ChipFind - документация

Электронный компонент: 5962-9958302QPA

Скачать:  PDF   ZIP
TL5001, TL5001A
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
SLVS084F APRIL 1994 REVISED JANUARY 2002
1
POST OFFICE BOX 655303
DALLAS, TEXAS 75265
D
Complete PWM Power Control
D
3.6-V to 40-V Operation
D
Internal Undervoltage-Lockout Circuit
D
Internal Short-Circuit Protection
D
Oscillator Frequency . . . 20 kHz to 500 kHz
D
Variable Dead Time Provides Control Over
Total Range
D
3% Tolerance on Reference Voltage
(TL5001A)
D
Available in Q-Temp Automotive
HighRel Automotive Applications
Configuration Control / Print Support
Qualification to Automotive Standards
description
The TL5001 and TL5001A incorporate on a single
monolithic chip all the functions required for a
pulse-width-modulation (PWM) control circuit. De-
signed primarily for power-supply control, the
TL5001/A contains an error amplifier, a regulator, an
oscillator, a PWM comparator with a dead-time-con-
trol input, undervoltage lockout
(UVLO), short-circuit protection (SCP), and an open-collector output transistor. The TL5001A has a typical
reference voltage tolerance of
3% compared to
5% for the TL5001.
The error-amplifier common-mode voltage ranges from 0 V to 1.5 V. The noninverting input of the error amplifier
is connected to a 1-V reference. Dead-time control (DTC) can be set to provide 0% to 100% dead time by connecting
an external resistor between DTC and GND. The oscillator frequency is set by terminating RT with an external
resistor to GND. During low V
CC
conditions, the UVLO circuit turns the output off until V
CC
recovers to its normal
operating range.
The TL5001C and TL5001AC are characterized for operation from 20
C to 85
C. The TL5001I and TL5001AI are
characterized for operation from 40
C to 85
C. The TL5001Q and TL5001AQ are characterized for operation from
40
C to 125
C. The TL5001M and TL5001AM are characterized for operation from 55
C to 125
C.
AVAILABLE OPTIONS
PACKAGED DEVICES
TA
SMALL OUTLINE
(D)
PLASTIC DIP
(P)
CERAMIC DIP
(JG)
CHIP CARRIER
(FK)
20
C to 85
C
TL5001CD
TL5001CP
--
--
20
C to 85
C
TL5001ACD
TL5001ACP
--
--
40
C to 85
C
TL5001ID
TL5001IP
--
--
40
C to 85
C
TL5001AID
TL5001AIP
--
--
40
C to 125
C
TL5001QD
--
--
--
40
C to 125
C
TL5001AQD
--
--
--
55
C to 125
C
--
--
TL5001MJG
TL5001MFK
55
C to 125
C
--
--
TL5001AMJG
TL5001AMFK
The D package is available taped and reeled. Add the suffix R to the device type (e.g., TL5001CDR).
Copyright
2002, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
1
2
3
4
8
7
6
5
OUT
V
CC
COMP
FB
GND
RT
DTC
SCP
D, JG OR P PACKAGE
(TOP VIEW)
19
20
1
3
2
17
18
16
15
14
13
12
11
9
10
5
4
6
7
8
NC
RT
NC
DTC
NC
NC
V
CC
NC
COMP
NC
NC
OUT
NC
GND
NC
FB
NC
SCP
NC
NC
FK PACKAGE
(TOP VIEW)
On products compliant to MIL-PRF-38535, all parameters are tested
unless otherwise noted. On all other products, production
processing does not necessarily include testing of all parameters.
TL5001, TL5001A
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
SLVS084F APRIL 1994 REVISED JANUARY 2002
2
POST OFFICE BOX 655303
DALLAS, TEXAS 75265
schematic for typical application
TL5001/A
FB
COMP
VO
DTC
RT
VI
+
SCP
VCC
+
TPS1101
GND
8
7
6
5
2
1
3
4
VO
functional block diagram
GND
8
OUT
SCP
COMP
FB
5
3
4
+
DTC
RT
6
7
Comparator 2
SCP
PWM/DTC
Comparator
OSC
Comparator 1
SCP
Amplifier
Error
UVLO
VCC
2
1
1 V
1.5 V
1 V
Reference
Voltage
IDT
2.5 V
TL5001, TL5001A
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
SLVS084F APRIL 1994 REVISED JANUARY 2002
3
POST OFFICE BOX 655303
DALLAS, TEXAS 75265
detailed description
voltage reference
A 2.5-V regulator operating from V
CC
is used to power the internal circuitry of the TL5001 and TL5001A and as a
reference for the error amplifier and SCP circuits. A resistive divider provides a 1-V reference for the error amplifier
noninverting input which typically is within 2% of nominal over the operating temperature range.
error amplifier
The error amplifier compares a sample of the dc-to-dc converter output voltage to the 1-V reference and generates
an error signal for the PWM comparator. The dc-to-dc converter output voltage is set by selecting the error-amplifier
gain (see Figure 1), using the following expression:
V
O
= (1 + R1/R2) (1 V)
To PWM
Comparator
Vref = 1 V
4
VI(FB)
3
+
R2
R1
COMP
FB
Compensation
Network
TL5001/A
GND
8
Figure 1. Error-Amplifier Gain Setting
The error-amplifier output is brought out as COMP for use in compensating the dc-to-dc converter control loop for
stability. Because the amplifier can only source 45
A, the total dc load resistance should be 100 k
or more.
oscillator/PWM
The oscillator frequency (f
osc
) can be set between 20 kHz and 500 kHz by connecting a resistor between RT and
GND. Acceptable resistor values range from 15 k
to 250 k
. The oscillator frequency can be determined by using
the graph shown in Figure 5.
The oscillator output is a triangular wave with a minimum value of approximately 0.7 V and a maximum value of
approximately 1.3 V. The PWM comparator compares the error-amplifier output voltage and the DTC input voltage
to the triangular wave and turns the output transistor off whenever the triangular wave is greater than the lesser of
the two inputs.
dead-time control (DTC)
DTC provides a means of limiting the output-switch duty cycle to a value less than 100 %, which is critical for boost
and flyback converters. A current source generates a reference current (I
DT
) at DTC that is nominally equal to the
current at the oscillator timing terminal, RT. Connecting a resistor between DTC and GND generates a dead-time
reference voltage (V
DT
), which the PWM/DTC comparator compares to the oscillator triangle wave as described
in the previous section. Nominally, the maximum duty cycle is 0 % when V
DT
is 0.7 V or less and 100 % when V
DT
is 1.3 V or greater. Because the triangle wave amplitude is a function of frequency and the source impedance of
RT is relatively high (1250
), choosing R
DT
for a specific maximum duty cycle, D, is accomplished using the
following equation and the voltage limits for the frequency in question as found in Figure 11 (V
osc
max and V
osc
min
are the maximum and minimum oscillator levels):
TL5001, TL5001A
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
SLVS084F APRIL 1994 REVISED JANUARY 2002
4
POST OFFICE BOX 655303
DALLAS, TEXAS 75265
dead-time control (DTC) (continued)
R
DT
+
Rt
)
1250
D Voscmax Voscmin
)
Voscmin
Where
R
DT
and R
t
are in ohms, D in decimal
Soft start can be implemented by paralleling the DTC resistor with a capacitor (C
DT
) as shown in Figure 2. During
soft start, the voltage at DTC is derived by the following equation:
V
DT
[
I
DT
R
DT
1 e
t R
DT
C
DT
TL5001/A
DTC
CDT
RDT
6
Figure 2. Soft-Start Circuit
If the dc-to-dc converter must be in regulation within a specified period of time, the time constant, R
DT
C
DT
, should
be t
0
/3 to t
0
/5. The TL5001/A remains off until V
DT
0.7 V, the minimum ramp value. C
DT
is discharged every time
UVLO or SCP becomes active.
undervoltage-lockout (UVLO) protection
The undervoltage-lockout circuit turns the output transistor off and resets the SCP latch whenever the supply voltage
drops too low (approximately 3 V at 25
C) for proper operation. A hysteresis voltage of 200 mV eliminates false
triggering on noise and chattering.
short-circuit protection (SCP)
The TL5001/A includes short-circuit protection (see Figure 3), which turns the power switch off to prevent damage
when the converter output is shorted. When activated, the SCP prevents the switch from being turned on until the
internal latching circuit is reset. The circuit is reset by reducing the input voltage until UVLO becomes active or until
the SCP terminal is pulled to ground externally.
When a short circuit occurs, the error-amplifier output at COMP rises to increase the power-switch duty cycle in an
attempt to maintain the output voltage. SCP comparator 1 starts an RC timing circuit when COMP exceeds 1.5 V.
If the short is removed and the error-amplifier output drops below 1.5 V before time out, normal converter operation
continues. If the fault is still present at the end of the time-out period, the timer sets the latching circuit and turns
off the TL5001/A output transistor.
TL5001, TL5001A
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
SLVS084F APRIL 1994 REVISED JANUARY 2002
5
POST OFFICE BOX 655303
DALLAS, TEXAS 75265
short-circuit protection (SCP) (continued)
Q1
12 k
185 k
RSCP
Q2
SCP
Comparator 2
Vref = 1 V
SCP
Comparator 1
1.5 V
From Error
Amp
CSCP
To Output
Drive Logic
SCP
5
2.5 V
Figure 3. SCP Circuit
The timer operates by charging an external capacitor (C
SCP
), connected between the SCP terminal and ground,
towards 2.5 V through a 185-k
resistor (R
SCP
). The circuit begins charging from an initial voltage of approximately
185 mV and times out when the capacitor voltage reaches 1 V. The output of SCP comparator 2 then goes high,
turns on Q2, and latches the timer circuit. The expression for setting the SCP time period is derived from the following
equation:
V
SCP
+
(2.5
*
0.185) 1
*
et
t )
0.185
Where
= R
SCP
C
SCP
The end of the time-out period, t
SCP
, occurs when V
SCP
= 1 V. Solving for C
SCP
yields:
C
SCP
+
12.46
t
SCP
Where
t is in seconds, C in
F.
t
SCP
must be much longer (generally 10 to 15 times) than the converter start-up period or the converter will not start.
output transistor
The output of the TL5001/A is an open-collector transistor with a maximum collector current rating of 21 mA and
a voltage rating of 51 V. The output is turned on under the following conditions: the oscillator triangle wave is lower
than both the DTC voltage and the error-amplifier output voltage, the UVLO circuit is inactive, and the short-circuit
protection circuit is inactive.
TL5001, TL5001A
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
SLVS084F APRIL 1994 REVISED JANUARY 2002
6
POST OFFICE BOX 655303
DALLAS, TEXAS 75265
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, V
CC
(see Note 1)
41 V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Amplifier input voltage, V
I(FB)
20 V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output voltage, V
O
, OUT
51 V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output current, I
O
, OUT
21 mA
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output peak current, I
O(peak)
, OUT
100 mA
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous total power dissipation
See Dissipation Rating Table
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating ambient temperature range, T
A
:
TL5001C, TL5001AC
20
C to 85
C
. . . . . . . . . . . . . . . . . . . . . .
TL5001I, TL5001AI
40
C to 85
C
. . . . . . . . . . . . . . . . . . . . . . . .
TL5001Q, TL5001AQ
40
C to 125
C
. . . . . . . . . . . . . . . . . . . . .
TL5001M, TL5001AM
55
C to 125
C
. . . . . . . . . . . . . . . . . . . . .
Storage temperature range, T
stg
65
C to 150
C
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds
260
C
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltage values are with respect to network ground terminal.
DISSIPATION RATING TABLE
PACKAGE
TA
25
C
POWER RATING
DERATING FACTOR
ABOVE TA = 25
C
TA = 70
C
POWER RATING
TA = 85
C
POWER RATING
TA = 125
C
POWER RATING
D
725 mW
5.8 mW/
C
464 mW
377 mW
145 mW
FK
1375 mW
11.0 mW/
C
880 mW
715 mW
275 mW
JG
1050 mW
8.4 mW/
C
672 mW
546 mW
210 mW
P
1000 mW
8.0 mW/
C
640 mW
520 mW
200 mW
recommended operating conditions
MIN
MAX
UNIT
Supply voltage, VCC
3.6
40
V
Amplifier input voltage, VI(FB)
0
1.5
V
Output voltage, VO, OUT
50
V
Output current, IO, OUT
20
mA
COMP source current
45
A
COMP dc load resistance
100
k
Oscillator timing resistor, Rt
15
250
k
Oscillator frequency, fosc
20
500
kHz
TL5001C, TL5001AC
20
85
Operating ambient temperature TA
TL5001I, TL5001AI
40
85
C
Operating ambient temperature, TA
TL5001Q, TL5001AQ
40
125
C
TL5001M, TL5001AM
55
125
TL5001, TL5001A
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
SLVS084F APRIL 1994 REVISED JANUARY 2002
7
POST OFFICE BOX 655303
DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature range, V
CC
= 6 V,
f
osc
= 100 kHz (unless otherwise noted)
reference
PARAMETER
TEST CONDITIONS
TL5001C, TL5001I
TL5001AC, TL5001AI
UNIT
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
MIN
TYP
MAX
UNIT
Output voltage
COMP connected to FB
0.95
1
1.05
0.97
1
1.03
V
Input regulation
VCC = 3.6 V to 40 V
2
12.5
2
12.5
mV
TA = 20
C to 25
C (C suffix)
10
1
10
10
1
10
Output voltage change with temperature
TA = 40
C to 25
C (I suffix)
10
1
10
10
1
10
mV/V
TA = 25
C to 85
C
10
2
10
10
2
10
All typical values are at TA = 25
C.
undervoltage lockout
PARAMETER
TEST CONDITIONS
TL5001C, TL5001I
TL5001AC, TL5001AI
UNIT
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
MIN
TYP
MAX
UNIT
Upper threshold voltage
TA = 25
C
3
3
V
Lower threshold voltage
TA = 25
C
2.8
2.8
V
Hysteresis
TA = 25
C
100
200
100
200
mV
Reset threshold voltage
TA = 25
C
2.1
2.55
2.1
2.55
V
All typical values are at TA = 25
C.
short-circuit protection
PARAMETER
TEST CONDITIONS
TL5001C, TL5001I
TL5001AC, TL5001AI
UNIT
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
MIN
TYP
MAX
UNIT
SCP threshold voltage
TA = 25
C
0.95
1.00
1.05
0.97
1.00
1.03
V
SCP voltage, latched
No pullup
140
185
230
140
185
230
mV
SCP voltage, UVLO standby
No pullup
60
120
60
120
mV
Input source current
TA = 25
C
10
15
20
10
15
20
A
SCP comparator 1 threshold voltage
1.5
1.5
V
All typical values are at TA = 25
C.
oscillator
PARAMETER
TEST CONDITIONS
TL5001C, TL5001I
TL5001AC, TL5001AI
UNIT
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
MIN
TYP
MAX
UNIT
Frequency
Rt = 100 k
100
100
kHz
Standard deviation of frequency
15
15
kHz
Frequency change with voltage
VCC = 3.6 V to 40 V
1
1
kHz
TA = 40
C to 25
C
4
0.4
4
4
0.4
4
kHz
Frequency change with temperature
TA = 20
C to 25
C
4
0.4
4
4
0.4
4
kHz
TA = 25
C to 85
C
4
0.2
4
4
0.2
4
kHz
Voltage at RT
1
1
V
All typical values are at TA = 25
C.
TL5001, TL5001A
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
SLVS084F APRIL 1994 REVISED JANUARY 2002
8
POST OFFICE BOX 655303
DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature range, V
CC
= 6 V,
f
osc
= 100 kHz (unless otherwise noted) (continued)
dead-time control
PARAMETER
TEST CONDITIONS
TL5001C, TL5001I
TL5001AC, TL5001AI
UNIT
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
MIN
TYP
MAX
UNIT
Output (source) current
TL5001C
V(DT) = 1.5 V
0.9
IRT
1.1
IRT 0.9
IRT
1.1
IRT
A
Output (source) current
TL5001I
V(DT) = 1.5 V
0.9
IRT
1.2
IRT 0.9
IRT
1.2
IRT
A
Input threshold voltage
Duty cycle = 0%
0.5
0.7
0.5
0.7
V
Input threshold voltage
Duty cycle = 100%
1.3
1.5
1.3
1.5
V
All typical values are at TA = 25
C.
Output source current at RT
error amplifier
PARAMETER
TEST CONDITIONS
TL5001C, TL5001I
TL5001AC, TL5001AI
UNIT
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
MIN
TYP
MAX
UNIT
Input voltage
VCC = 3.6 V to 40 V
0
1.5
0
1.5
V
Input bias current
160
500
160
500
nA
Output voltage swing
Positive
1.5
2.3
1.5
2.3
V
Output voltage swing
Negative
0.3
0.4
0.3
0.4
V
Open-loop voltage amplification
80
80
dB
Unity-gain bandwidth
1.5
1.5
MHz
Output (sink) current
VI(FB) = 1.2 V, COMP = 1 V
100
600
100
600
A
Output (source) current
VI(FB) = 0.8 V, COMP = 1 V
45
70
45
70
A
All typical values are at TA = 25
C.
output
PARAMETER
TEST CONDITIONS
TL5001C, TL5001I
TL5001AC, TL5001AI
UNIT
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
MIN
TYP
MAX
UNIT
Output saturation voltage
IO = 10 mA
1.5
2
1.5
2
V
Off state current
VO = 50 V,
VCC = 0
10
10
A
Off-state current
VO = 50 V
10
10
A
Short-circuit output current
VO = 6 V
40
40
mA
All typical values are at TA = 25
C.
total device
PARAMETER
TEST CONDITIONS
TL5001C, TL5001I
TL5001AC, TL5001AI
UNIT
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
MIN
TYP
MAX
UNIT
Standby supply current
Off state
1
1.5
1
1.5
mA
Average supply current
Rt = 100 k
1.4
2.1
1.4
2.1
mA
All typical values are at TA = 25
C.
TL5001, TL5001A
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
SLVS084F APRIL 1994 REVISED JANUARY 2002
9
POST OFFICE BOX 655303
DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature range, V
CC
= 6 V,
f
osc
= 100 kHz (unless otherwise noted)
reference
PARAMETER
TEST CONDITIONS
TL5001Q,
TL5001M
TL5001AQ,
TL5001AM
UNIT
MIN
TYP
MAX
MIN
TYP
MAX
Output voltage
TA = 25
C
COMP connected to FB
0.95
1.00
1.05
0.97
1.00
1.03
V
Output voltage
TA = MIN to MAX
COMP connected to FB
0.93
0.98
1.07
0.94
0.98
1.06
V
Input regulation
TA = MIN to MAX
VCC = 3.6 V to 40 V
2
12.5
2
12.5
mV
Output voltage change with temper-
ature
TA = MIN to MAX
* 6
2
*6
* 6
2
*6
%
All typical values are at TA = 25
C.
*Not production tested.
undervoltage lockout
PARAMETER
TEST CONDITIONS
TL5001Q,
TL5001M
TL5001AQ,
TL5001AM
UNIT
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
MIN
TYP
MAX
UNIT
Upper threshold voltage
TA = MIN, 25
C
3.00
3.00
V
Upper threshold voltage
TA = MAX
2.55
2.55
V
Lower threshold voltage
TA = MIN, 25
C
2.8
2.8
V
Lower threshold voltage
TA = MAX
2.0
2.0
V
Hysteresis
TA = MIN to MAX
100
200
100
200
mV
Reset threshold voltage
TA = MIN, 25
C
2.10
2.55
2.10
2.55
V
Reset threshold voltage
TA = MAX
0.35
0.63
0.35
0.63
V
All typical values are at TA = 25
C.
short-circuit protection
PARAMETER
TEST CONDITIONS
TL5001Q,
TL5001M
TL5001AQ,
TL5001AM
UNIT
MIN
TYP
MAX
MIN
TYP
MAX
SCP threshold voltage
TA = MIN, 25
C
0.95
1.00
1.05
0.97
1.00
1.03
V
SCP threshold voltage
TA = MAX
0.93
0.98
1.07
0.94
0.98
1.06
V
SCP voltage, latched
TA = MIN to MAX
No pullup
140
185
230
140
185
230
mV
SCP voltage, UVLO standby
TA = MIN to MAX
No pullup
60
120
60
120
mV
Equivalent timing resistance
TA = MIN to MAX
185
185
k
SCP comparator 1 threshold voltage
TA = MIN to MAX
1.5
1.5
V
All typical values are at TA = 25
C.
TL5001, TL5001A
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
SLVS084F APRIL 1994 REVISED JANUARY 2002
10
POST OFFICE BOX 655303
DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature range, V
CC
= 6 V,
f
osc
= 100 kHz (unless otherwise noted) (continued)
oscillator
PARAMETER
TEST CONDITIONS
TL5001Q,
TL5001M
TL5001AQ,
TL5001AM
UNIT
MIN
TYP
MAX
MIN
TYP
MAX
Frequency
TA = MIN to MAX
Rt = 100 k
100
100
kHz
Standard deviation of frequency
TA = MIN to MAX
2
2
kHz
Frequency change with voltage
TA = MIN to MAX
VCC = 3.6 V to 40 V
1
1
kHz
Frequency change with
TA = MIN to MAX
Q suffix
* 6
3
*6
* 6
3
*6
kHz
Frequency change with
temperature
TA = MIN to MAX
M suffix
* 9
5
*9
* 9
5
*9
kHz
Voltage at RT
TA = MIN to MAX
1
1
V
All typical values are at TA = 25
C.
*Not production tested.
dead-time control
PARAMETER
TEST CONDITIONS
TL5001Q, TL5001M
TL5001AQ, TL5001AM
UNIT
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
MIN
TYP
MAX
UNIT
Output (source)
current
TA = MIN to MAX
V(DT) = 1.5 V
0.9
IRT
1.1
IRT 0.9
IRT
1.1
IRT
A
TA = 25
C
Duty cycle = 0%
0.5
0.7
0.5
0.7
Input threshold
TA = 25
C
Duty cycle = 100%
1.3
1.5
1.3
1.5
V
voltage
TA = MIN to MAX
Duty cycle = 0%
0.4
0.7
0.4
0.7
V
TA = MIN to MAX
Duty cycle = 100%
1.3
1.7
1.3
1.7
All typical values are at TA = 25
C.
Output source current at RT
error amplifier
PARAMETER
TEST CONDITIONS
TL5001Q,
TL5001M
TL5001AQ,
TL5001AM
UNIT
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
MIN
TYP
MAX
UNIT
Input bias current
TA = MIN to MAX
160
500
160
500
nA
Output voltage
Positive
TA = MIN to MAX
1.5
2.3
1.5
2.3
V
Out ut
voltage
swing
Negative
TA = MIN to MAX
0.3
0.4
0.3
0.4
V
Open-loop voltage
amplification
TA = MIN to MAX
80
80
dB
Unity-gain bandwidth
TA = MIN to MAX
1.5
1.5
MHz
Output (sink) current
TA = MIN to MAX
VI(FB) = 1.2 V, COMP = 1 V
100
600
100
600
A
Output (source) current
TA = MIN, 25
C
VI(FB) = 0 8 V COMP = 1 V
45
70
45
70
A
Output (source) current
TA = MAX
VI(FB) = 0.8 V, COMP = 1 V
30
45
30
45
A
All typical values are at TA = 25
C.
TL5001, TL5001A
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
SLVS084F APRIL 1994 REVISED JANUARY 2002
11
POST OFFICE BOX 655303
DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature range, V
CC
= 6 V,
f
osc
= 100 kHz (unless otherwise noted) (continued)
output
PARAMETER
TEST CONDITIONS
TL5001Q,
TL5001M
TL5001AQ,
TL5001AM
UNIT
MIN
TYP
MAX
MIN
TYP
MAX
Output saturation voltage
TA = MIN to MAX
IO = 10 mA
1.5
2
1.5
2
V
Off state current
TA = MIN to MAX
VO = 50 V, VCC = 0
10
10
A
Off-state current
TA = MIN to MAX
VO = 50 V
10
10
A
Short-circuit output current
TA = MIN to MAX
VO = 6 V
40
40
mA
All typical values are at TA = 25
C.
total device
PARAMETER
TEST CONDITIONS
TL5001Q,
TL5001M
TL5001AQ,
TL5001AM
UNIT
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
MIN
TYP
MAX
UNIT
Standby supply current
Off state
TA = MIN to MAX
1
1.5
1
1.5
mA
Average supply current
TA = MIN to MAX
Rt = 100 k
1.4
2.1
1.4
2.1
mA
All typical values are at TA = 25
C.
TL5001, TL5001A
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
SLVS084F APRIL 1994 REVISED JANUARY 2002
12
POST OFFICE BOX 655303
DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
2.3 V
SCP Timing Period
3 V
DTC
OSC
COMP
1 V
0 V
PWM/DTC
Comparator
OUT
SCP
Comparator 1
SCP
SCP
Comparator 2
VCC
1.5 V
NOTE A: The waveforms show timing characteristics for an intermittent short circuit and a longer short circuit that is sufficient to activate SCP.
Figure 4. PWM Timing Diagram
TL5001, TL5001A
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
SLVS084F APRIL 1994 REVISED JANUARY 2002
13
POST OFFICE BOX 655303
DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 5
100 k
10 k
1 M
10 k
100 k
1 M
f
VCC = 6 V
DT Resistance = Rt
TA = 25
C
Rt Timing Resistance
OSCILLATOR FREQUENCY
vs
TIMING RESISTANCE

Oscillator Frequency
Hz
osc
Figure 6
94
92
90
88
50
25
0
96
98
100
25
50
75
100
TA Ambient Temperature
C
OSCILLATION FREQUENCY
vs
AMBIENT TEMPERATURE
f
Oscillation Frequency
kHz
osc
VCC = 6 V
Rt = 100 k
DT Resistance = 100 k
Figure 7
REFERENCE OUTPUT VOLTAGE
vs
POWER-SUPPLY VOLTAGE
Reference Output V
oltage
V
V
ref
VCC Power-Supply Voltage V
1
0.8
0.4
0.2
0
1.8
0.6
0
1
2
3
4
5
6
1.4
1.2
1.6
2
7
8
9
10
TA = 25
C
FB and COMP
Connected Together
Figure 8
Reference Output V
oltage Fluctuation
%
TA Ambient Temperature
C
V
ref
REFERENCE OUTPUT VOLTAGE FLUCTUATION
vs
AMBIENT TEMPERATURE
0.2
0.4
0.8
50
25
0
0.2
0.4
0.6
25
50
75
100
0
VCC = 6 V
FB and COMP
Connected Together
0.6
TL5001, TL5001A
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
SLVS084F APRIL 1994 REVISED JANUARY 2002
14
POST OFFICE BOX 655303
DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 9
1
0.5
0
2
1.5
0
10
20
30
40

A
verage Supply Current
mA
VCC Power-Supply Voltage V
Rt = 100 k
TA = 25
C
AVERAGE SUPPLY CURRENT
vs
POWER-SUPPLY VOLTAGE
I CC
Figure 10
1
0.9
0.8
0
50
25
0

A
verage Supply Current
mA
1.1
1.2
1.3
25
50
75
100
TA Ambient Temperature
C
VCC = 6 V
Rt = 100 k
DT Resistance = 100 k
I CC
AVERAGE SUPPLY CURRENT
vs
AMBIENT TEMPERATURE
Figure 11
1.5
1.2
0.6
0.3
0
1.8
0.9
10 k
100 k
1 M
10 M
PWM T
riangle
W
ave
Amplitude
V
oltage
V
fosc Oscillator Frequency Hz
Voscmin (zero duty cycle)
VCC = 6 V
TA = 25
C
PWM TRIANGLE WAVE AMPLITUDE VOLTAGE
vs
OSCILLATOR FREQUENCY
Voscmax (100% duty cycle)
Figure 12
ERROR AMPLIFIER OUTPUT VOLTAGE
vs
OUTPUT (SINK) CURRENT

Error
Amplifier Output V
oltage
V
V
O
IO Output (Sink) Current mA
1.5
1
0.5
0
0
0.2
0.4
2
2.5
3
0.6
VCC = 6 V
VI(FB) = 1.2 V
TA = 25
C
TL5001, TL5001A
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
SLVS084F APRIL 1994 REVISED JANUARY 2002
15
POST OFFICE BOX 655303
DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 13
1.5
1
0.5
0
0
20
40

Error
Amplifier Output V
oltage
V
2
2.5
3
60
80
100
120
V
O
IO Output (Source) Current
A
VCC = 6 V
VI(FB) = 0.8 V
TA = 25
C
ERROR AMPLIFIER OUTPUT VOLTAGE
vs
OUTPUT (SOURCE) CURRENT
Figure 14
2.43
2.42
2.41
2.40
50
25
0

Error
Amplifier Output V
oltage
V
2.44
2.45
2.46
25
50
75
100
V
O
TA Ambient Temperature
C
VCC = 6 V
VI(FB) = 0.8 V
No Load
ERROR AMPLIFIER OUTPUT VOLTAGE
vs
AMBIENT TEMPERATURE
Figure 15
180
160
140
120
50
25
0

Error
Amplifier Output V
oltage
mV
200
220
240
25
50
75
100
V
O
TA Ambient Temperature
C
VCC = 6 V
VI(FB) = 1.2 V
No Load
ERROR AMPLIFIER OUTPUT VOLTAGE
vs
AMBIENT TEMPERATURE
Figure 16
30
20
0
10
20
40
10
10 k
100 k
1 M
10 M

Error
Amplifier Open-Loop Gain
dB
f Frequency Hz
VCC = 6 V
TA = 25
C
A
V
Error
Amplifier Open-Loop Phase Shift
AV
ERROR AMPLIFIER OPEN-LOOP GAIN AND
PHASE SHIFT
vs
FREQUENCY
180
210
240
270
300
330
360
TL5001, TL5001A
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
SLVS084F APRIL 1994 REVISED JANUARY 2002
16
POST OFFICE BOX 655303
DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 17
60
40
20
0
0
0.5
1
80
100
120
1.5
2
DTC Voltage V
OUTPUT DUTY CYCLE
vs
DTC VOLTAGE
Output Duty Cycle
%
VCC = 6 V
Rt = 100 k
TA = 25
C
Figure 18
6
4
2
0
0
20
40
SCP
T
ime-Out
Period
ms
8
10
12
60
80
100
120
VCC = 6 V
Rt = 100 k
DT Resistance = 200 k
TA = 25
C
CSCP SCP Capacitance nF
t SCP
SCP TIME-OUT PERIOD
vs
SCP CAPACITANCE
Figure 19
30
20
10
0
0
10
20
DTC Output Current
40
50
60
30
40
50
60
DT Voltage = 1.3 V
TA = 25
C
IO RT Output Current
A
A
I O(DT)
DTC OUTPUT CURRENT
vs
RT OUTPUT CURRENT
Figure 20
1
0.5
0
2
1.5
0
5
10
15
20
Output Saturation V
oltage
V
IO Output (Sink) Current mA
V
CE
VCC = 6 V
TA = 25
C
OUTPUT SATURATION VOLTAGE
vs
OUTPUT (SINK) CURRENT
TL5001, TL5001A
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
SLVS084F APRIL 1994 REVISED JANUARY 2002
17
POST OFFICE BOX 655303
DALLAS, TEXAS 75265
APPLICATION INFORMATION
U1
TL5001/A
FB
COMP
VO
DTC
RT
GND
C1
100
F
10 V
VI
5 V
+
R1
470
SCP
VCC
L1
20
H
C2
100
F
10 V
3.3 V
GND
+
CR1
MBRS140T3
Q1
TPS1101
C6
0.012
F
R4
5.1 k
R5
7.50 k
1%
R2
56 k
R3
43 k
R6
3.24 k
1%
C5
0.1
F
C4
1
F
C3
0.1
F
GND
8
7
6
5
2
1
3
4
Partial Bill of Materials:
U1
TL5001/A
Texas Instruments
Q1
TPS1101
Texas Instruments
LI
CTX20-1 or
Coiltronics
23 turns of #28 wire on
Micrometals No. T50-26B core
C1
TPSD107M010R0100
AVX
C2
TPSD107M010R0100
AVX
CR1
MBRS140T3
Motorola
R7
2.0 k
C7
0.0047
F
+
NOTES: A. Frequency = 200 kHz
B. Duty cycle = 90% max
C. Soft-start time constant (TC) = 5.6 ms
D. SCP TC = 70 msA
Figure 21. Step-Down Converter
TL5001, TL5001A
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
SLVS084F APRIL 1994 REVISED JANUARY 2002
18
POST OFFICE BOX 655303
DALLAS, TEXAS 75265
MECHANICAL DATA
D (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PIN SHOWN
4040047 / D 10/96
0.228 (5,80)
0.244 (6,20)
0.069 (1,75) MAX
0.010 (0,25)
0.004 (0,10)
1
14
0.014 (0,35)
0.020 (0,51)
A
0.157 (4,00)
0.150 (3,81)
7
8
0.044 (1,12)
0.016 (0,40)
Seating Plane
0.010 (0,25)
PINS **
0.008 (0,20) NOM
A MIN
A MAX
DIM
Gage Plane
0.189
(4,80)
(5,00)
0.197
8
(8,55)
(8,75)
0.337
14
0.344
(9,80)
16
0.394
(10,00)
0.386
0.004 (0,10)
M
0.010 (0,25)
0.050 (1,27)
0
8
NOTES: B. All linear dimensions are in inches (millimeters).
C. This drawing is subject to change without notice.
D. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).
E. Falls within JEDEC MS-012
TL5001, TL5001A
PULSE-WIDTH-MODULATION CONTROL CIRCUITS
SLVS084F APRIL 1994 REVISED JANUARY 2002
19
POST OFFICE BOX 655303
DALLAS, TEXAS 75265
MECHANICAL DATA
FK (S-CQCC-N**)
LEADLESS CERAMIC CHIP CARRIER
4040140 / C 11/95
28 TERMINALS SHOWN
B
0.358
(9,09)
MAX
(11,63)
0.560
(14,22)
0.560
0.458
0.858
(21,8)
1.063
(27,0)
(14,22)
A
NO. OF
MIN
MAX
0.358
0.660
0.761
0.458
0.342
(8,69)
MIN
(11,23)
(16,26)
0.640
0.740
0.442
(9,09)
(11,63)
(16,76)
0.962
1.165
(23,83)
0.938
(28,99)
1.141
(24,43)
(29,59)
(19,32)
(18,78)
**
20
28
52
44
68
84
0.020 (0,51)
TERMINALS
0.080 (2,03)
0.064 (1,63)
(7,80)
0.307
(10,31)
0.406
(12,58)
0.495
(12,58)
0.495
(21,6)
0.850
(26,6)
1.047
0.045 (1,14)
0.045 (1,14)
0.035 (0,89)
0.035 (0,89)
0.010 (0,25)
12
13
14
15
16
18
17
11
10
8
9
7
5
4
3
2
0.020 (0,51)
0.010 (0,25)
6
1
28
26
27
19
21
B SQ
A SQ
22
23
24
25
20
0.055 (1,40)
0.045 (1,14)
0.028 (0,71)
0.022 (0,54)
0.050 (1,27)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. The terminals are gold-plated.
E. Falls within JEDEC MS-004
MECHANICAL DATA

MCER001A JANUARY 1995 REVISED JANUARY 1997
20
POST OFFICE BOX 655303
DALLAS, TEXAS 75265
MECHANICAL DATA
JG (R-GDIP-T8)
CERAMIC DUAL-IN-LINE
0.310 (7,87)
0.290 (7,37)
0.014 (0,36)
0.008 (0,20)
Seating Plane
4040107/C 08/96
5
4
0.065 (1,65)
0.045 (1,14)
8
1
0.020 (0,51) MIN
0.400 (10,16)
0.355 (9,00)
0.015 (0,38)
0.023 (0,58)
0.063 (1,60)
0.015 (0,38)
0.200 (5,08) MAX
0.130 (3,30) MIN
0.245 (6,22)
0.280 (7,11)
0.100 (2,54)
0
15
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification.
E. Falls within MIL STD 1835 GDIP1-T8
MECHANICAL DATA

MCER001A JANUARY 1995 REVISED JANUARY 1997
21
POST OFFICE BOX 655303
DALLAS, TEXAS 75265
MECHANICAL INFORMATION
P (R-PDIP-T8)
PLASTIC DUAL-IN-LINE PACKAGE
4040082 / B 03/95
0.310 (7,87)
0.290 (7,37)
0.010 (0,25) NOM
0.400 (10,60)
0.355 (9,02)
5
8
4
1
0.020 (0,51) MIN
0.070 (1,78) MAX
0.240 (6,10)
0.260 (6,60)
0.200 (5,08) MAX
0.125 (3,18) MIN
0.015 (0,38)
0.021 (0,53)
Seating Plane
M
0.010 (0,25)
0.100 (2,54)
0
15
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI's terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding thirdparty products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265
Copyright
2002, Texas Instruments Incorporated