ChipFind - документация

Электронный компонент: CXA1396D

Скачать:  PDF   ZIP
1
CXA1396D
E94521A79-PS
8-bit 125 MSPS Flash A/D Converter
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by
any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the
operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
AV
EE
LINV
DV
EE
DGND1
DGND2
(LSB) D0
D1
D2
D3
D4
D5
D6
(MSB) D7
DGND2
DGND1
DV
EE
MINV
CLK
CLK
22
23
24
25
26
27
28
29
30
40
39
38
37
36
35
34
31
32
33
41
42
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
1
V
RT
AV
EE
AV
EE
AGND
V
IN
AGND
V
RM
AGND
V
IN
AGND
AV
EE
AV
EE
V
RB
(Top View)
Description
The CXA1396D are 8-bit ultrahigh-speed flash A/D
converter ICs capable of digitizing analog signals at
the maximum rate of 125 MSPS. The digital I/O
levels of these A/D converters are compatible with
the ECL 100K/10KH/10K.
The CXA1396D is pin-compatible with the earlier
model CX20116. They can replace the earlier models
respectively, without any design changes, in most
cases. Compared with the earlier models, these new
models have been greatly improved in performance,
by incorporating advanced process, new circuit
design and carefully considered layout.
Features
Ultrahigh-speed operation with maximum
conversion rate of 125 MSPS (Min.)
Wide analog input bandwidth: 200MHz (Min. for
full-scale input)
Low power consumption: 870mW (Typ.)
Single power supply: 5.2V
Low input capacitance
Built-in integral linearity compensation circuit
Low error rate
Operable at 50% clock duty cycle
Good temperature charactcristics
Capable of driving 50
loads
Structure
Bipolar silicon monolithic IC
Applications
Digital oscilloscopes
HDTV (high-definition TVs)
Other apparatus requiring ultrahigh-speed A/D
conversion
Pin Configuration
Pins without name are NC pins (not connected).
42 pin DIP (Ceramic)
2
CXA1396D
Absolute Maximum Ratings (Ta = 25C)
Supply voltage
AV
EE
, DV
EE
7 to +0.5
V
Analog input voltage
V
IN
2.7 to +0.5
V
Reference input voltage
V
RT
, V
RB
, V
RM
2.7 to +0.5
V
V
RT
V
RB
2.5
V
Digital input voltage
CLK, CLK, MINV, LINV
4 to +0.5
V
CLK CLK
2.7
V
V
RM
pin input curent
I
VRM
3 to +3
mA
Digital output current
ID
0
to ID
7
30 to 0
mA
Storage temperature
Tstg
65 to +150
C
Recommended Operating Conditions
Min.
Typ.
Max.
unit
Supply voltage
AV
EE
, DV
EE
5.5
5.2
4.95
V
AV
EE
DV
EE
0.05
0
+0.05
V
AGND DGND
0.05
0
+0.05
V
Reference input voltage
V
RT
0.1
0
+0.1
V
V
RB
2.2
2.0
1.8
V
Analog input voltage
V
IN
V
RB
V
RT
Pulse width of clock
T
PW1
4.0
ns
T
PW0
4.0
ns
Operating temperature
Ta
20
+75
C
3
CXA1396D
Block Diagram
255
126
127
128
129
191
192
193
254
63
64
65
1
2
CLOCK
DRIVER




r
3
r
1
r
2
r/2
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r/2
D7 (MSB)
D6
D4
D3
D5
D2
D1
D0 (LSB)
O
U
T
P
U
T
E
N
C
O
D
E


L
O
G
I
C
MINV
V
RT
V
IN
V
RM
V
IN
V
RB
CLK
CLK
LINV
Comparator
4
CXA1396D
Pin Description and I/O Pin Equivalent Circuit
Analog GND.
Used as GND for input buffers
and latches of comparators.
Isolated from DGND1, DGND2.
29, 31,
33, 35
AGND
--
0V
1, 25,
26, 38,
39
21
20
5, 16
6, 15
DGND2
--
0V
4, 17
DV
EE
--
5.2V
DGND1
--
0V
CLK
CLK
I
ECL
AV
EE
--
5.2V
Analog V
EE
.
5.2V (Typ.).
Internally connected with DV
EE
(resistance: 4 to 6
).
A ceramic chip capacitor of at
least 0.1F should be used to
connect to AGND and be
placed near the pins.
CLK input
Complementary input to CLK.
With open connection, kept at
threshold voltage (1.3V).
Device is operable without CLK
input, but use of omplementary
inputs of CLK and CLK is
recommended to obtain the
stable high-speed operation.
Digital GND for internal
circuits.
Digital GND for output
transistors.
Digital V
EE
.
Internally connected with AV
EE
(resistance: 4 to 6
).
A ceramic chip capacitor of at
least 0.1F should be used to
connect to DGND near the
pins.
Pin No. Symbol
I/O
Standard
voltage
level
Equivalent circuit
Description
r
r
r
r
r
r
DGND1
CLK
CLK
DV
EE
5
CXA1396D
LSB of data outputs.
External pull-down resistor is
required.
Data outputs.
External pull-down resistors
are required.
MSB of data outputs.
External pull-down resistor is
required.
Input pin for D0 (LSB) to D6
output polarity inversion (see
output code table).
With open connection, kept at
"L" level.
Input pin for D7(MSB) output
polarity inversion (see output
code table).
With open connection, kept at
"L" level.
Analog input pins.
These two pins must be
connected externally, since
they are not internally
connected.
See Application Note for
precautions.
7
14
3
18
30, 34
V
IN
I
V
RT
to
V
RB
MINV
I
ECL
LINV
I
ECL
D7
8
9
10
11
12
13
D1
D2
D3
D4
D5
D6
D0
O
ECL
Pin No. Symbol
I/O
Standard
voltage
level
Equivalent circuit
Description
DGND2
DV
EE
Di
r
r
r
r
LINV
or
MINV
DGND1
DV
EE
1.3V
AGND
AV
EE
V
IN
V
IN
6
CXA1396D
Reference voltage (bottom).
Typically 2V.
A ceramic capacitor of at least
0.1F and a tantalum capacitor
of at least 10F should be
used to connect to AGND near
the pins.
Reference voltage mid point.
Can be used as a pin for
integral linearity compensation.
Reference voltage (top).
Typically 0V.
When a voltage except for
AGND is applied to this pin, a
ceramic capacitor of at least
0.1F and a tantalum capacitor
of at least 10F should be used
to connect to AGND near the
pins.
Unused pins.
No internal connections have
been made to these pins.
Connecting them to AGND or
DGND on PC board is
recommended.
23
32
41
2, 19,
22, 24,
27, 28,
36, 37,
40, 42
NC
--
--
V
RT
I
0V
V
RM
I
V
RB
/2
V
RB
I
2V
Pin No. Symbol
I/O
Standard
voltage
level
Equivalent circuit
Description
.
.
.
Comparator
1
Comparator
2
Comparator
127
Comparator
128
Comparator
129
Comparator
130
Comparator
255
.
.
.
.
.
.
.
r/2
r
r
r
r
r
r
r
r/2
r
3
r
2
r
1
V
RT
V
RM
V
RB
7
CXA1396D
Electrical Characteristics
(Ta = 25C, AV
EE
= DV
EE
= 5.2V, V
RT
= 0V, V
RB
= 2V)
Item
Resolution
DC characteristics
Integral linearity error
Differential linearity error
Analog input
Analog input capacitance
Analog input resistance
Input bias current
Reference inputs
Reference resistance
Offset voltage
V
RT
V
RB
Digital inputs
Logic H level
Logic L level
Logic H current
Logic L current
Input capacitance
Switching characteristics
Maximum conversion rate
Aperture jitter
Sampling delay
Output delay
H pulse width of clock
L pulse width of clock
Digital outputs
Logic H level
Logic L level
Output rising time
Output falling time
Dynamic characteristics
Input bandwidth
S/N ratio
Error rate
Differential gain error
Differential phase error
Power supply
Supply current
Power consumption
2
n
E
IL
E
DL
C
IN
R
IN
I
IN
R
REF
E
OT
E
OB
V
IH
V
IL
I
IH
I
IL
Fc
Taj
Tds
Tdo
T
PW1
T
PW0
V
OH
V
OL
Tr
Tf
DG
DP
I
EE
Pd
Fc = 125MSPS
Fc = 125MSPS
V
IN
= 1V + 0.07Vrms
V
IN
= 1V
Input connected to 0.8V
Input connected to 1.6V
Error rate 10
9
TPS
1
R
L
= 50
to 2V
R
L
= 50
to 2V
R
L
= 50
to 2V, 20% to 80%
R
L
= 50
to 2V, 80% to 20%
V
IN
= 2Vp-p, 3dB down
Input = 1MHz, FS
Clock = 125MHz
Input = 31.5MHz, FS
Clock = 125MHz
Input = 31.249MHz, FS
Error > 16LSB
Clock = 125MHz
NTSC 40IRE mod.ramp,
Fc = 125MSPS
75
8
0
1.13
0
50
125
3.0
4.0
4.0
1.10
200
230
8
0.3
0.3
17
190
130
110
19
15
7
10
1.5
3.6
0.8
1.0
46
40
1.0
0.5
160
870
0.5
0.5
320
155
32
24
1.50
50
50
4.2
1.62
10
9
bits
LSB
LSB
pF
k
A
mV
mV
V
V
A
A
pF
MSPS
ps
ns
ns
ns
ns
V
V
ns
ns
MHz
dB
dB
TPS
1
%
deg
mA
mW
Symbol
Condition
Min.
Typ.
Max.
Unit
{
{
}
{
1
TPS: times Per Sample
2
Pd = I
EE
V
EE
+
R
REF
(V
RT
V
RB
)
2
8
CXA1396D
Output Code Table
V
IN
0V
1V
2V
0
1
127
128
254
255
0 0 0 ...... 0 0
0 0 0 ...... 0 0
0 0 0 ...... 0 1
:
:
0 1 1 ...... 1 1
1 0 0 ...... 0 0
:
:
1 1 1 ...... 1 0
1 1 1 ...... 1 1
1 1 1 ...... 1 1
1 0 0 ...... 0 0
1 0 0 ...... 0 0
1 0 0 ...... 0 1
:
:
1 1 1 ...... 1 1
0 0 0 ...... 0 0
:
:
0 1 1 ...... 1 0
0 1 1 ...... 1 1
0 1 1 ...... 1 1
0 1 1 ...... 1 1
0 1 1 ...... 1 1
0 1 1 ...... 1 0
:
:
0 0 0 ...... 0 0
1 1 1 ...... 1 1
:
:
1 0 0 ...... 0 1
1 0 0 ...... 0 0
1 0 0 ...... 0 0
1 1 1 ...... 1 1
1 1 1 ...... 1 1
1 1 1 ...... 1 0
:
:
1 0 0 ...... 0 0
0 1 1 ...... 1 1
:
:
0 0 0 ...... 0 1
0 0 0 ...... 0 0
0 0 0 ...... 0 0
Step
MINV 1
LINV 1
D7 D0
D7 D0
D7 D0
D7 D0
0
1
1
0
0
0
V
RT
= 0V, V
RB
= 2V
Timing diagram
Tds
Tr
Tf
80%
20%
80%
N + 1
20%
N
N 1
Tdo
Tpw0
Tpw1
N + 1
N + 2
N
Analog in
CLK
CLK
Digital out
9
CXA1396D
Electrical Characteristics Test Circuit
Maximum conversion rate test circuit
Comparator
A
>
B
Pulse
Counter
CXA1396D
Signal
Source
ECL
Latch
ECL
Latch
1/4
+
Signal
Source
f
CLK
4
1kHz
2Vp-p Sine Wave
f
CLK
V
in
CLK
CLK
8
DATA 16
A
B
Differential gain error test circuit
Differential phase error test circuit
DUT
CXA1396D
ECL
Latch
10bit
D/A
Vector
Scope
Delay
Amp
NTSC
Signal
Source
SG (CW)
50
CLK
CLK
10
V
IN
8
8
V
BB
DG.DP
(CX20202A-1)
DUT
CXA1396D
A < B A > B
Comparator
A8
A1
A0
B8
B1
B0
to
to
Buffer
Controller
DVM
8
8
8
"1"
"0"
00000000
to
11111110
CLK (125MHz)
V
IN
+V
V
S2
S1
S1: A
<
B: ON
S2: A
>
B: ON
Integral linearity error test circuit
Differential linearity error test circuit
10
CXA1396D
Power Supply Current Test Circuit
Analog input bias current test circuit
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
1
CXA1396D
A
A
1V
I
IN
2V
I
EE
5.2V
22
23
24
25
26
27
28
29
30
40
39
38
37
36
35
34
31
32
33
41
42
Sampling delay test circuit
Aperture jitter test circuit
Aperture jitter test method
CXA1396D
OSC1
: Variable
OSC2
Logic
Analizer
67.5MHz
67.5MHz
Amp
ECL
Buffer
CLK
V
IN
8
fr
1024
samples
V
IN
(LSB)
CLK
V
IN
CLK
t
v
t
0V
1V
2V
129
128
127
126
125
Aperture jitter
Apeature jitter is defined as follows:
Taj =
/ =
/( ),
Where
(unit : LSB) is the deviation of the output codes when the input
frequency is exactly the same as the clock and is sampled at the
largest slew rate point.
t
v
2
256
2
f
11
CXA1396D
8-bit, 125MSPS ADC Evaluation board
Description
The CXA1396D EVALUATION BOARD WITH DAC is a tool for customers to evaluate the performance of the
CXA1396D (8-bit, 125MSPS, high-speed A/D converter). In addition to indispensable features such as the
reference voltage generator, this tool equips two sets of analog inputs (the direct input and the buffer amplifier
input), the input voltage offset generator, the clock decimator, the output data latches, the 10-bit high-speed
DAC, and the 20-pin cable connector for digital outputs.
This evaluation board provides full performance of the CXA1396D and it is designed to facilitate evaluation.
Features
Resolution: 8bits
Maximum conversion rate: 125MSPS
Supply voltage: +5.0V, 5.2V, 2.0V
Two analog inputs (Direct input, buffer amplifier input)
Clock level converter: Sine wave to ECL level signal
Reference voltage adjustment circuit for the A/D converter
Built-in clock frequency decimation circuit: (1/1 to 1/16)
Fig. 1. Block Diagram
BUFFER
DATA
LATCH
LINV MINV
V
RB
V
RM
Vin
CLK
CXA1396D
Vin
OFFSET
DECIMATOR
D/A
CONVERTER
VRB
2V
SW3
CLK
SW1
SW2
L
H
5.2V (A)
5.2V (A)
V
R2
(2k)
V
R1
(2k)
AMP.IN
DIR.IN
CLK
240
51
51
0.1
J1
A
B
C
D
V
R3
(1k)
1k
8
8
8
(D
7
to D
0
)
DIGITAL OUT
(CONNECTOR)
8
(D
7
to D
0
)
2 (CLK.CLK)
CLK
D/A OUT
1/1 to 1/16
X (2)
5.2V (D)
DGND
2V (D)
5.2V (A)
AGND
+5V
12
CXA1396D
Supply Current
Item
Min.
Typ.
Max.
Unit
5.2V
+5.0V
2.0V
0.85
15
0.45
1.0
30
0.6
A
mA
A
(Note: Supply current 2.0V is the value when Rn10, Rn11 and Rn12 are not mounted.)
Analog Input (DIR. IN, AMP. IN)
Item
Min.
Typ.
Max.
Unit
Input voltage (DIR. IN)
(AMP. IN)
1
Input impedance
2.0
0.5
50
0
+0.5
V
V
(
1
: Adjustable by VR1)
Clock Input (CLK)
Item
Min.
Typ.
Max.
Unit
Input voltage
(Peak to Peak)
Input impedance
1.0
50
Vp-p
Digital Output (D0 to D7)
ECL 10KH level
Clock Output
ECL 10KH level, complementary output
Output Code Table
V
IN
1 1 1 ...... 1 1
1 1 1 ...... 1 0
:
:
1 0 0 ...... 0 0
0 1 1 ...... 1 1
:
:
0 0 0 ...... 0 1
0 0 0 ...... 0 0
0V
:
:
:
:
:
:
:
:
2V
1 0 0 ...... 0 0
1 0 0 ...... 0 1
:
:
1 1 1 ...... 1 1
0 0 0 ...... 0 0
:
:
0 1 1 ...... 1 0
0 1 1 ...... 1 1
0 1 1 ...... 1 1
0 1 1 ...... 1 0
:
:
0 0 0 ...... 0 0
1 1 1 ...... 1 1
:
:
1 0 0 ...... 0 1
1 0 0 ...... 0 0
0 0 0 ...... 0 0
0 0 0 ...... 0 1
:
:
0 1 1 ...... 1 1
1 0 0 ...... 0 0
:
:
1 1 1 ...... 1 0
1 1 1 ...... 1 1
MINV
LINV
0
1
0
0
1
0
1
1
13
CXA1396D
Fig. 2. Timing Chart
N 1
N
N 2
N 1
N
Tdh
1.8ns
(Typ)
N
N 2
N 4
N + 1
N
A/D input pin
PCB input pin
A/D clock
A/D output
PCB output pin
PCB output pin
PCB output pin
PCB output pin
Vin
(DIR. IN, AMP. IN)
CLK
CLK
CLK
D7 to D0
(For 1/1 frequency division)
CLKN
CLK
(For 1/1 frequency division)
D7 to D0
DATA OUT
(For 1/2 frequency division)
CLKN
CLK
(For 1/2 frequency division)
Tdh
1.8ns
(Typ)
14
CXA1396D
Adjustment Methods and Notes on Operation
1)
Vin Offset (VR1)
The volume to adjust the signal range (0V center assumed) with the A/D converter input range when a
waveform is input through AMP. IN.
2)
A/D Full Scale (VR2)
The volume to adjust A/D converter VRB voltage.
3)
Linearity (VR3)
The volume to adjust VRM (linearity) voltage. When DIR. IN input selected and it is supplied through the
capacitor, VR3 can be used to adjust the input offset voltage.
4)
D/A Full Scale (VR4)
The volume to adjust D/A output full scale (1V).
5)
J1 (Input selection)
A: Shorts to adjust VRM voltage.
B: Shorts to supply DC voltage to Vin.
C: Shorts to select AMP.IN input.
D: Shorts to select DIR.IN input.
[Jumper Position at Shipment]
J1
J1
J1
A
A
A
B
B
B
C
C
C
D
D
D
6)
SW1
The switch for LINV High/Low.
7)
SW2
The switch for MINV High/Low.
8)
SW3 (Decimation)
The switch to select clock frequency decimation.
Switch position: decimation ratio
0: 1/1
1: 1/2
2: 1/4
3: 1/8
4: 1/16
9)
SW4 (D/A INV)
The switch for D/A converter output inversion.
0.1F
Input through the
buffer amplifier
Input through the
buffer amplifier
(When the linearity
is adjusted)
Input through the capacitor
(When the offset is adjusted using the
DIR IN. at the evaluation board)
15
CXA1396D
10) Rn10, Rn11 and Rn12 are not mounted at shipment. They are not required during evaluation.
11) Waveform probe pins P5 and P8 through P28 are devised to facilitate GND connection in order to reduce
the distortion. As shown in the diagram below, the distance between the probe point and the GND is 300
mil, and there is
1.2mm through hole at each. The signal and GND locations are suit for a Tektronix GND
tip (part number 013-1185-00).
Fig. 3
12) D/A converter (IC13) input data (waveform probe pins P21 through P28) are the complementary signals of
the decimated A/D converter outputs. Those are inverted again in the D/A converter so that the direction
of reproduced waveform can agree with the A/D input signal converter.
13) The part unmber of the digital output connector is KEL 8830E-020-170S. A corresponding connector and
cable assembly is JUNKOSMA KBO020MCG50BI.
1.2mm
Probe point
GND
300mil
16
CXA1396D
PCB Circuit Schematic
IC4
CLC404AJP
2V
(D)
P6
SW1
LINV
AGND
FERRITE
BEAD
AGND
R9
1.3k
VR2
2k
C8
0.1
AGND
5.2V (A)
IC1-2
TL4558
Q1
2SA970
7
6
8
5
4
C9
0.1
AGND
+5V (A)
A/D Full Scale
R6
240
IC3
TL431CP
R8
510
VR1
2K
1
2
6
3
4
AGND
AGND
IC1-1
TL4558
AGND AGND
R7
1k
2
7
3
4
AGND
6
DIR.IN
AMP.IN
AGND AGND
AGND
AGND
AGND AGND
AGND AGND
C12
0.1
C11
0.1
C3
0.1
C6
1
C7
1
C4
3.3
R4
22k
R5/11k
Vin Offset
R2
240
R1
51
R12
51
R11
43
R10
510
+5V (A)
5.2V (A)
5.2V (A)
P2
DGND
J1
B
Rn1
51
Rn1
51
Rn1
51
Rn1
51
V
CC
1
Aout_
Aout
Ain_
Ain
Bout_
Bout
V
EE
V
CC
2
Cout
Cout_
Cin
Cin_
V
BB
Bin
Bin_
I
C
8
:

1
0
H
1
1
6
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
1
V
CC
1
Q2
Q3
Cout_
D3
D2
S2
V
EE
V
CC
2
Q1
Q0
CLK
D0
D1
Cin_
S1
I
C
5
:

1
0
H
1
3
6
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
1
V
CC
2
Enable_
X3
X2
X1
X0
A
V
EE
V
CC
1
Z
X7
X6
X5
X4
C
B
I
C
7
:

1
0
H
1
6
4
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
1
C5
0.1
C2
0.1
C10
0.1
C14
0.1
C13
0.1
Rn1
DGND
DGND
R3
51
DGND
5.2V (D)
DGND
DGND
DGND
5.2V (D)
DGND
DGND
DGND
C22
0.1
DGND
5.2V (D)
DGND
C21
0.1
C37
0.1
DGND
C23
0.1
R14
51
2V (D)
DGND
2V (D)
DGND
Rn2
51
Rn2
51
Rn2
51
Rn2
51
Rn2
DGND
DGND
2V (D) DGND
C31
0.1
R18
51
SW3
Decimation
C30
0.1
C29
0.1
DGND
C1
0.1
5.2V (D)
DGND
D3
D2
D1
L
H
P11
P12
D1
CLK
DGND
P13
D2
R15
330
28
31
32
NC
VRB
NC
AV
EE
AV
EE
NC
NC
AGND
VIN
AGND
VRM
AGND
VIN
AGND
NC
NC
AV
EE
AV
EE
NC
VRT
NC
I
C
6
:

C
X
A
1
3
9
6
D
40
39
38
37
36
33
41
42
CLK
CLKN
NC
MINV
DV
EE
DGND1
DGND2
D7
D6
D5
D4
D3
D2
D1
D0
DGND2
DGND1
DV
EE
LINV
NC
AV
EE
P10
SW2
MINV
C24
0.1
C26
1
C25
0.1
FERRITE BEAD
D3
D0
C22
0.1
DGND
2V (D)
R17
51
R16
51
5.2V (D)
9
10
11
12
13
14
15
16
17
18
19
20
21
2
3
4
5
6
7
8
1
P17
P16
P15
P14
D6
D7
D4
D5
P9
CLK
P8
CLKN
C19
0.1
C20
10
AGND
C18
0.1
5.2V (A)
22
23
24
25
26
27
AGND
29
30
C17
0.1
AGND
P5
P4
AGND
AGND
VIN
P3
AV
EE
5.2V (A)
AGND
C15
1
C16
0.1
A
D
C
R13
1k
AGND
P1
VRB
VRM
VR3
1k
35
34
5.2V (D)
5.2V (A)
C25
0.1
C27
0.1
DGND
DGND
P17
DV
EE
Linearity
#1
#2
#3
#4
#5
#6
#7
#8
#9
#10
#11
#12
#13
#14
17
CXA1396D
MSB
D2
D3
D4
D5
D6
D7
D8
D9
LSB
NC
NC
CLKN
CLK
AGND2
V
REF
AV
EE
NC
NC
NC
NC
NC
OUT
NC
AGND1
DGND
INV
DV
EE
Rn11
51
DGND
DGND
D0
DGND
D1
DGND
D2
DGND
D3
DGND
D4
DGND
D5
DGND
D6
DGND
D7
DGND
CLK
DGND
DIGITAL OUT
CONNECTOR
KEL: 8830E-020-170S
(TOP VIEW)
Rn10
75
Rn10
75
Rn10
75
Rn10
75
Rn10
Rn11
51
Rn11
51
Rn11
51
Rn11
Rn12
51
Rn12
Rn12
51
Rn12
51
Rn12
51
C52
0.1
DGND
2V (D)
C53
0.1
2V (D)
DGND
2V (D)
DGND
C51
0.1
20
16
12
8
4
6
10
13
14
18
P29
C54
33
DGND
2V (D)
2V (D)
P30
DGND
DGND
DGND
P31
C55
33
DGND
5.2V (D)
5.2V (D)
P32
C56
33
AGND
5.2V (A)
5.2V (A)
P33 AGND
AGND
P34
C57
33
AGND
+5V (A)
+5V (A)
AGND
I
C
1
3
:

C
X
2
0
2
0
2
A
-
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
1
Rn9
75
Rn9
75
Rn9
75
Rn9
75
Rn8
75
Rn8
75
Rn8
75
Rn8
75
Rn8
C44
0.1
DGND 2V (D)
2V (D)
C46
0.1
C47
0.1
5.2V (D)
DGND
DGND
DGND
D/A OUT
SW4
D/A INV
D4
D6
D5
R23
3.2k
5.2V (D)
P23
P24
P25
P26
P27
P28
C45
0.1
DGND
2V (D)
5.2V (A)
AGND
R22
240
C50
33
C49
0.1
D/A Full Scale
C48
0.1
R21
1k
VR4
2k
IC14
TL431CP
D7
D6
D5
D4
D3
D2
D1
D0
Rn7
51
Rn7
51
Rn7
51
Rn7
51
C43
0.1
DGND
Rn7
P19
P20
CLKN
CLK
AGND
DGND
AGND
Rn9
DGND
L
H
V
CC
1
Q0
Q1
Q2
D0
D1
D2
V
EE
V
CC
2
Q5
Q4
Q3
D5
D4
D3
CLK
2
3
4
8
9
11
12
13
14
15
16
1
V
CC
1
Q0
Q1
Q2
D0
D1
D2
V
EE
V
CC
2
Q5
Q4
Q3
D5
D4
D3
CLK
I
C
9
:

1
0
H
1
7
6
2
3
4
8
9
11
12
14
15
16
1
DGND
DGND
DGND
C24
0.1
DGND
5.2V (D)
C26
0.1
DGND
5.2V (D)
V
CC
2
Dout_
Cout_
Din
COM
IN
Cout
Cin
Dout
V
CC
1
Aout_
Bout_
Ain
Aout
Bout
Bin
V
EE
I
C
1
2
:

1
0
H
1
0
1
2
3
4
5
7
8
10
12
13
14
15
16
1
V
CC
1
Aout_
Bout_
Ain
Aout
Bout
Bin
V
EE
V
CC
2
Dout_
Cout_
Din
COM
IN
Cout
Cin
Dout
I
C
1
1
:

1
0
H
1
0
1
2
3
4
12
14
15
16
1
C39
0.1
DGND
5.2V (D)
DGND
DGND
DGND
C41
0.1
DGND
5.2V (D)
DGND
DGND
Rn4
75
Rn4
75
Rn4
75
DGND
C36
0.1
2V (D)
Rn4
75
Rn4
Rn6
75
Rn6
75
Rn6
75
DGND
C42
0.1
2V (D)
Rn6
75
Rn6
Rn5
75
Rn5
75
Rn5
75
DGND
C40
0.1
2V (D)
Rn5
Rn3
75
Rn3
75
Rn3
75
DGND
C35
0.1
2V (D)
Rn3
75
Rn3
V
CC
1
Aout_
Aout
Ain_
Ain
Bout_
Bout
V
EE
V
CC
2
Cout
Cout_
Cin
Cin_
V
BB
Bin
Bin_
I
C
8
:

1
0
H
1
1
6
2
3
4
5
8
9
10
11
12
13
16
1
DGND 5.2V (D)
C34
0.1
DGND
2V (D)
C38
0.1
DGND
DGND
R20
51
DGND
C37
0.1
17
19
CLKN
14
15
P18
R19
51
2V (D)
CLK
9
1
2
7
3
5
15
11
11
6
9
11
10
9
13
5
6
7
8
I
C
1
0
:

1
0
H
1
7
6
5
6
7
10
P21
P22
6
7
5
6
7
10
Rn5
75
#1
#2
#3
#4
#5
#6
#7
#8
#9
#10
#11
#12
#13
#14
13
18
CXA1396D
Characteristic Graph
Fig. 5. Gain vs. Input frequency
(CLK = 125MHz)
G
a
i
n

[
d
B
]
2
0
2
4
6
8
10
10
100
Input frequency [MHz]
Fig. 6. SNR vs. Input frequency
(CLK = 125MHz)
S
N
R

[
d
B
]
50
45
40
35
30
25
20
10
100
Input frequency [MHz]
DIR. IN
AMP. IN
1
Fig. 7. 2nd, 3rd harmonic distortion vs. Input frequency
(CLK = 125MHz)
2
n
d
,

3
r
d

h
a
r
m
o
n
i
c

d
i
s
t
o
r
t
i
o
n

[
d
B
]
20
30
40
50
60
70
80
10
100
Input frequency [MHz]
2nd DIR. IN
2nd AMP. IN
3rd DIR. IN
3rd AMP. IN
1
Measurement data
Figs. 5, 6 and 7 show the characteristic graphs.
DIR. IN is the characteristic where the signal is directry input to the ADC and AMP. IN is the characteristic
where the signal is input to ADC through the amplifier.
19
CXA1396D
Parts Layout
20
CXA1396D
1st layer
Component plane (Top View)
4th layer
Solder plane (Top View)
Printed Pattern
21
CXA1396D
2nd layer
GND plane (Top View)
3rd layer
Power supply plane (Top View)
22
CXA1396D
Package Outline
Unit: mm
SONY CODE
EIAJ CODE
JEDEC CODE
PACKAGE STRUCTURE
PACKAGE MATERIAL
LEAD TREATMENT
LEAD MATERIAL
PACKAGE WEIGHT
GOLD PLATING
42 ALLOY
42PIN DIP (CERAMIC) 600mil
53.4 0.5
13.2 0.2
2.54
21
22
42
1
0.46 0.1
1.0 0.1
3
.
3

M
I
N
1
.
0

M
I
N
6
.
6

M
I
N
6
.
9
1

M
I
N
1
5
.
2
4


0
.
2
5
0
.
2
5
+

0
.
0
5

0
.
0
2
0 to 15
6.7g
DIP-42C-01
DIP042-C-0600-A
CERAMIC