ChipFind - документация

Электронный компонент: BYT71F

Скачать:  PDF   ZIP
BYT71(F)-800
August 1998 Ed : 3A
FAST RECOVERY RECTIFIER DIODES
Symbol
Parameter
Value
Unit
IF(RMS)
RMS on-state current
12
A
IF(AV)
Average forward current
= 0.5
TO220AC
Tc=130
C
6
A
ISOWATT220AC
Tc=105
C
6
IFSM
Surge non repetitive forward current
tp=10ms
sinusoidal
90
A
Tstg
Tj
Storage and junction temperature range
- 65 to + 150
- 65 to + 150
C
C
TO220AC
(Plastic)
K
A
.
HIGH VOLTAGE CAPABILITY
.
FAST AND SOFT RECOVERY
.
INSULATED PACKAGE :
insulating voltage = 2000V
DC
capacitance = 12 pF
DESCRIPTION
Symbol
Parameter
BYT71-(F)
Unit
600
800
VRRM
Repetitive peak off-state voltage
600
800
V
ABSOLUTE MAXIMUM RATINGS
FEATURES
Single chip rectifier suited for power conversion
and polarity protection applications.
This device is packaged in TO220AC and in
ISOWATT220AC.
ISOWATT220AC
(Plastic)
K
A
1/7
Symbol
Test Conditions
Min.
Typ.
Max.
Unit
IR **
Tj = 25
C
VR = VRRM
20
A
Tj = 100
C
1
mA
VF *
Tj = 100
C
IF = 6 A
1.3
V
Tj = 25
C
IF = 6 A
1.4
Pulse test : * tp = 380
s, duty cycle < 2 %
** tp = 5 ms, duty cycle < 2 %
THERMAL RESISTANCES
ELECTRICAL CHARACTERISTICS
STATIC CHARACTERISTICS
RECOVERY CHARACTERISTICS
Symbol
Test Conditions
Min.
Typ.
Max.
Unit
trr
Tj = 25
C
IF = 1A
VR = 30V
dIF/dt = -15A/
s
300
ns
To evaluate the conduction losses use the following equations :
P = 1.15 x IF(AV) + 0.025 x IF2(RMS)
Symbol
Parameter
Value
Unit
Rth (j-c)
Junction to case
TO220AC
2.3
C/W
ISOWATT220AC
4.9
BYT71(F)-800
2/7
I M(A)
P=5W
P=7.5W
P=10W
T
I
M
=tp/T
tp
Fig.2 : Peak current versus form factor.
V FM(V)
Tj=100 C
O
FM(A)
I
Fig.3 : Forward voltage drop versus forward current
(maximum values).
K=Zth(j-c)/Rth(j-c)
SINGLE PULSE
=0.5
=0.2
=0.1
T
=tp/T
tp
Fig.4 : Relative variation of thermal impedance junction
to case versus pulse duration.
(TO 220 AC)
PF(av)(W)
=0.5
=0.05
=0.1
=0.2
=1
T
=tp/T
tp
IF(av)(A)
Fig.1 : Average forward power dissipation versus
average forward current.
K=Zth(j-c)/Rth(j-c)
=0.5
=0.2
=0.1
SINGLE PULSE
T
=tp/T
tp
tp(s)
Fig.5 : Relative variation of thermal impedance junction
to case versus pulse duration.
(ISOWATT220AC)
BYT71(F)-800
3/7
IM(A)
IM
=0.5
t(s)
Fig.7 : Non repetitive surge peak forward current versus
overload duration.
(ISOWATT220AB)
F(av)(A)
I
0
25
50
75
100
125
150
0
1
2
3
4
5
6
7
8
Rth(j-a)=15
C/W
o
Rth(j-a)=Rth(j-c)
T
=tp/T
tp
=0.5
Tamb( C)
o
Fig.8 : Average current versus ambient temperature.
(duty cycle : 0.5) (TO 220 AB)
IF(av)(A)
0
25
50
75
100
125
150
0
1
2
3
4
5
6
7
8
Rth(j-a)=15
C/W
o
Rth(j-a)=Rth(j-c)
T
=tp/T
tp
=0.5
Tamb( C)
o
Fig.9 : Average current versus ambient temperature.
(duty cycle : 0.5) (ISOWATT220AB)
C(pF)
F=1Mhz Tj=25 C
O
V R(V)
Fig.10 : Junction capacitance versus reverse voltage
applied (Typical values).
IM
=0.5
t(s)
Fig.6 : Non repetitive surge peak forward current versus
overload duration.
(TO 220 AB)
90% CONFIDENCE
Tj=100
C
Fig.11 : Recovery charges versus dIF/dt.
BYT71(F)-800
4/7
Tj( C)
QRR;IRM[Tj]/QRR;IRM[Tj=100 C ]
o
o
Fig.13 : Dynamic parameters versus junction
temperature.
I RM(A)
90% CONFIDENCE
Tj=100
C
IF=IF(av)
o
dIF/dt(A/us)
Fig.12 : Peak reverse current versus dIF/dt.
t fr(us)
0
10
20
30
40
50
60
70
80
90 100
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
90% CONFIDENCE
Tj=100
C
o
dIF/dt(A/us)
IF=IF(av)
Fig.15 : Recovery time versus dIF/dt.
V FP(V)
0
10
20
30
40
50
60
70
80
90 100
0
5
10
15
20
25
30
35
40
90% CONFIDENCE
Tj=100
C
o
dIF/dt(A/us)
IF=IF(av)
Fig.14 : Peak forward voltage versus dIF/dt.
BYT71(F)-800
5/7