ChipFind - документация

Электронный компонент: STPS10L40CFP

Скачать:  PDF   ZIP
LOW DROP POWER SCHOTTKY RECTIFIER
background image
1/7
STPS10L40CT/CG/CF/CFP
July 2003 - Ed: 5B
LOW DROP POWER SCHOTTKY RECTIFIER
Dual center tap Schottky rectifiers suited for
Switched
Mode
Power
Supplies
and
high
frequency DC to DC converters.
Packaged
in
TO-220AB,
ISOWATT220AB,
TO-220FPAB and D
2
PAK, these devices are
intended for use in low voltage, high frequency
inverters, free-wheeling and polarity protection
applications.
DESCRIPTION
s
LOW FORWARD VOLTAGE DROP MEANING
VERY SMALL CONDUCTION LOSSES
s
LOW DYNAMIC LOSSES AS A RESULT OF
THE SCHOTTKY BARRIER
s
INSULATED
PACKAGE:
ISOWATT220AB,
TO-220FPAB
Insulating voltage = 2000V DC
Capacitance = 12pF
s
AVALANCHE CAPABILITY SPECIFIED
FEATURES AND BENEFITS
Symbol
Parameter
Value
Unit
V
RRM
Repetitive peak reverse voltage
40
V
I
F(RMS)
RMS forward current
20
A
I
F(AV)
Average
forward current
TO-220AB
D
2
PAK
Tc =135C
= 0.5
Per diode
Per device
5
10
A
ISOWATT220AB
TO-220FPAB
Tc =115C
= 0.5
Per diode
Per device
5
10
A
I
FSM
Surge non repetitive forward current
tp = 10 ms Sinusoidal
150
A
I
RRM
Repetitive peak reverse current
tp=2 s square F=1kHz
1
A
I
RSM
Non repetitive peak reverse current
tp = 100 s
square
2
A
P
ARM
Repetitive peak avalanche power
tp = 1s
Tj = 25C
2700
W
T
stg
Storage temperature range
- 65 to + 150
C
Tj
Maximum operating junction temperature *
150
C
dV/dt
Critical rate of rise of reverse voltage
10000
V/s
ABSOLUTE RATINGS (limiting values, per diode)
A1
K
A2
I
F(AV)
2x5 A
V
RRM
40 V
Tj (max)
150C
V
F
(max)
0.46 V
MAIN PRODUCTS CHARACTERISTICS
D
2
PAK
STPS10L40CG
A1
K
A2
A2
K
A1
K
A1
A2
TO-220AB
STPS10L40CT
ISOWATT220AB
STPS10L40CF
* :
dPtot
dTj
Rth j
a
<
-
1
(
)
thermal runaway condition for a diode on its own heatsink
A1
A2
K
TO-220FPAB
STPS10L40CFP
background image
STPS10L40CT/CG/CF/CFP
2/7
Symbol
Parameter
Tests Conditions
Min.
Typ.
Max.
Unit
I
R
*
Reverse leakage cur-
rent
Tj = 25C
V
R
= V
RRM
0.2
mA
Tj = 100C
8
25
mA
V
F
*
Forward voltage drop
Tj = 25
C
I
F
= 5 A
0.53
V
Tj = 125C
I
F
= 5 A
0.36
0.46
Tj = 25
C
I
F
= 10 A
0.67
Tj = 125C
I
F
= 10 A
0.49
0.59
Pulse test : * tp = 380 s,
< 2%
To evaluate the conduction losses use the following equation :
P = 0.33 x I
F(AV)
+ 0.026 I
F
2
(RMS)
STATIC ELECTRICAL CHARACTERISTICS (per diode)
Symbol
Parameter
Value
Unit
R
th (j-c)
Junction to case
TO-220AB
D
2
PAK
Per diode
Total
3
1.7
C/W
R
th (c)
Coupling
0.35
R
th (j-c)
Junction to case
ISOWATT220AB
TO-220FPAB
Per diode
Total
5
3.8
C/W
R
th (c)
Coupling
2.5
THERMAL RESISTANCES
When the diodes 1 and 2 are used simultaneously :
Tj(diode 1) = P(diode1) x R
th(j-c)
(Per diode) + P(diode 2) x R
th(c)
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
IF(av) (A)
PF(av)(W)
= 0.2
= 0.5
= 1
= 0.05
= 0.1
T
=tp/T
tp
Fig. 1: Average forward power dissipation versus
average forward current (per diode).
0
25
50
75
100
125
150
0
1
2
3
4
5
6
IF(av)(A)
Rth(j-a)=15C/W
Rth(j-a)=Rth(j-c)
Tamb(C)
T
=tp/T
tp
Fig. 2: Average forward current versus ambient
temperature (
=0.5, per diode).
background image
STPS10L40CT/CG/CF/CFP
3/7
1E-3
1E-2
1E-1
1E+0
0
10
20
30
40
50
60
70
80
90
100
IM(A)
Tc=25C
Tc=125C
Tc=75C
t(s)
I
M
t
=0.5
Fig. 5-1:
Non repetitive surge peak forward
current
versus
overload
duration
(maximum
values, per diode) (TO-220AB and D
2
PAK).
1E-3
1E-2
1E-1
1E+0
0.0
0.2
0.4
0.6
0.8
1.0
tp(s)
Zth(j-c)/Rth(j-c)
= 0.1
= 0.2
= 0.5
Single pulse
T
=tp/T
tp
Fig. 6-1: Relative variation of thermal impedance
junction to case versus pulse duration.
(TO-220AB and D
2
PAK).
1E-3
1E-2
1E-1
1E+0
0
10
20
30
40
50
60
70
80
IM(A)
Tc=25C
Tc=125C
Tc=75C
I
M
t
=0.5
t(s)
Fig. 5-2:
Non repetitive surge peak forward
current
versus
overload
duration
(maximum
values,
per
diode)
(ISOWATT220AB,
TO-220FPAB).
1E-3
1E-2
1E-1
1E+0
1E+1
0.0
0.2
0.4
0.6
0.8
1.0
tp(s)
Zth(j-c)/Rth(j-c)
= 0.1
= 0.2
= 0.5
Single pulse
T
=tp/T
tp
Fig. 6-2: Relative variation of thermal impedance
junction to case versus pulse duration.
(ISOWATT220AB, TO-220FPAB).
0
0.2
0.4
0.6
0.8
1
1.2
0
25
50
75
100
125
150
T (C)
j
P
(t )
P
(25C)
ARM p
ARM
Fig. 4: Normalized avalanche power derating
versus junction temperature.
0.001
0.01
0.1
0.01
1
0.1
10
100
1000
1
t (s)
p
P
(t )
P
(1s)
ARM p
ARM
Fig. 3: Normalized avalanche power derating
versus pulse duration.
background image
STPS10L40CT/CG/CF
4/6
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0.1
1.0
10.0
100.0
IFM(A)
VFM(V)
Tj=25C
Tj=150C
Typical values
Tj=125C
Fig. 9: Forward voltage drop versus forward
current (maximum values, per diode).
0
4
8
12
16
20
24
28
32
36
40
0
10
20
30
40
50
60
70
80
S(Cu) (cm)
Rth(j-a) (C/W)
Fig. 10: Thermal resistance junction to ambient
versus copper surface under tab (Epoxy printed
circuit board FR4, copper thickness: 35m)( D
2
PAK).
0
5
10
15
20
25
30
35
40
1E-3
1E-2
1E-1
1E+0
1E+1
1E+2
IR(mA)
Tj=100C
Tj=25C
Tj=150C
VR(V)
Fig. 7: Reverse leakage current versus reverse
voltage applied (typical values, per diode).
1
2
5
10
20
50
10
100
1000
VR(V)
C(pF)
F=1MHz
Tj=25C
Fig. 8: Junction capacitance versus reverse
voltage applied (typical values, per diode).
background image
STPS10L40CT/CG/CF/CFP
5/7
A
C
D
L7
Dia
L5
L6
L9
L4
F
H2
G
G1
L2
F2
F1
E
M
PACKAGE MECHANICAL DATA
TO-220AB
REF.
DIMENSIONS
Millimeters
Inches
Min.
Max.
Min.
Max.
A
4.40
4.60
0.173
0.181
C
1.23
1.32
0.048
0.051
D
2.40
2.72
0.094
0.107
E
0.49
0.70
0.019
0.027
F
0.61
0.88
0.024
0.034
F1
1.14
1.70
0.044
0.066
F2
1.14
1.70
0.044
0.066
G
4.95
5.15
0.194
0.202
G1
2.40
2.70
0.094
0.106
H2
10
10.40
0.393
0.409
L2
16.4 typ.
0.645 typ.
L4
13
14
0.511
0.551
L5
2.65
2.95
0.104
0.116
L6
15.25
15.75
0.600
0.620
L7
6.20
6.60
0.244
0.259
L9
3.50
3.93
0.137
0.154
M
2.6 typ.
0.102 typ.
Diam.
3.75
3.85
0.147
0.151
PACKAGE MECHANICAL DATA
TO-220FPAB
H
L3
L2
L4
L6
G
G1
F
F1
D
E
L7
A
B
Dia
F2
REF.
DIMENSIONS
Millimeters
Inches
Min.
Max.
Min.
Max.
A
4.4
4.9
0.173
0.193
B
2.5
2.9
0.098
0.114
D
2.45
2.75
0.096
0.108
E
0.4
0.70
0.016
0.027
F
0.60
1
0.024
0.039
F1
1.15
1.70
0.045
0.067
F2
1.15
1.70
0.045
0.067
G
4.95
5.20
0.195
0.204
G1
2.40
2.70
0.094
0.106
H
10
10.7
0.393
0.421
L2
16 Typ.
0.63 Typ.
L3
28.6
30.6
1.126
1.204
L4
9.8
10.7
0.385
0.421
L6
15.8
16.4
0.621
0.645
L7
9.00
9.90
0.354
0.389
Dia.
2.9
3.50
0.114
0.18