ChipFind - документация

Электронный компонент: STPS20H100C

Скачать:  PDF   ZIP
1/8
STPS20H100CT/CF/CG/CR/CFP
July 2003 - Ed: 4G
HIGH VOLTAGE POWER SCHOTTKY RECTIFIER
I
F(AV)
2 x 10 A
V
RRM
100 V
Tj
175C
V
F
(max)
0.64 V
MAIN PRODUCT CHARACTERISTICS
s
NEGLIGIBLE SWITCHING LOSSES
s
HIGH JUNCTION TEMPERATURE CAPABILITY
s
GOOD TRADE OFF BETWEEN LEAKAGE CUR-
RENT AND FORWARD VOLTAGE DROP
s
LOW LEAKAGE CURRENT
s
AVALANCHE RATED
s
INSULATED
PACKAGE:
ISOWATT220AB,
TO-220FPAB
Insulating Voltage = 2000V DC
Capacitance = 45 pF
s
AVALANCHE CAPABILITY SPECIFIED
FEATURES AND BENEFITS
Dual center tap schottky rectifier designed for
high
frequency
miniature
Switched
Mode
Power Supplies such as adaptators and on
board DC/DC converters.
DESCRIPTION
TO-220AB
STPS20H100CT
A1
A2
K
Symbol
Parameter
Value
Unit
V
RRM
Repetitive peak reverse voltage
100
V
I
F(RMS)
RMS forward current
30
A
I
F(AV)
Average forward
current
= 0.5
TO-220AB
D
2
PAK / I
2
PAK
Tc = 160C
per diode
per device
10
20
A
ISOWATT220AB
TO-220FPAB
Tc = 145C
I
FSM
Surge non repetitive forward current
tp = 10 ms sinusoidal
250
A
I
RRM
Repetitive peak reverse current
tp = 2 s square F = 1kHz
1
A
I
RSM
Non repetitive peak reverse current
tp = 100 s square
3
A
P
ARM
Repetitive peak avalanche power
tp = 1s
Tj = 25C
10800
W
T
stg
Storage temperature range
- 65 to + 175
C
Tj
Maximum operating junction temperature *
175
C
dV/dt
Critical rate of rise of reverse voltage
10000
V/s
ABSOLUTE RATINGS (limiting values, per diode)
I
2
PAK
STPS20H100CR
D
2
PAK
STPS20H100CG
K
A1
A2
K
A2
A1
A1
A2
K
ISOWATT220AB
STPS20H100CF
K
A2
A1
* :
dPtot
dTj
Rth j
a
<
-
1
(
)
thermal runaway condition for a diode on its own heatsink
A1
A2
K
TO-220FPAB
STPS20H100CFP
STPS20H100CT/CF/CG/CR/CFP
2/8
Symbol
Parameter
Value
Unit
R
th (j-c)
Junction to case
TO-220AB / D
2
PAK / I
2
PAK
Per diode
1.6
C/W
ISOWATT220AB / TO-220FPAB
Per diode
4
TO-220AB / D
2
PAK / I
2
PAK
Total
0.9
ISOWATT220AB / TO-220FPAB
Total
3.2
C/W
R
th (c)
TO-220AB / D
2
PAK / I
2
PAK
Coupling
0.15
ISOWATT220AB / TO-220FPAB
Coupling
2.5
When the diodes 1 and 2 are used simultaneously :
Tj(diode 1) = P(diode1) x R
th(j-c)
(Per diode) + P(diode 2) x R
th(c)
THERMAL RESISTANCES
Symbol
Parameter
Tests conditions
Min.
Typ.
Max.
Unit
I
R
*
Reverse leakage current
Tj = 25C
V
R
= V
RRM
4.5
A
Tj = 125C
2
6
mA
V
F
**
Forward voltage drop
Tj = 25
C
I
F
= 8 A
0.71
V
Tj = 25
C
I
F
= 10 A
0.77
Tj = 25
C
I
F
= 16 A
0.81
Tj = 25
C
I
F
= 20 A
0.88
Tj = 125C
I
F
= 8 A
0.56
0.58
Tj = 125
C
I
F
= 10 A
0.59
0.64
Tj = 125
C
I
F
= 16 A
0.65
0.68
Tj = 125
C
I
F
= 20 A
0.67
0.73
Pulse test :
* tp = 5 ms,
< 2%
** tp = 380 s,
< 2%
To evaluate the maximum conduction losses use the following equation :
P = 0.55 x I
F(AV)
+ 0.009 x I
F
2
(RMS)
STATIC ELECTRICAL CHARACTERISTICS (per diode)
STPS20H100CT/CF/CG/CR/CFP
3/8
1E-3
1E-2
1E-1
1E+0
0
20
40
60
80
100
120
140
160
180
200
t(s)
IM(A)
Tc=50C
Tc=75C
Tc=125C
I
M
t
=0.5
Fig. 5: Non repetitive surge peak forward current
versus overload duration (maximum values, per
diode) (TO-220AB, D
2
PAK, I
2
PAK)
1E-3
1E-2
1E-1
1E+0
0
20
40
60
80
100
120
140
IM(A)
I
M
t
=0.5
t(s)
Tj=125C
Tj=75C
Tj=50C
Fig. 6: Non repetitive surge peak forward current
versus overload duration (maximum values, per
diode) (ISOWATT220AB, TO-220FPAB).
0
0.2
0.4
0.6
0.8
1
1.2
0
25
50
75
100
125
150
T (C)
j
P
(t )
P
(25C)
ARM p
ARM
Fig. 4: Normalized avalanche power derating
versus junction temperature.
0.001
0.01
0.1
0.01
1
0.1
10
100
1000
1
t (s)
p
P
(t )
P
(1s)
ARM p
ARM
Fig. 3: Normalized avalanche power derating
versus pulse duration.
0
2
4
6
8
10
12
0
2
4
6
8
IF(av) (A)
PF(av)(W)
= 0.5
= 1
= 0.05
= 0.2
= 0.1
T
=tp/T
tp
Fig. 1: Average forward power dissipation versus
average forward current (per diode).
T
=tp/T
tp
0
25
50
75
100
125
150
175
0
2
4
6
8
10
12
IF(av)(A)
Tamb(C)
ISOWATT220AB
TO-220FPAB
TO220AB
Rth(j-a)=Rth(j-c)
Rth(j-a)=15C/W
Rth(j-a)=40C/W
Fig. 2: Average forward current versus ambient
temperature (
=0.5, per diode).
STPS20H100CT/CF/CG/CG-1
4/8
1E-3
1E-2
1E-1
1E+0
0.0
0.2
0.4
0.6
0.8
1.0
tp(s)
Zth(j-c)/Rth(j-c)
= 0.1
= 0.2
= 0.5
Single pulse
T
=tp/T
tp
Fig. 7-1: Relative variation of thermal impedance
junction to case versus pulse duration (per diode)
(TO-220AB, D
2
PAK, I
2
PAK).
0
10
20
30
40
50
60
70
80
90
100
1E-2
1E-1
1E+0
1E+1
1E+2
1E+3
1E+4
IR(A)
VR(V)
Tj=125C
Tj=100C
Tj=25C
Tj=150C
Fig. 8: Reverse leakage current versus reverse
voltage applied (typical values, per diode).
1
2
5
10
20
50
100
100
200
500
1000
VR(V)
C(pF)
F=1MHz
Tj=25C
Fig. 9: Junction capacitance versus reverse
voltage applied (typical values, per diode).
1E-2
1E-1
1E+0
1E+1
0.0
0.2
0.4
0.6
0.8
1.0
Zth(j-c)/Rth(j-c)
tp(s)
= 0.1
= 0.2
= 0.5
Single pulse
Fig. 7-2: Relative variation of thermal impedance
junction to case versus pulse duration (per diode)
(ISOWATT220AB, TO-220FPAB).
0.0
0.2
0.4
0.6
0.8
1.0
1.2
0.1
1.0
10.0
100.0
IFM(A)
Tj=125C
Typical values
Tj=125C
Tj=25C
Tj=150C
Typical values
VFM(V)
Fig. 10: Forward voltage drop versus forward
current (maximum values, per diode).
0
5
10
15
20
25
30
35
40
0
10
20
30
40
50
60
70
80
S(Cu) (cm)
Rth(j-a) (C/W)
Fig. 11: Thermal resistance junction to ambient
versus copper surface under tab (Epoxy printed circuit
board FR4, copper thickness: 35m) (D
2
PAK).
5/8
STPS20H100CT/CF/CG/CR/CFP
PACKAGE MECHANICAL DATA
TO-220AB
A
C
D
L7
Dia
L5
L6
L9
L4
F
H2
G
G1
L2
F2
F1
E
M
REF.
DIMENSIONS
Millimeters
Inches
Min.
Max.
Min.
Max.
A
4.40
4.60
0.173
0.181
C
1.23
1.32
0.048
0.051
D
2.40
2.72
0.094
0.107
E
0.49
0.70
0.019
0.027
F
0.61
0.88
0.024
0.034
F1
1.14
1.70
0.044
0.066
F2
1.14
1.70
0.044
0.066
G
4.95
5.15
0.194
0.202
G1
2.40
2.70
0.094
0.106
H2
10
10.40
0.393
0.409
L2
16.4 typ.
0.645 typ.
L4
13
14
0.511
0.551
L5
2.65
2.95
0.104
0.116
L6
15.25
15.75
0.600
0.620
L7
6.20
6.60
0.244
0.259
L9
3.50
3.93
0.137
0.154
M
2.6 typ.
0.102 typ.
Diam.
3.75
3.85
0.147
0.151