ChipFind - документация

Электронный компонент: DTV56

Скачать:  PDF   ZIP
August 1999 - Ed: 2B
HIGH BREAKDOWN VOLTAGE CAPABILITY
VERY FAST RECOVERY DIODE
SPECIFIED TURN ON SWITCHING
CHARACTERISTICS
LOW STATIC AND PEAK FORWARD VOLTAGE
DROP FOR LOW DISSIPATION
SUITED TO 32-110kHz MONITORS AND
16kHz TV DEFLECTION
INSULATED VERSION (ISOWATT220AC):
Insulating voltage = 2000V DC
Capacitance = 12pF
PLANAR TECHNOLOGY ALLOWING HIGH
QUALITY AND BEST ELECTRICAL
CHARACTERISTICS
FEATURES AND BENEFITS
High voltage diode with high current capability
dedicated to horizontal deflection. DTV16 is
optimized to TV meanwhile DTV32 to DTV110 are
covering the full range of monitors from the low
end to the professional hi-definition SXGA CAD
display units.
These devices are packaged either in TO220-AC
or in ISOWATT220AC.
DESCRIPTION
I
F(AV)
5 A to 10 A
V
RRM
1500 V
V
F
1.3 V to 1.5 V
MAIN PRODUCTS CHARACTERISTICS
DTVseries
(CRT HORIZONTAL DEFLECTION)
HIGH VOLTAGE DAMPER DIODE
K
A
TO-220AC
DTVxxxD
K
A
ISOWATT220AC
DTVxxxF
Symbol
Parameter
Value
Unit
V
RRM
Repetitive peak reverse voltage
1500
V
I
F(RMS)
RMS forward current
15
A
I
FSM
Surge non repetitive forward current
tp = 10ms half sine wave
DTV16
50
A
DTV32
75
DTV56
80
DTV64
80
DTV82
80
DTV110
80
T
stg
Storage temperature range
-65 to 150
C
T
j
Maximum operating junction temperature
150
C
ABSOLUTE RATINGS
1/10
Symbol
Parameter
Value
Unit
TO-220AC
ISOWATT220AC
R
th(j-c)
Junction to case thermal
resistance
DTV16
3
5.5
C/W
DTV32
2.5
4.75
DTV56
2
4
DTV64
1.8
4
DTV82
1.6
3.7
DTV110
1.3
3.5
THERMAL RESISTANCES
Symbol
Test Conditions
Value
Unit
Tj = 25C
Tj = 125C
Typ
Max
Typ
Max
V
F *
I
F
= 5 A
DTV16
1.6
1.0
1.5
V
I
F
= 6 A
DTV32
1.5
1.1
1.35
I
F
= 6 A
DTV56
1.8
1.1
1.5
I
F
= 6 A
DTV64
1.7
1.1
1.4
I
F
= 6 A
DTV82
1.8
1.0
1.3
I
F
= 10 A
DTV110
2.3
1.15
1.5
I
R **
V
R
= V
RRM
DTV16
60
100
500
A
DTV32
100
100
1000
DTV56
100
100
1000
DTV64
100
100
1000
DTV82
100
100
1000
DTV110
100
100
1000
pulse test : * tp = 380
s,
< 2%
** tp = 5 ms,
< 2%
STATIC ELECTRICAL CHARACTERISTICS
DTVseries
2/10
Symbol
Test Conditions
Typ
Max
Unit
t
rr
I
F
= 100m A
I
R
= 100mA
I
RR
= 10mA
Tj = 25C
DTV16
1500
ns
DTV32
850
DTV56
750
DTV64
750
DTV82
675
DTV110
625
t
rr
I
F
= 1 A
dI
F
/dt =-50A/
s
V
R
=30V
Tj = 25C
DTV16
200
300
ns
DTV32
130
175
DTV56
110
135
DTV64
110
135
DTV82
105
125
DTV110
95
115
RECOVERY CHARACTERISTICS
Symbol
Test Conditions
Typ
Max
Unit
t
fr
I
F
= 6 A
dI
F
/dt = 80 A/
s
V
FR
=3V
Tj = 100C
DTV16
350
ns
DTV32
570
DTV56
350
DTV64
350
DTV82
270
DTV110
250
V
FP
I
F
= 6A
dI
F
/dt = 80 A/
s
Tj = 100C
DTV16
25
34
V
DTV32
21
28
DTV56
19
26
DTV64
18
22
DTV82
14
18
DTV110
11
14
To evaluate the maximum conduction losses use the following equation :
DTV16
P= 1.14 x I
F(AV)
+ 0.072 x I
F
2
(RMS)
DTV32
P= 1.069 x I
F(AV)
+ 0.047 x I
F
2
(RMS)
DTV56
P= 1.15 x I
F(AV)
+ 0.059 x I
F
2
(RMS)
DTV64
P= 1.06 x I
F(AV)
+ 0.053 x I
F
2
(RMS)
DTV82
P= 1.01 x I
F(AV)
+ 0.048 x I
F
2
(RMS)
DTV110
P= 1.12 x I
F(AV)
+ 0.038 x I
F
2
(RMS)
TURN-ON SWITCHING CHARACTERISTICS
DTVseries
3/10
0
2
4
6
8
10
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
PF(av)(W)
Ip(A)
DTV16
DTV110
Fig. 1-1: Power dissipation versus peak forward
current (triangular waveform,
=0.45).
0
1
2
3
4
5
6
0.0
0.5
1.0
1.5
2.0
PF(av)(W)
Ip(A)
DTV64
DTV82
Fig. 1-3: Power dissipation versus peak forward
current (triangular waveform,
=0.45).
0
1
2
3
4
5
6
0.0
0.5
1.0
1.5
2.0
PF(av)(W)
Ip(A)
DTV56
DTV32
Fig. 1-2: Power dissipation versus peak forward
current (triangular waveform,
=0.45).
0
25
50
75
100
125
150
0
2
4
6
8
10
12
IF(av)(A)
DTV110
DTV56
DTV32
DTV16
DTV64
DTV82
Tcase(C)
T
=tp/T
tp
Fig. 2-1: Average current versus case temperature
(
=0.5) (TO-220AC).
0
25
50
75
100
125
150
0
2
4
6
8
10
12
IF(av)(A)
DTV110
DTV56
DTV32
DTV64
DTV82
DTV16
Tcase(C)
T
=tp/T
tp
Fig. 2-2: Average current versus case temperature
(
=0.5) (ISOWATT220AC).
DTVseries
4/10
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
0.1
1.0
10.0
20.0
VFM(V)
IFM(A)
Typical
Tj=125C
Maximum
Tj=25C
Maximum
Tj=125C
Fig. 3-3: Forward voltage drop versus forward
current (DTV56D/F).
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
0.1
1.0
10.0
20.0
VFM(A)
IFM(A)
Typical
Tj=125C
Maximum
Tj=25C
Maximum
Tj=125C
Fig. 3-4: Forward voltage drop versus forward
current (DTV64D/F).
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
0.1
1.0
10.0
20.0
IFM(A)
Typical
Tj=125C
Maximum
Tj=125C
Maximum
Tj=25C
VFM(V)
Fig. 3-1: Forward voltage drop versus forward
current (DTV16D/F).
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
0.1
1.0
10.0
20.0
IFM(A)
Typical
Tj=125C
Maximum
Tj=25C
Maximum
Tj=125C
VFM(V)
Fig. 3-2: Forward voltage drop versus forward
current (DTV32D/F).
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
0.1
1.0
10.0
20.0
VFM(V)
IFM(A)
Typical
Tj=125C
Maximum
Tj=125C
Maximum
Tj=25C
Fig. 3-5: Forward voltage drop versus forward
current (DTV82D/F).
0
0.5
1
1.5
2
2.5
3
0.1
1.0
10.0
20.0
VFM(V)
IFM(A)
Typical
Tj=125C
Maximum
Tj=125C
Maximum
Tj=25C
Fig. 3-6: Forward voltage drop versus forward
current (DTV110D/F).
DTVseries
5/10
1E-3
1E-2
1E-1
1E+0
0
5
10
15
20
25
30
35
40
45
50
55
60
IM(A)
Tc=100C
DTV32D & DTV56D
DTV16D
t(s)
I
M
t
=0.5
Fig. 4-1: Non repetitive surge peak forward current
versus overload duration (TO-220AC)
(DTV16D / DTV32D / DTV56D).
1E-3
1E-2
1E-1
1E+0
0
5
10
15
20
25
30
35
40
45
Tc=100C
DTV16F
DTV32F & DTV56F
t(s)
I
M
t
=0.5
IM(A)
Fig. 4-2: Non repetitive surge peak forward current
versus overload duration (ISOWATT220AC)
(DTV16F / DTV32F / DTV56F).
1E-3
1E-2
1E-1
1E+0
0
10
20
30
40
50
60
70
80
90
100
Tc=100C
DTV64D
DTV82D
DTV110D
t(s)
I
M
t
=0.5
IM(A)
Fig. 4-3: Non repetitive surge peak forward current
versus overload duration (TO-220AC)
(DTV64D / DTV82D / DTV110D).
1E-3
1E-2
1E-1
1E+0
0
5
10
15
20
25
30
35
40
45
50
55
60
IM(A)
Tc=100C
DTV110F
DTV82F
DTV64F
t(s)
I
M
t
=0.5
Fig. 4-4: Non repetitive surge peak forward current
versus overload duration (ISOWATT220AC)
(DTV64F / DTV82F / DTV110F).
0.1
0.2
0.5
1
2
5
0
200
400
600
800
1000
1200
Qrr(nc)
IF=Ip
90% confidence
Tj=125C
DTV32
DTV64
DTV82
dIF/dt(A/s)
Fig. 5.2: Reverse recovery charges versus dIF/dt.
0.1
0.2
0.5
1.0
2.0
5.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
Qrr(C)
dIF/dt(A/s)
IF=Ip
90% confidence
Tj=125C
Fig. 5.1: Reverse recovery charges versus dIF/dt
(DTV16D/F).
DTVseries
6/10
0.1
0.2
0.5
1
2
5
0
200
400
600
800
1000
1200
Qrr(nc)
IF=Ip
90% confidence
Tj=125C
DTV56
DTV110
dIF/dt(A/s)
Fig. 5.3: Reverse recovery charges versus dIF/dt.
0.1
0.2
0.5
1
2
5
0.0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3.0
IRM(A)
dIF/dt(A/s)
DTV16
DTV32
IF=Ip
90% confidence
Tj=125C
Fig. 6.1: Reverse recovery current versus dIF/dt.
0.1
0.2
0.5
1
2
5
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
IRM(A)
dIF/dt(A/s)
IF=Ip
90% confidence
Tj=125C
DTV56
DTV82
Fig. 6.3: Reverse recovery current versus dIF/dt.
0.1
0.2
0.5
1
2
5
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
IRM(A)
dIF/dt(A/s)
IF=Ip
90% confidence
Tj=125C
DTV64
DTV110
Fig. 6.2: Reverse recovery current versus dIF/dt.
DTV16
DTV16
DTV16
0
20
40
60
80
100
120
140
0
5
10
15
20
25
30
35
40
45
VFP(V)
dIF/dt(A/s)
IF=Ip
90% confidence
Tj=125C
DTV56
DTV32
Fig. 7-1: Transient peak forward voltage versus
dIF/dt.
0
20
40
60
80
100
120
140
0
5
10
15
20
25
30
VFP(V)
dIF/dt(A/s)
IF=Ip
90% confidence
Tj=125C
DTV64
DTV82
DTV110
Fig. 7.2: Transient peak forward voltage versus
dIF/dt.
DTVseries
7/10
0
20
40
60
80
100
120
140
300
350
400
450
500
550
600
650
700
tfr(ns)
dIF/dt(A/s)
IF=Ip
90% confidence
Tj=125C
DTV56
DTV82
DTV110
Fig. 8-2: Forward recovery time versus dIF/dt.
0
20
40
60
80
100
120
140
400
450
500
550
600
650
700
750
800
tfr(ns)
dIF/dt(A/s)
IF=Ip
90% confidence
Tj=125C
DTV32
DTV64
DTV16
DTV16
DTV16
Fig. 8.1: Forward recovery time versus dIF/dt.
0
20
40
60
80
100
120
140
0.0
0.2
0.4
0.6
0.8
1.0
1.2
Tj(C)
VFP,IRM,Qrr[Tj]/VFP,IRM,Qrr[Tj=125C]
VFP
IRM
Qrr
Fig. 9: Dynamic parameters versus junction
temperature.
1
1
10
100
200
10
100
200
C(pF)
Tj=25C
F=1MHz
VR(V)
DTV110
DTV16
DTV16
DTV16
DTV82
DTV64
DTV56
DTV32
Fig. 10: Junction capacitance versus reverse
voltage applied (typical values).
1E-2
1E-1
1E+0
1E+1
0.1
0.2
0.5
1.0
tp(s)
K=[Zth(j-c)/Rth(j-c)]
= 0.1
= 0.2
= 0.5
Single pulse
T
=tp/T
tp
Fig. 11-1: Relative variation of thermal impedance
junction to case versus pulse duration
(ISOWATT220AC).
1E-3
1E-2
1E-1
1E+0
0.1
0.2
0.5
1.0
tp(s)
K=[Zth(j-c)/Rth(j-c)]
= 0.1
= 0.2
= 0.5
Single pulse
T
=tp/T
tp
Fig. 12-2: Relative variation of thermal impedance
junction to case versus pulse duration
(TO-220AC).
DTVseries
8/10
Cooling method : c.
Torque value : 0.55 m.N typ (0.70 m.N max).
PACKAGE DATA
TO-220AC (plastic) (JEDEC outline)
REF.
DIMENSIONS
Millimeters
Inches
Min.
Max.
Min.
Max.
A
4.40
4.60
0.173
0.181
C
1.23
1.32
0.048
0.051
D
2.40
2.72
0.094
0.107
E
0.49
0.70
0.019
0.027
F
0.61
0.88
0.024
0.034
F1
1.14
1.70
0.044
0.066
G
4.95
5.15
0.194
0.202
H2
10.00
10.40
0.393
0.409
L2
16.40 typ.
0.645 typ.
L4
13.00
14.00
0.511
0.551
L5
2.65
2.95
0.104
0.116
L6
15.25
15.75
0.600
0.620
L7
6.20
6.60
0.244
0.259
L9
3.50
3.93
0.137
0.154
M
2.6 typ.
0.102 typ.
Diam. I
3.75
3.85
0.147
0.151
A
C
D
E
M
L7
H2
I
L5
L6
L9
L4
G
F1
F
L2
DTVseries
9/10
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of
use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by
implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written ap-
proval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
1999 STMicroelectronics - Printed in Italy - All rights reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia
Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com
PACKAGE DATA
ISOWATT220AC (plastic)
REF.
DIMENSIONS
Millimeters
Inches
Min.
Typ.
Max.
Min.
Typ.
Max.
A
4.40
4.60
0.173
0.181
B
2.50
2.70
0.098
0.106
D
2.40
2.75
0.094
0.108
E
0.40
0.70
0.016
0.028
F
0.75
1.00
0.030
0.039
F1
1.15
1.70
0.045
0.067
G
4.95
5.20
0.195
0.205
H
10.00
10.40 0.394
0.409
L2
16.00
0.630
L3
28.60
30.60 1.125
1.205
L6
15.90
16.40 0.626
0.646
L7
9.00
9.30
0.354
0.366
Diam
3.00
3.20
0.118
0.126
Cooling method : C.
Torque value : 0.55 m.N typ (0.70 m.N max).
Electrical isolation : 2000V DC
Capacitance : 12 pF
F
G
F1
H
D
E
A
B
L7
Diam
L2
L6
L3
Ordering code
Marking
Package
Weight
Base qty
Delivery mode
DTV16D
DTV32D
DTV56D
DTV64D
DTV82D
DTV110D
DTV16D
DTV32D
DTV56D
DTV64D
DTV82D
DTV110D
TO-220AC
1.86g
50
Tube
DTV16F
DTV32F
DTV56F
DTV64F
DTV82F
DTV110F
DTV16F
DTV32F
DTV56F
DTV64F
DTV82F
DTV110F
ISOWATT220AC
2g
50
Tube
Epoxy meets UL94, V0
DTVseries
10/10