ChipFind - документация

Электронный компонент: U2896B

Скачать:  PDF   ZIP
U2896B
Rev. A1, 18-Sep-98
1 (13)
Preliminary Information
Modulation PLL for GSM, DCS and PCS Systems
Description
The U2896B is a monolithic integrated circuit. It is
realized using TEMIC's advanced silicon bipolar UHF5S
technology. The device integrates a mixer, an I/Q
modulator, a phase-frequency detector (PFD) with two
synchronous programmable dividers, and a charge pump.
The U2896B is designed for cellular phones such as
GSM900, DCS1800, and PCS1900, applying a
transmitter architecture at which the VCO operates at the
TX output frequency. No duplexer is needed since the
out-of-band noise is very low. The U2896B exhibits low
power consumption. Broadband operation gives high
flexibility for multi-band frequency mappings. The IC is
available in a shrinked small-outline 36-pin package
(SSO36).
Electrostatic sensitive device.
Observe precautions for handling.
Features
D Supply voltage range 2.7 V to 5.5 V
D Current consumption 50 mA
D Power-down functions
D High-speed PFD and charge pump (CP)
D Small CP saturation voltages (0.5/0.6 V)
D Programmable dividers and CP polarity
D Low-current standby mode
Benefits
D Novel TX architecture saves filter costs
D Extended battery operating time without duplexer
D Less board space (few external components)
D VCO control without voltage doubler
D Small SSO36 package
D One device for all GSM bands
Block Diagram
1:2
N
22
21
15
16
MUX
90
V
Ref
Modulator
7
8
I NI
Q NQ
PU
NMIXOMIXO
32
33
23
35
36
2
1
Mixer
PFD
Charge
pump
14
13
31
28
10
11
27
26
RF
NRF
VSP
CPO
VS2
MDO
NMDO
ND
NND
RD
NRD
MC
GND2
CPCL
CPCH
14891
VS1 GND1
5
6
LO
4
3
MDLO
NMDLO
34
25
30
GND3
24
NMIXLO
29
VS3
12
GNDP
17
1:2
R
PUMIX MIXLO
Mode control
Figure 1. Block diagram
U2896B
Rev. A1, 18-Sep-98
2 (13)
Preliminary Information
Ordering Information
Extended Type Number
Package
Remarks
U2896B-MFCG3
SSO36
Taped and reeled
Pin Description
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
36
35
34
33
32
31
30
29
28
27
26
25
24
23
14892
I
NI
MDLO
NMDLO
GND1
VSI
1)
MDO
NMDO
SUB
VSP
CPO
GNDP
CPCL
CPCH
RD
NRD
MC
n.c.
VS3
1)
GND3
RF
NRF
VS2
1)
GND2
MIXO
NMIXO
MIXLO
PUMIX
NQ
Q
NMIXLO
PU
ND
NND
n.c.
n.c.
Figure 2. Pinning
Pin
Symbol
Function
1
I
In-phase base band-input
2
NI
Complementary to I
3
MDLO
I/Q-modulator LO input
4
NMDLO
Complementary to MDLO
5
GND1
Ground
6
VS1
1)
Supply I/Q modulator
7
MDO
I/Q modulator
8
NMDO
Complementary to MDO
9
SUB
Substrate, connected to GND
10
VSP
Supply charge pump
11
CPO
Charge pump output
12
GNDP
Ground
13
CPCL
Charge pump current control
GSM1800
14
CPCH
Charge pump current control
GSM900
15
RD
R-divider input
16
NRD
Complementary to RD
17
MC
Mode control
18
n.c.
Not connected
19
n.c.
Not connected
20
n.c.
Not connected
21
NND
Complementary to ND
22
ND
N-divider input
23
PU
Power-up. whole chip, except
mixer
24
NMIXLO
Complementary to MIXLO
25
MIXLO
Mixer LO input
26
GND2
Ground
27
VS2
1)
Supply (MISC)
28
NRF
Complementary to RF
29
RF
Mixer RF input
30
GND3
Ground
31
VS3
1)
Supply mixer
32
NMIXO
Complementary to MIXO
33
MIXO
Mixer output
34
PUMIX
Power-up mixer
35
NQ
Complementary to Q
36
Q
Quad-phase base-band input
1)
Between the Pins VS1, VS2 and VS3 the allowed
maximum voltage is
200 mV
U2896B
Rev. A1, 18-Sep-98
3 (13)
Preliminary Information
Absolute Maximum Ratings
Parameters
Symbol
Value
Unit
Supply voltage VS1, VS2, VS3
V
VS#
v V
VSP
V
Supply voltage charge pump VSP
V
VSP
5.5
V
Voltage at any input
V
Vi#
0.5
v V
Vi#
v V
VS#
+5.5
V
Current at any input / output pin
except CPC
| I
I#
| | I
O#
|
2
mA
CPC output currents
| I
CPC
|
5
mA
Ambient temperature
T
amb
20 to +85
C
Storage temperature
T
stg
40 to +125
C
Operating Range
Parameters
Symbol
Value
Unit
Supply voltage
V
VS#
2.7 to 5.5
V
Supply voltage
V
VSP
2.7 to 5.5
V
Ambient temperature
T
amb
20 to +85
C
Thermal Resistance
Parameters
Symbol
Value
Unit
Junction ambient SSO36
R
thJA
130
K/W
Electrical Characteristics
V
S
= 2.7 to 5.5 V, T
amb
= 20
C to +85
C, final test at 25
C
Parameters
Test Conditions / Pin
Symbol
Min.
Typ.
Max.
Unit
DC supply
Supply voltages VS#
V
VS1
= V
VS2
= V
VS3
V
VS#
2.7
5.5
V
Supply voltage VSP
V
VSP
V
VS#
0.3
5.5
V
Supply current I
VS1
Active (V
PU
= VS)
I
VS1A
17
22
mA
pp y
Standby (V
PU
= 0)
I
VS1Y
20
mA
Supply current I
VS2
Active (V
PU
= VS)
I
VS2A
17
22
mA
pp y
Standby (V
PU
= 0)
I
VS2Y
20
mA
Supply current I
VS3
Active (V
PUMIX
= VS)
I
VS3A
13
17
mA
pp y
Standby (V
PUMIX
= 0)
I
VS3Y
30
mA
Supply current I
VSP
1)
Active
(V
PU
= VS, CPO open)
I
VSPA
1.4
1.8
mA
Standby (V
PU
= 0)
I
VSPY
20
mA
N & R divider inputs ND, NND & RD, NRD
N:1 divider frequency
50-
W source
f
ND
100
600
MHz
R:1 divider frequency
50-
W source
f
RD
100
600
MHz
Input impedance
Active & standby
Z
RD
, Z
ND
1
k
W
Input sensitivity
50-
W source
V
RD
, V
ND
5
2)
200
mV
rms
Input capacitance
Active & standby
C
RD
, C
ND
0.5
pF
1)
Mean value, measured with F
ND
= 151 MHz, F
RD
= 150 MHz, current vs. time, see page 6, figure 3
2)
For optimized noise performance this voltage level may be higher
U2896B
Rev. A1, 18-Sep-98
4 (13)
Preliminary Information
Electrical Characteristics (continued)
V
S
= 2.7 to 5.5 V, T
amb
= 20
C to +85
C, final test at 25
C
Parameters
Test Conditions / Pin
Symbol
Min.
Typ.
Max.
Unit
Phase-frequency detector (PFD)
PFD operation
f
ND
= 600 MHz, N = 2
f
RD
= 600 MHz, R = 2
f
PFD
50
300
MHz
Frequency comparison
only
4)
f
ND
= 600 MHz, N = 2
f
RD
= 450 MHz, R = 2
f
FD
400
MHz
I/Q modulator baseband inputs I, NI & Q, NQ
DC voltage
Referred to GND
V
I,
V
NI,
V
Q,
V
NQ
1.35
VS1/2
VS1/2
+ 0.1
V
MD_IQ
Frequency range
f
IO
0
1
MHz
AC voltage
5)
Referred to GND
AC
I,
AC
NI,
AC
Q,
AC
NQ
200
mV
pp
AC voltage
Differential (preferres)
AC
DI,
AC
DQ
400
mV
pp
I/Q modulator LO input MDLO
MDLO
Frequency range
f
MDLO
100
450
MHz
Input impedance
Active & standby
Z
MDLO
3
k
W
Input level
50-
W source
P
MDLO
14
11
5
dBm
I/Q modulator outputs MDO, NMDO
DC current
V
MDO
, V
NMDO
= VS
I
MDO
, I
NMDO
0.8
mA
Internal pull-up resistor
R
MDO
, R
NMDO
615
W
Voltage compliance
V
MDO
, V
NMDO
= VC
VC
MDO
, VC
NMDO
V
S
0.7
5.5
V
MDO output level
(differential)
615
W to VS
6)
1.5 pF external load
P
MDO
40
60
mV
rms
Carrier suppression
6)
CS
MDO
32
35
dBc
Sideband suppression
6)
SS
MDO
35
40
dBc
IF spurious
6)
f
LO
3
f
mod
SP
MDO
50
45
dBc
Noise
6)
@ 400 kHz off carrier
N
MDO
115
dBc/Hz
Frequency range
f
MDO
100
450
MHz
Mixer (900 MHz)
RF input level
900 MHz
P9
RF
23
17
dBm
Output resistance
R
MIXO
, R
NMIXO
650
W
LO-spurious at
RF/NRF port
@ P9
MIXLO
= 10 dBm
@ P9
RF
= 15 dBm
SP9
RF
40
dBm
MIXLO input level
0.05 to 2 GHz
P9
MIXLO
22
12
dBm
MIXO
Frequency range
f
MIXO
50
450
MHz
Output level
7)
differen-
tial
@ P9
MIXLO
= 15 dBm
P9
MIXO
80
mV
rms
Carrier suppression
@ P9
MIXLO
= 15 dBm
CS9
MIXO
20
dBc
4)
PFD can be used as a frequency comparator until 300 MHz for loop acquisition
5)
Single-ended operation (complementary baseband input is AC-grounded) leads to reduced linearity
(degrading suppression of odd harmonics)
6)
With typical drive levels at MDLO- & I/Q-inputs
7)
1 dB compression point C = 1.5 pF to GND
U2896B
Rev. A1, 18-Sep-98
5 (13)
Preliminary Information
Electrical Characteristics (continued)
V
S
= 2.7 to 5.5 V, T
amb
= 20
C to +85
C, final test at 25
C
Parameters
Test Conditions / Pin
Symbol
Min.
Typ.
Max.
Unit
Mixer (1900 MHz)
Output resistance
R
MIXO
, R
NMIXO
650
W
RF input level
0.5 to 2 GHz
P19
RF
23
17
dBm
LO-spurious at
RF/NRF ports
@ P19
MIXLO
= 10 dBm
@ P19
RF
= 15 dBm
SP19
RF
40
dBm
MIXLO input level
0.05 to 2 GHz
P19
MIXLO
22
12
dBm
MIXO
Output level
8)
differen-
tial
@ P19
MIXLO
= 17 dBm
P19
MIXO
70
mVrms
Carrier suppression
@ P19
MIXLO
= 17 dBm
CS19
MIXO
20
dBc
Charge-pump output CPO (V
VSP
= 5 V; V
CPO
= 2.5 V)
Pump-current pulse
R
CPCH
9)
= 4.7 k
| I
CPO_H
|
1.4
2
2.6
mA
p
p
R
CPCL
10)
= 2.4 k
| I
CPO_L
|
3
4
5
mA
Sensivity to V
VSP
|
DI
CPO
I
CPO
|
|
DV
VSP
V
VSP
|
S
ICPO
0.1
V
CPO
voltage range
| I
CPO
| degradation <
10%
(V
VSP
= 2.7 V to 5 V)
V
CPO
0.5
V
VSP
0.6
V
Mode control
Sink current
V
MC
= VS
I
MC
60
mA
Power-up input PU (power-up for all functions, except mixer)
Settling time
Output power within 10%
of steady state values
S
PU
5
10
ms
High level
Active
V
PUH
2.0
V
Low level
Standby
V
PUL
0
0.4
V
High-level current
Active, V
PUH
= 2.2 V
I
PUH
70
mA
Low-level current
Standby, V
PUL
= 0.4 V
I
PUL
1
20
mA
Power-up input PUMIX (power-up for mixer only)
Settling time
Output power within 10%
of steady state values
t
setl
5
10
ms
High level
Active
V
PUMIXH
2.0
V
Low level
Standby
V
PUMIXL
0
0.4
V
High-level current
Active, V
PUMIXH
= 2.2 V
I
PUMIXH
0.1
70
mA
Low-level current
Standby,
V
PUMIXL
= 0.4 V
I
PUMIXL
1
20
mA
8)
1 dB compression point C = 1.5 pF to GND
9)
R
CPCH
: external resistor to GND for charge-pump current control (MODE 1, 5, only Pin 14 active)
10)
R
CPCL
: external resistor to GND for charge-pump current control (MODE 2, 3, 4, only Pin 13 active)
U2896B
Rev. A1, 18-Sep-98
6 (13)
Preliminary Information
Supply Current of the Charge Pump I
VSP
vs. Time
Due to the pulsed operation of the charge pump, the
current into the charge-pump supply pin VSP is not
constant. Depending on I (see figure 5) and the phase
difference at the phase detector inputs, the current I
VSP
over time varies. Basically, the total current is the sum of
the quiescent current, the charge-/discharge current, and
after each phase comparison cycle a current spike (see
figure 3).
Internal current |I
CPC
| vs. R
CPC
R
CPC
|I
CPCO
|
19.2 k
W
0.5 mA
9.6 k
W
1 mA
4.8 k
W
2 mA
2.4 k
W
4 mA
(typical values)
Down
Up
2.5 I
CPCO
1.5 I
CPCO
I
CPCO
I
I
CPCO
t
t
14913
I
VSP
I
CPO
Figure 3. Supply current of the charge pump
Mode Selection
The device can be programmed to different modes via an external resistor RMODE (including short, open) from Pin
MC to VS2. The mode is distinguished from specific N-, R-divider ratios, and the polarity of the charge-pump selection.
Mode Selection
N-Divider
R-Divider
CPO Current Polarity
4)
Application
CPCH
active
CPCL
active
Mode
Resistance
between Pin MC
and Pin VS2
f
n
< f
R
1)
f
n
> f
R
1)
1
0 (<50
W)
1:1
1:1
sink
source
t.b.d.
x
2
2.7 k
W (
5%)
1:1
1:1
source
sink
t.b.d.
x
3
10 k
W (
5%)
1:1
2:1
source
sink
t.b.d.
x
4
47 k
W (
5%)
2:1
2:1
source
sink
PCN/ PCS
2)
x
5
(> M
W)
2:1
2:1
sink
source
GSM
3)
x
1)
Frequencies referred to PFD input
2)
LO frequencies below VCO frequency
3)
LO frequencies above VCO frequency
4
)
Sink current into Pin CPO. Source: current out from Pin CPO.
U2896B
Rev. A1, 18-Sep-98
7 (13)
Preliminary Information
Equivalent Circuits at the IC's Pins
I,Q
NI, NQ
2230
2230
VS1
MDO
NMDO
GND
Baseband inputs
LO input
Output
14893
MDLO
V
Bias_MDLO
V
Ref_input
V
Ref_MDLO
V
Ref_output
2 x 615
W
Figure 4. I/Q modulator
14894
NRF
RF input
890
890
1 k
LO output
1.6 k
1.6 k
1 k
RF
MIXLO
MIXO
VS3
GND
V
Bias_RF
V
Ref_RF
V
Bias_LO
V
Ref_LO
650
W
650
W
NMIXO
Output
Figure 5. Mixer
14896
Ref
up
Ref
n
down
I
I
4
4
VSP
CPO
GNDP
n
= Transistor with an emitter areafactor of "n"
V
Ref
CPCL
CPCH
n
Figure 6. Charge pump
U2896B
Rev. A1, 18-Sep-98
8 (13)
Preliminary Information
14897
GND
2 k
2 k
ND/RD
NND/NRD
VS2
V
Ref_div
Figure 7. Dividers
14899
GND
PU, PUMIX
20 k
Figure 8. Power-up
14898
GND
Ndivider
2x
60
A
Logic
Rdivider
MUX
MC
VS2
Figure 9. Mode control
14900
C (U)
0.5 pF @ 2 V
C (U) is a non-linear junction capacitance
Figure 10. ESD-protection diodes
U2896B
Rev. A1, 18-Sep-98
9 (13)
Preliminary Information
Application Hints
Interfacing
For some of the baseband ICs it may be necessary to
reduce the I/Q voltage swing so that it can be handled by
the U2896B. In those cases, the following circuitry can be
used.
14901
I
I
R2
R1
R1
R2
R1
R1
NI
Q
NQ
Baseband IC
NI
Q
NQ
U2896B
C
C
Figure 11. Interfacing the U2896B to I/Q baseband circuits
Due to a possible current offset in the differential base-
band inputs of the U2896B the best values for the carrier
suppression of the I/Q modulator can be achieved with
voltage driven I/NI-, and Q/NQ-inputs. A value of
R
source
= R2/2*R
S
v 1.5 kW should be realized. R
S
is the
sum of R1 (above drawing) and the output resistance of
the baseband IC.
Mode Control
14895
R
Mode1
R
Mode2
VS2
MC
U2896B
VS2
MC
U2896B
R
Mode
VS2
MC
U2896B
VS2
MC
U2896B
R
Mode
36 k
or
10 k
R
Mode
a) any single mode
b) any 2 modes
c) any mode
& mode 5
d) mode 5 & mode 3 or mode 4
Figure 12. Application examples for programming
different modes
U2896B
Rev. A1, 18-Sep-98
10 (13)
Preliminary Information
Test Circuit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
36
35
34
33
32
31
30
29
28
27
26
25
24
23
14903
450 mV
pp
V5
R1
R2
V4
1.35V
R3
200MHz
10dBm
C1
C2
C3
3V
3V, 5V
C4
R4
V7
1.5V
R5
R6
R7
200.1MHz
15dBm
C5
C6
R8
R9
R10
450 mV
pp
V2
R11
R12
V3
1.35V
C16
R14
200MHz
15dBm
C15
3V
C14
R13
1100MHz
15dBm
C13
3V
C12
C11
900MHz
15dBm
C10
C9
3V
C7
C8
3V
3V
U2896B
n.c.
n.c.
n.c.
Figure 13. Test circuit
U2896B
Rev. A1, 18-Sep-98
11 (13)
Preliminary Information
Application Circuit for DCS1800 (1710 1785 MHz)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
36
35
34
33
32
31
30
29
28
27
26
25
24
23
14904
R1
R2
2nd LO
C2
C3
C4
3V
3V, 5V
C5
R4
R5
R6
C9
C10
R9
R10
C20
C19
C18
C17
3V
C16
C15
C14
C13
3V
U2896B
C1
R3
Baseband
10dBm
3V
R7
C11
L2
L1
C8
C6
C7
C12
R8
Baseband
880 to 915MHz
20dBm
1710 to 1785MHz
15dBm
1st LO
C29
L3
Tuning voltage
3V
VCO
3V
n.c.
n.c.
n.c.
Figure 14. Application circuit
Measurements
Modulation-Loop Settling Time
As valid for all PLL loops the settling time depends on
several factors. The following figure is an extraction from
measurements performed in an arrangement like the
application circuit. It shows that a loop settling time of a
few
ms can be achieved.
Modulation Spectrum & Phase Error
CPC: 1 k
to GND
CPC `open'
Vertical: VCO tuning voltage 1 V/Div
Horizontal: Time 1
ms/Div
U2896B
Rev. A1, 18-Sep-98
12 (13)
Preliminary Information
Package Information
13047
Package SSO36
Dimensions in mm
technical drawings
according to DIN
specifications
9.6
9.1
1.3
0.15
0.05
0.2
0.5
8.45
36
19
1
18
4.5
4.3
6.6
6.3
0.12
5.6
5.2
U2896B
Rev. A1, 18-Sep-98
13 (13)
Preliminary Information
Ozone Depleting Substances Policy Statement
It is the policy of TEMIC Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems
with respect to their impact on the health and safety of our employees and the public, as well as their impact on
the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as
ozone depleting substances ( ODSs ).
The Montreal Protocol ( 1987 ) and its London Amendments ( 1990 ) intend to severely restrict the use of ODSs and
forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban
on these substances.
TEMIC Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of
ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2 . Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency ( EPA ) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C ( transitional substances ) respectively.
TEMIC Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer
application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized
application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of,
directly or indirectly, any claim of personal damage, injury or death associated with such unintended or
unauthorized use.
TEMIC Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 ( 0 ) 7131 67 2594, Fax number: 49 ( 0 ) 7131 67 2423