.3k
5.2V
(A)
AGND
6
5
8
7
4
2
3
7
6
4
AGND
AGND
AGND
5.2V
(A)
R9
560
R10
24
R11
10
C15
10p
C14
0.1
C13
1
C12
0.1
C11
1
AGND
AGND
+ 5.2V
(A)
C89
3P
R7
240
AGND
AGND
C8
3.3
C7
0.1
2
3
8
1
4
AGND
R4
22k
R2
11k
AGND
R8
1k
AGND
5.2V
(A)
C9
0.1
AGND
C10
0.1
AGND
5V
(A)
P5
P6
P7
P4
C22
1
AGND
AGND
C23
0.1
C21
0.1
L2
R13
51
R12
51
C39
0.1
GND
2V
(D)
FERRITE
BEAD
CLKN
CLK
V
RBS
J1
P1
VRT
Q1
2SA970
TL4558
IC12_2
Linearity
VR2
2k
IC13
TL431CP
TL4558
IC12_1
CLC404AJP
IC11
C18
1
C19
0.1
AGND
P2
AGND
5.2V
(A)
L1
FERRITE
BEAD
C34
0.1
P9
DGND
C37
1
C36
0.1
DGND
5.2V
(D)
P8
DV
EE
5.2V
(D)
R28
51
R27
51
P10
C35
0.1
DGND
2V (D)
P11
OR
ORN
DGND
C26
0.1
DGND
DGND
SW1
DELAY ADJ.
C17
0.01
C16
1000p
GND
GND
C24
0.1
5.2V
(D)
DGND
18
16
DGND
C2
0.1
4.5V
(D)
C3
0.1
9
21
22
10
IC1
CXB1103Q
V
CC
V
CC
A
V
EE
V
BB
2V
(D)
28
R8
51
C1
0.1
DGND
C5
0.1
4.5V
(D)
C4
0.1
9
21
22
10
IC5
CXB1103Q
V
CC
V
CC
A
V
EE
V
BB
IC1_2
IC1_1
GND
C26
0.1
DGND
R23
51
C25
0.1
GND
C27
0.1
R22
51
4.5V
(D)
2V
(D)
24
23
12
11
IC1_4
35
IC1_3
R24
51
R25
51
GND
C28
0.1
2V
(D)
GND
R14
51
C31
0.1
DGND
C33
0.1
2V
(D)
R15
51
R20
51
R19
51
R18
51
R17
51
R16
51
R21
51
DGND
C32
0.1
DGND
C30
0.1
R26
51
DGND
4.5V
(D)
DGND
C29
0.1
SW3
DECIMATION
IC4
CXB1144Q
26
27
28
29
30
31
32
S0
S1
S2
V
EE
V
CC
A
NC
NC
2
3
4
5
6
7
8
9
1
DIA
DIB
DIC
DID
DIE
DIF
DIG
DIH
LEN1
17
18
19
20
21
22
23
24
25
DOA
DOB
DOC
DOD
DOE
DOF
DOG
DOH
MR
10
11
12
13
14
15
16
QON
QO
V
CC
A
V
CC
QI
LEN2
IC2
CXB1136Q
26
27
28
29
30
31
32
V
BB
C
V
EE
V
CC
A
S1
S2
2
3
4
5
6
7
8
9
1
CIMN
Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
17
18
19
20
21
22
23
24
25
D0
D1
D2
D3
D4
D5
D6
D7
NC
10
11
12
13
14
15
16
MR
NC
V
CC
A
V
CC
V
CC
A
COUT
IC3
CXB1159Q
26
27
28
29
30
31
32
V
REF
DINB
DIN
V
EE
V
EE
F0
F1
2
3
4
5
6
7
8
9
1
F2
F3
F4
F5
C0
C1
C2
C3
C4
17
18
19
20
21
22
23
24
25
DINPB
DINP
SW
MR
RBIAS
CBIAS
DOUTP
DOUTPB
CAP
10
11
12
13
14
15
16
DOUTB
DOUT
DGND
GND
GND
C6
C5
SW4
SW5
LINV
MINV
INV
NORM
C38
0.1
C70
0.1
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
40
39
38
37
36
35
34
31
32
33
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
2
3
4
5
6
7
8
9
68
67
63
64
65
66
61
62
1
AV
EE
NC
AGND
V
RT
V
RTS
AV
EE
AV
EE
NC
LINV
OR
D0
D1
DV
EE
NC
AV
EE
NC
V
RB
V
RBS
AV
EE
AV
EE
NC
CLK
CLKN
MINV
D7
D6
DV
EE
NC
NC
NC
NC
NC
D5
D4
DGND1
DGND2
DGND2
D3
D2
NC
NC
NC
NC
NC
NC
AGND
V
IN2
V
IN2
AGND
V
RM
AGND
V
IN1
V
IN1
AGND
NC
AV
EE
NC
NC
IC6
CXA1166K
C41
0.1
DGND
2V
(D)
R33
51
DGND
C42
0.1
R34
51
R35
51
R36
51
R37
51
R38
51
R39
51
R40
51
2V
(D)
4.5V
(D)
C44
0.1
DGND
R62
51
C45
0.1
DGND
P38
CLKA
P27
D7N
P26
D7
P25
D6N
P24
D6
P23
D5N
P22
D5
P21
D4N
P20
D4
P19
D3N
P18
D3
P17
D2N
P16
D2
2V
(D)
DGND
C40
0.1
2V
(D)
4.5V
(D)
C46
0.1
DGND
R61
51
C47
0.1
DGND
P39
CLKB
P15
D1N
P14
D1
P13
D0N
P12
D0
R29
51
R30
51
R31
51
R32
51
R41
51
2V
(D)
DGND
C43
0.1
R44
51
R42
51
R43
51
2
1
8
IC5_4
18
17
16
IC5_2
DGND
C48
0.1
15
20
19
14
13
2V
(D)
R55
51
R56
51
R58
51
R57
51
IC5_3
23
24
11
12
IC5_1
2V
(D)
DGND
C49
0.1
R60
51
R59
51
7
2V
(D)
DGND
C50
0.1
R46
51
R47
51
R48
51
R49
51
R50
51
R51
51
R52
51
DGND
C51
0.1
D1
D3
D5
D7
D0
D2
D4
D6
P35
P33
P31
P29
P34
P32
P30
P28
R45
51
DGND
DGND
36
IC5_5
DGND
C60
0.1
SW6
INV
R66
51
INV
NORM
CLKN
R65
51
P37
CLK
P36
R54
51
R53
51
DGND
R63
1k
R64
270
5.2V
(A)
AGND
C57
0.1
TL431CP
IC10
DGND
20
DGND
19
18
DGND
17
CLK
16
DGND
15
D7
14
DGND
13
D6
12
DGND
11
D5
10
DGND
9D
4
8
DGND
7D
3
6
DGND
5D
2
4
DGND
3D
1
2
DGND
1D
0
(LSB)
Digital OUT
C58
0.1
C59
1
VR4
2k
AGND
DGND
DGND
C55
0.1
DGND
C53
0.1
DGND
5.2V
(D)
C54
1
IC7
CXB1109Q
2
3
4
5
6
1
19
20
21
22
23
24
7
8
9
10
11
12
17
18
13
14
15
16
IC8
CXB1109Q
D3
D4
Q4
2
3
4
5
6
1
19
20
21
22
23
24
MR
V
BB
V
CC
A
V
EE
CB
CA
Q3
V
CC
V
CC
A
Q2
7
8
9
10
11
12
P42
+ 5V
P41
DV
EE
( 4.5)
P40
VTT
AGND
DGND
DGND
C63
33
C64
33
AGND
C65
33
AGND
DGND
C62
33
DGND
C61
33
+ 5V (A)
AGND
5.2V (A)
5.2V (D)
DGND
4.5V (D)
2V (D)
IC9
CXA20201
2
3
4
5
6
7
8
9
1
10
11
12
13
14
D1
D2
D3
D4
D5
D6
D7
D8
D9
LSB
NC
NC
CLK
AGND
V
REF
AV
EE
NC
NC
NC
NC
NC
OUT
NC
AGND
DGND
INV
DV
EE
26
27
28
17
18
19
20
21
22
23
24
25
15
16
AGND
D/A OUT
AGND
AMP. IN
R1
68
CLK
DGND
CXA1166K EVALUATION BOARD
C52
0.1
SW2
DELAY ADJ.
D7N
D6N
D5N
D4N
D3N
D2N
ORN
D0N
D1N
COUTN
CN
QIN
CLKN
17
18
13
14
15
16
D2
D1
Q1
D3N
D4N
Q4N
Q3M
Q2M
Q1N
D1N
D2N
D3
D4
Q4
MR
V
BB
V
CC
A
V
EE
CB
CA
Q3
V
CC
V
CC
A
Q2
D2
D1
Q1
D3N
D4N
Q4N
Q3M
Q2M
Q1N
D1N
D2N
CLKN
Full Scale
VR3
1k
45
Offset
17
17
15
46
AV
EE
5.2V
2V
(D)
24
CXA1166K
Characteristics
Fig.8. 2nd, 3rd Harmonic distortion vs. Input frequency
Fig.7. SNR vs. Input frequency
Fig.6. Gain vs. Input frequency
Input frequency [MHz]
Gain [dB]
12
10
8
6
4
2
0
2
5
10
100
300
Fig.5. CXA1166K PCB Schematic Diagram
Fig.4. Example of SNR Improvement Circuit
Input frequency [MHz]
SNR [dB]
25
30
35
40
45
50
1
10
200
100
Fig.5. CXA1166K PCB Schematic Diagram
Fig.4. Example of SNR Improvement Circuit
Input frequency [MHz]
2nd, 3rd Harmonic distortion [dB]
80
60
50
40
30
20
1
10
200
100
70
Fig.5. Schematic Diagram
(2nd Harmonic distortion)
Fig.5. Schematic Diagram
(3rd Harmonic distortion)
Fig.4. Example of SNR Improvement
Circuit (2nd Harmonic distortion)
Fig.4. Example of SNR Improvement
Circuit (3rd Harmonic distortion)
25
CXA1166K
Parts Layout
Component side
Soldering side
26
CXA1166K
Component side
Soldering side
Printed Pattern
27
CXA1166K
GND layer (inner layer)
V
EE
layer (inner layer)
28
CXA1166K
Package Outline
Unit: mm
SONY CODE
EIAJ CODE
JEDEC CODE
68PIN LCC (CERAMIC)
21.59 0.2
1.27 0.2
20.32
0.1
1.27
0.1
1.9
0.25
24.13
+ 0.38 0.25
C1
15.85 0.2
1.65
0.18
1.95
0.25
0.3
1.27
0.915 0.07
R0.2
PIN NO.1
INDEX
2.16 0.25
PACKAGE STRUCTURE
PACKAGE MATERIAL
LEAD TREATMENT
LEAD MATERIAL
PACKAGE WEIGHT
GOLD PLATING
3.7g
LCC-68C-01
QFN068-C-S950-A
CERAMIC