ChipFind - документация

Электронный компонент: DAC7744EC/1K

Скачать:  PDF   ZIP
1
DAC7744
16-Bit, Quad Voltage Output
DIGITAL-TO-ANALOG CONVERTER
DAC7744
DESCRIPTION
The DAC7744 is a 16-bit, quad voltage output digital-
to-analog converter with guaranteed 16-bit monotonic
performance over the specified temperature range. It
accepts 16-bit parallel input data, has double-buffered
DAC input logic (allowing simultaneous update of all
DACs), and provides a readback mode of the internal
input registers. Programmable asynchronous reset
clears all registers to a mid-scale code of 8000
H
or to
a zero-scale of 0000
H
. The DAC7744 operates from
either a single +15V supply or from a +15V, 15V,
and +5V supply.
Low power and small size per DAC make the DAC7744
ideal for automatic test equipment, DAC-per-pin pro-
grammers, data acquisition systems, and closed-loop
servo-control. The DAC7744 is available in a 48-
lead SSOP package, and offers guaranteed specifica-
tions over the 40
C to +85
C temperature range.
FEATURES
q
LOW POWER: 200mW
q
UNIPOLAR OR BIPOLAR OPERATION
q
SINGLE-SUPPLY OUTPUT RANGE: +10V
q
DUAL SUPPLY OUTPUT RANGE:
10V
q
SETTLING TIME: 10
s to 0.003%
q
16-BIT MONOTONICITY: 40
C to +85
C
q
PROGRAMMABLE RESET TO MID-SCALE
OR ZERO-SCALE
q
DATA READBACK
q
DOUBLE-BUFFERED DATA INPUTS
APPLICATIONS
q
PROCESS CONTROL
q
ATE PIN ELECTRONICS
q
CLOSED-LOOP SERVO-CONTROL
q
MOTOR CONTROL
q
DATA ACQUISITION SYSTEMS
q
DAC-PER-PIN PROGRAMMERS
1999 Burr-Brown Corporation
PDS-1534A
Printed in U.S.A. November, 1999
DAC7744
International Airport Industrial Park Mailing Address: PO Box 11400, Tucson, AZ 85734 Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 Tel: (520) 746-1111
Twx: 910-952-1111 Internet: http://www.burr-brown.com/ Cable: BBRCORP Telex: 066-6491 FAX: (520) 889-1510 Immediate Product Info: (800) 548-6132
For most current data sheet and other product
information, visit www.burr-brown.com
DAC A
DAC
Register A
Input
Register A
DAC7744
I/O
Buffer
Control
Logic
DAC B
DAC
Register B
Input
Register B
DAC C
DAC
Register C
Input
Register C
DAC D
DAC
Register D
Input
Register D
V
REF
L AB
V
REF
H AB
V
REF
H
AB Sense
V
REF
L
AB Sense
V
OUT
D
V
OUT
C
V
OUT
B
V
OUT
A
V
OUT
B
Sense
V
REF
L CD V
REF
H CD
RST
LOADDACs
A1
A0
CS
R/W
DATA I/O
16
RSTSEL
AGND
DGND
V
OUT
C
Sense
V
OUT
D
Sense
V
OUT
A
Sense
V
CC
V
SS
V
DD
V
REF
L
CD Sense
V
REF
H
CD Sense
SBAS120
2
DAC7744
DAC7744E
DAC7744EB
DAC7744EC
PARAMETER
CONDITIONS
MIN
TYP
MAX
MIN
TYP
MAX
MIN
TYP
MAX
UNITS
ACCURACY
Linearity Error
T = 25
C
3
T
2
LSB
T
MIN
to T
MAX
4
T
3
LSB
Linearity Match
4
T
2
LSB
Differential Linearity Error
T = 25
C
3
2
1
LSB
T
MIN
to T
MAX
3
2
1
LSB
Monotonicity, T
MIN
to T
MAX
14
15
16
Bits
Bipolar Zero Error
T = 25
C
0.01
0.025
T
T
% of FSR
Bipolar Zero Error, T
MIN
to T
MAX
0.05
T
T
% of FSR
Full-Scale Error
T = 25
C
0.025
T
T
% of FSR
Full-Scale Error, T
MIN
to T
MAX
0.05
T
T
% of FSR
Bipolar Zero Matching
Channel-to-Channel
0.024
T
T
% of FSR
Matching
Full-Scale Matching
Channel-to-Channel
0.024
T
T
% of FSR
Matching
Power Supply Rejection Ratio (PSRR)
At Full Scale
25
T
T
ppm/V
ANALOG OUTPUT
Voltage Output
V
REF
L
V
REF
H
T
T
T
T
V
Output Current
5
T
T
mA
Maximum Load Capacitance
500
T
T
pF
Short-Circuit Current
20
T
T
mA
Short-Circuit Duration
To V
SS
, V
DD
or GND
Indefinite
T
T
REFERENCE INPUT
Ref High Input Voltage Range
V
REF
L + 1.25
+10
T
T
T
T
V
Ref Low Input Voltage Range
10
V
REF
H 1.25
T
T
T
T
V
Ref High Input Current
0.3
2.6
T
T
mA
Ref Low Input Current
3.2
0.3
T
T
mA
DYNAMIC PERFORMANCE
Settling Time
To
0.003%, 20V
9
11
T
T
T
T
s
Output Step
Channel-to-Channel Crosstalk
See Figure 5
0.5
T
T
LSB
Digital Feedthrough
2
T
T
nV-s
Output Noise Voltage
f = 10kHz
60
T
T
nV/
Hz
DIGITAL INPUT
V
IH
0.7 V
DD
V
DD
T
T
V
V
IL
0
0.3 V
DD
T
V
I
IH
10
T
A
I
IL
10
T
A
DIGITAL OUTPUT
V
OH
I
OH
= 0.8mA
3.6
4.5
T
T
T
T
V
V
OL
I
OL
= 1.6mA
0.3
0.4
T
T
T
T
V
POWER SUPPLY
V
DD
+4.75
+5.0
+5.25
T
T
T
T
T
T
V
V
CC
+14.25
+15.0
+15.75
T
T
T
T
T
T
V
V
SS
14.25
15.0
15.75
T
T
T
T
T
T
V
I
DD
50
T
T
A
I
CC
6
T
T
mA
I
SS
5
T
T
mA
Power
170
200
T
T
mW
TEMPERATURE RANGE
Specified Performance
40
+85
T
T
T
T
C
T
Specifications same as grade to the left.
The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes
no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change
without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant
any BURR-BROWN product for use in life support devices and/or systems.
SPECIFICATIONS
(Dual Supply)
At T
A
= T
MIN
to T
MAX
, V
CC
= +15V, V
DD
= +5V, V
SS
= 15V, V
REF
H = +10V, and V
REF
L = 10V, unless otherwise noted.
3
DAC7744
DAC7744E
DAC7744EB
DAC7744EC
PARAMETER
CONDITIONS
MIN
TYP
MAX
MIN
TYP
MAX
MIN
TYP
MAX
UNITS
ACCURACY
Linearity Error
(1)
T = 25
C
3
T
2
LSB
T
MIN
to T
MAX
4
T
3
LSB
Linearity Match
4
T
2
LSB
Differential Linearity Error
T = 25
C
3
2
1
LSB
T
MIN
to T
MAX
3
2
1
LSB
Monotonicity, T
MIN
to T
MAX
14
15
16
Bits
Unipolar Zero
T = 25
C
0.01
0.025
T
T
% of FSR
Unipolar Zero Error, T
MIN
to T
MAX
0.05
T
T
% of FSR
Full-Scale Error
T = 25
C
0.025
T
T
% of FSR
Full-Scale Error, T
MIN
to T
MAX
0.05
T
T
% of FSR
Unipolar Zero Matching
Channel-to-Channel
0.024
T
T
% of FSR
Matching
Full-Scale Matching
Channel-to-Channel
0.024
T
T
% of FSR
Matching
Power Supply Rejection Ratio (PSRR)
At Full Scale
25
T
T
ppm/V
ANALOG OUTPUT
Voltage Output
V
REF
L = 0V, V
SS
= 0V
0
V
REF
H
T
T
T
T
V
R = 10k
Output Current
5
T
T
mA
Maximum Load Capacitance
500
T
T
pF
Short-Circuit Current
20
T
T
mA
Short-Circuit Duration
To V
SS
, V
CC
or GND
Indefinite
T
T
REFERENCE INPUT
Ref High Input Voltage Range
V
REF
L + 1.25
+10
T
T
T
T
V
Ref Low Input Voltage Range
0
V
REF
H 1.25
T
T
T
T
V
Ref High Input Current
0.3
1.0
T
T
mA
Ref Low Input Current
1.5
0.3
T
T
mA
DYNAMIC PERFORMANCE
Settling Time
To
0.003%, 10V
8
10
T
T
T
T
s
Output Step
Channel-to-Channel Crosstalk
See Figure 6
0.5
T
T
LSB
Digital Feedthrough
2
T
T
nV-s
Output Noise Voltage
f = 10kHz
60
T
T
nV/
Hz
DIGITAL INPUT
V
IH
0.7 V
DD
V
DD
T
T
V
V
IL
0
0.3 V
DD
T
V
I
IH
10
T
A
I
IL
10
T
A
DIGITAL OUTPUT
V
OH
I
OH
= 0.8mA
3.6
4.5
T
T
T
T
V
V
OL
I
OL
= 1.6mA
0.3
0.4
T
T
T
T
V
POWER SUPPLY
V
DD
+4.75
+5.0
+5.25
T
T
T
T
T
T
V
V
CC
+14.25
+15.0
+15.75
T
T
T
T
T
T
V
V
SS
0
T
T
V
I
DD
50
T
T
A
I
CC
3.5
T
T
mA
Power
50
70
T
T
mW
TEMPERATURE RANGE
Specified Performance
40
+85
T
T
T
T
C
T
Specifications same as grade to the left.
NOTE: (1) If V
SS
= 0V, the specification applies at code 0021
H
and above, due to possible negative zero scale error.
SPECIFICATIONS
(Single Supply)
At T
A
= T
MIN
to T
MAX
, V
CC
= +15V, V
DD
= +5V, V
SS
= GND, V
REF
H = +10V, and V
REF
L = +50mV, unless otherwise noted.
4
DAC7744
ABSOLUTE MAXIMUM RATINGS
(1)
V
CC
to V
SS
........................................................................... 0.3V to +32V
V
CC
to AGND ...................................................................... 0.3V to +16V
V
SS
to AGND ...................................................................... +0.3V to 16V
AGND
to DGND ................................................................. 0.3V to +0.3V
V
REF
H
to AGND ..................................................................... 9V to +11V
V
REF
L
to AGND ...................................................................... 11V to +9V
V
DD
to GND ........................................................................... 0.3V to +6V
V
REF
H
to V
REF
L ........................................................................ 1V to 22V
Digital Input Voltage to GND ................................... 0.3V to V
DD
+ 0.3V
Digital Output Voltage to GND ................................. 0.3V to V
DD
+ 0.3V
Maximum Junction Temperature ................................................... +150
C
Operating Temperature Range ........................................ 40
C to +85
C
Storage Temperature Range ......................................... 65
C to +150
C
Lead Temperature (soldering, 10s) ............................................... +300
C
NOTE: (1) Stresses above those listed under "Absolute Maximum Ratings"
may cause permanent damage to the device. Exposure to absolute maximum
conditions for extended periods may affect device reliability.
ELECTROSTATIC
DISCHARGE SENSITIVITY
This integrated circuit can be damaged by ESD. Burr-Brown
recommends that all integrated circuits be handled with
appropriate precautions. Failure to observe proper handling
and installation procedures can cause damage.
ESD damage can range from subtle performance degradation
to complete device failure. Precision integrated circuits may
be more susceptible to damage because very small parametric
changes could cause the device not to meet its published
specifications.
PACKAGE/ORDERING INFORMATION
LINEARITY
DIFFERENTIAL
PACKAGE
SPECIFICATION
ERROR
NONLINEARITY
DRAWING
TEMPERATURE
ORDERING
TRANSPORT
PRODUCT
(LSB)
(LSB)
PACKAGE
NUMBER
RANGE
NUMBER
(1)
MEDIA
DAC7744E
4
3
48-Lead SSOP
333
40
C to +85
C
DAC7744E
Rails
"
"
"
"
"
"
DAC7744E/1K
Tape and Reel
DAC7744EB
4
2
48-Lead SSOP
333
40
C to +85
C
DAC7744EB
Rails
"
"
"
"
"
"
DAC7744EB/1K
Tape and Reel
DAC7744EC
3
1
48-Lead SSOP
333
40
C to +85
C
DAC7744EC
Rails
"
"
"
"
"
"
DAC7744EC/1K
Tape and Reel
NOTE: (1) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /1K indicates 1000 devices per reel). Ordering 1000 pieces
of "DAC7744E/1K" will get a single 1000-piece Tape and Reel.
RefH
V
OUT
Sense
V
CC
V
SS
V
DD
DGND
4
V
CC
AGND
V
SS
V
DD
DGND
V
OUT
RefH Sense
RefL Sense
RefL
1 of 2
1 of 4
Typ of Each
Logic Input Pin
Typ of Each
I/O Pin
ESD PROTECTION CIRCUITS
5
DAC7744
PIN DESCRIPTIONS
PIN
NAME
DESCRIPTION
1
DB15
Data Bit 15, MSB
2
DB14
Data Bit 14
3
DB13
Data Bit 13
4
DB12
Data Bit 12
5
DB11
Data Bit 11
6
DB10
Data Bit 10
7
DB9
Data Bit 9
8
DB8
Data Bit 8
9
DB7
Data Bit 7
10
DB6
Data Bit 6
11
DB5
Data Bit 5
12
DB4
Data Bit 4
13
DB3
Data Bit 3
14
DB2
Data Bit 2
15
DB1
Data Bit 1
16
DB0
Data Bit 0, LSB
17
RSTSEL
Reset Select. Determines the action of RST. If
HIGH, a RST command will set the DAC regis-
ters to mid-scale. If LOW, a RST command will
set the DAC registers to zero.
18
RST
Reset, Edge-Triggered. Depending on the state
of RSTSEL, the DAC Input and Output registers
are set to either mid-scale or zero.
19
LOADDACs
DAC Output Registers Load Control. Rising edge
triggered.
20
R/W
Enabled by the CS, controls data read and write
from the input register.
21
A1
Enabled by the CS, in combination with A0
selects the Individual DAC Input Registers.
22
A0
Enabled by the CS, in combination with A1
selects the individual DAC input registers.
23
CS
Chip Select, Active LOW.
24
DGND
Digital Ground
25
V
DD
Positive Power Supply
26
V
CC
Positive Power Supply
27
AGND
Analog Ground
28
V
SS
Negative Power Supply
29
V
OUT
D
DAC D Voltage Output
30
V
OUT
D Sense
DAC D's Output Amplifier Inverting Input. Used
to close the feedback loop at the load.
31
V
REF
L CD Sense
DAC C and D Reference Low Sense Input
32
V
REF
L CD
DAC C and D Reference Low Input
33
V
REF
H CD
DAC C and D Reference High Input
34
V
REF
H CD Sense
DAC C and D Reference High Sense Input
35
V
OUT
C
DAC C Voltage Output
36
V
OUT
C Sense
DAC C's Output Amplifier Inverting Input. Used
to close the feedback loop at the load.
37
V
OUT
B
DAC B Voltage Output
38
V
OUT
B Sense
DAC B's Output Amplifier Inverting Input. Used
to close the feedback loop at the load.
39
V
REF
H AB Sense
DAC A and B Reference High Sense Input
40
V
REF
H AB
DAC A and B Reference High Input
41
V
REF
L AB
DAC A and B Reference Low Input
42
V
REF
L AB Sense
DAC A and B Reference Low Sense Input
43
V
OUT
A
DAC A Voltage Input
44
V
OUT
A Sense
DAC A's Output Amplifier Inverting Input. Used
to close the feedback loop at the load.
45
NC
No Connection
46
NC
No Connection
47
NC
No Connection
48
NC
No Connection
Top View
SSOP
PIN CONFIGURATION
DB15 (MSB)
DB14
DB13
DB12
DB11
DB10
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0 (LSB)
RSTSEL
RST
LOADDACs
R/W
A1
A0
CS
DGND
NC
NC
NC
NC
V
OUT
A Sense
V
OUT
A
V
REF
L AB Sense
V
REF
L AB
V
REF
H AB
V
REF
H AB Sense
V
OUT
B Sense
V
OUT
B
V
OUT
C Sense
V
OUT
C
V
REF
H CD Sense
V
REF
H CD
V
REF
L CD
V
REF
L CD Sense
V
OUT
D Sense
V
OUT
D
V
SS
AGND
V
CC
V
DD
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
DAC7744
6
DAC7744
TYPICAL PERFORMANCE CURVES: V
SS
= 0V
At T
A
= +25
C, V
DD
= +5V, V
CC
= +15V, V
SS
= 0, V
REF
H
= +10V, and V
REF
L
= 0V, representative unit, unless otherwise specified.
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
LE (LSB)
DLE (LSB)
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR vs CODE
(DAC A, +25
C)
0000
H
2000
H
4000
H
6000
H
8000
H
Digital Input Code
A000
H
C000
H
E000
H
FFFF
H
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
LE (LSB)
DLE (LSB)
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR vs CODE
(DAC B, +25
C)
0000
H
2000
H
4000
H
6000
H
8000
H
Digital Input Code
A000
H
C000
H
E000
H
FFFF
H
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
LE (LSB)
DLE (LSB)
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR vs CODE
(DAC C, +25
C)
0000
H
2000
H
4000
H
6000
H
8000
H
Digital Input Code
A000
H
C000
H
E000
H
FFFF
H
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
LE (LSB)
DLE (LSB)
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR vs CODE
(DAC D, +25
C)
0000
H
2000
H
4000
H
6000
H
8000
H
Digital Input Code
A000
H
C000
H
E000
H
FFFF
H
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
LE (LSB)
DLE (LSB)
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR vs CODE
(DAC B, +85
C)
0000
H
2000
H
4000
H
6000
H
8000
H
Digital Input Code
A000
H
C000
H
E000
H
FFFF
H
+25
C
+85
C
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
LE (LSB)
DLE (LSB)
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR vs CODE
(DAC A, +85
C)
0000
H
2000
H
4000
H
6000
H
8000
H
Digital Input Code
A000
H
C000
H
E000
H
FFFF
H
7
DAC7744
TYPICAL PERFORMANCE CURVES: V
SS
= 0V
(Cont.)
At T
A
= +25
C, V
DD
= +5V, V
CC
= +15V, V
SS
= 0, V
REF
H
= +10V, and V
REF
L
= 0V, representative unit, unless otherwise specified.
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
LE (LSB)
DLE (LSB)
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR vs CODE
(DAC C, +85
C)
0000
H
2000
H
4000
H
6000
H
8000
H
Digital Input Code
A000
H
C000
H
E000
H
FFFF
H
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
LE (LSB)
DLE (LSB)
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR vs CODE
(DAC D, +85
C)
0000
H
2000
H
4000
H
6000
H
8000
H
Digital Input Code
A000
H
C000
H
E000
H
FFFF
H
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
LE (LSB)
DLE (LSB)
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR vs CODE
(DAC A, 40
C)
0000
H
2000
H
4000
H
6000
H
8000
H
Digital Input Code
A000
H
C000
H
E000
H
FFFF
H
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
LE (LSB)
DLE (LSB)
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR vs CODE
(DAC B, 40
C)
0000
H
2000
H
4000
H
6000
H
8000
H
Digital Input Code
A000
H
C000
H
E000
H
FFFF
H
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
LE (LSB)
DLE (LSB)
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR vs CODE
(DAC C, 40
C)
0000
H
2000
H
4000
H
6000
H
8000
H
Digital Input Code
A000
H
C000
H
E000
H
FFFF
H
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
LE (LSB)
DLE (LSB)
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR vs CODE
(DAC D, 40
C)
0000
H
2000
H
4000
H
6000
H
8000
H
Digital Input Code
A000
H
C000
H
E000
H
FFFF
H
+85
C
(cont.)
40
C
8
DAC7744
TYPICAL PERFORMANCE CURVES: V
SS
= 0V
(Cont.)
At T
A
= +25
C, V
DD
= +5V, V
CC
= +15V, V
SS
= 0, V
REF
H
= +10V, and V
REF
L
= 0V, representative unit, unless otherwise specified.
2
1.5
1
0.5
0
0.5
1
1.5
2
Temperature (
C)
40 30
10
0
20
10
20
40
50
30
70
80
90
60
ZERO-SCALE ERROR vs TEMPERATURE
Zero-Scale Error (mV)
DAC A
DAC D
DAC B
DAC C
Code (0040
H
)
Code (0021
H
)
2
1.5
1
0.5
0
0.5
1
1.5
2
Temperature (
C)
40 30
10
0
20
10
20
40
50
30
70
80
90
60
FULL-SCALE ERROR vs TEMPERATURE
Positive Full-Scale Error (mV)
DAC A
DAC D
DAC B
DAC C
Code (FFFF
H
)
1.0
0.8
0.6
0.4
0.2
0
0.2
0.4
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
V
REF
Current (mA)
V
REF
Current (mA)
CURRENT vs CODE
All DACS Sent to Indicated Code
(DAC C and D)
V
REFH
V
REFL
0000
H
2000
H
4000
H
6000
H
8000
H
Digital Input Code
A000
H
C000
H
E000
H
FFFF
H
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
Digital Input Code
0
2000
H
4000
H
6000
H
8000
H
A000
H
C000
H
E000
H
FFFF
H
POSITIVE SUPPLY CURRENT
vs DIGITAL INPUT CODE
I
CC
(mA)
No Load
1.0
0.8
0.6
0.4
0.2
0
0.2
0.4
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
V
REF
Current (mA)
V
REF
Current (mA)
0000
H
2000
H
4000
H
6000
H
8000
H
Digital Input Code
A000
H
C000
H
E000
H
FFFF
H
CURRENT vs CODE
All DACs Sent to Indicated Code
(DAC A and B)
V
REFH
V
REFL
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
0.5
Temperature (
C)
40 30
10
0
20
10
20
40
50
30
70
80
90
60
POWER SUPPLY CURRENT vs TEMPERATURE
Quiescent Current (mA)
I
CC
I
DD
Data = FFFF
H
(all DACs)
No Load
9
DAC7744
TYPICAL PERFORMANCE CURVES: V
SS
= 0V
(Cont.)
At T
A
= +25
C, V
DD
= +5V, V
CC
= +15V, V
SS
= 0, V
REF
H
= +10V, and V
REF
L
= 0V, representative unit, unless otherwise specified.
BROADBAND NOISE
Time (100
s/div)
Noise Voltage (20
V/div)
BW = 10kHz
Code = 8000
H
+5V
LDAC
0
Time (2
s/div)
OUTPUT VOLTAGE vs SETTLING TIME
(0V to +10V)
Output Voltage
Small-Signal Settling Time: 3LSB/div
Large-Signal Settling Time: 5V/div
+5V
LDAC
0
Time (2
s/div)
OUTPUT VOLTAGE vs SETTLING TIME
(+10V to 0V)
Output Voltage
Small-Signal Settling Time: 3LSB/div
Large-Signal Settling Time: 5V/div
120
100
80
60
40
20
0
Frequency (Hz)
100
1k
10k
100k
1M
OUTPUT NOISE VOLTAGE vs FREQUENCY
Noise (nV/
Hz)
+5V
LDAC
0
Time (1
s/div)
OUTPUT VOLTAGE
MIDSCALE GLITCH PERFORMANCE
Output Voltage (50mV/div)
7FFF
H
to 8000
H
+5V
LDAC
0
Time (1
s/div)
Output Voltage (50mV/div)
8000
H
to 7FFF
H
OUTPUT VOLTAGE
MIDSCALE GLITCH PERFORMANCE
10
DAC7744
0
10
20
30
40
50
60
70
80
90
Frequency (Hz)
100
1k
10k
100k
1M
POWER SUPPLY REJECTION RATIO vs FREQUENCY
PSRR (dB)
+15V
+5V
TYPICAL PERFORMANCE CURVES: V
SS
= 0V
(Cont.)
At T
A
= +25
C, V
DD
= +5V, V
CC
= +15V, V
SS
= 0, V
REF
H
= +10V, and V
REF
L
= 0V, representative unit, unless otherwise specified.
20
15
10
5
0
5
10
15
20
Input Code
0000
H
2000
H
4000
H
6000
H
8000
H
A000
H
0000
H
E000
H
FFFF
H
SINGLE-SUPPLY CURRENT LIMIT
vs INPUT CODE
I
OUT
(mA)
Short to Ground
Short to V
CC
16
14
12
10
8
6
4
2
0
R
LOAD
(k
)
0.01
0.1
1
10
100
OUTPUT VOLTAGE vs R
LOAD
V
OUT
(V)
Source
Sink
12
10
8
6
4
2
0
LOGIC SUPPLY CURRENT
vs LOGIC INPUT LEVEL FOR DATA BITS
Logic Supply Current (mA)
Logic Input Level for Data Bits (V)
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
+5V
CS
0
Time (500ns/div)
DIGITAL-TO-ANALOG OUTPUT GLITCH
Output Voltage (50mV/div)
2LSB/div
11
DAC7744
TYPICAL PERFORMANCE CURVES: V
SS
= 15V
At T
A
= +25
C, V
DD
= +5V, V
CC
= +15V, V
SS
= 15V, V
REF
H
= +10V, and V
REF
L
= 10V, representative unit, unless otherwise specified.
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
LE (LSB)
DLE (LSB)
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR vs CODE
(DAC A, +25
C)
0000
H
2000
H
4000
H
6000
H
8000
H
Digital Input Code
A000
H
C000
H
E000
H
FFFF
H
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
LE (LSB)
DLE (LSB)
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR vs CODE
(DAC C, +25
C)
0000
H
2000
H
4000
H
6000
H
8000
H
Digital Input Code
A000
H
C000
H
E000
H
FFFF
H
+25
C
+85
C
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
LE (LSB)
DLE (LSB)
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR vs CODE
(DAC B, +25
C)
0000
H
2000
H
4000
H
6000
H
8000
H
Digital Input Code
A000
H
C000
H
E000
H
FFFF
H
DLE (LSB)
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR vs CODE
(DAC D, +25
C)
0000
H
2000
H
4000
H
6000
H
8000
H
Digital Input Code
A000
H
C000
H
E000
H
FFFF
H
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
LE (LSB)
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
LE (LSB)
DLE (LSB)
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR vs CODE
(DAC A, +85
C)
0000
H
2000
H
4000
H
6000
H
8000
H
Digital Input Code
A000
H
C000
H
E000
H
FFFF
H
LE (LSB)
DLE (LSB)
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR vs CODE
(DAC B, +85
C)
0000
H
2000
H
4000
H
6000
H
8000
H
Digital Input Code
A000
H
C000
H
E000
H
FFFF
H
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
12
DAC7744
TYPICAL PERFORMANCE CURVES: V
SS
= 15V
(Cont.)
At T
A
= +25
C, V
DD
= +5V, V
CC
= +15V, V
SS
= 15V, V
REF
H
= +10V, and V
REF
L
= 10V, representative unit, unless otherwise specified.
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
LE (LSB)
DLE (LSB)
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR vs CODE
(DAC A, 40
C)
0000
H
2000
H
4000
H
6000
H
8000
H
Digital Input Code
A000
H
C000
H
E000
H
FFFF
H
+85
C
(cont.)
40
C
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
LE (LSB)
DLE (LSB)
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR vs CODE
(DAC C, +85
C)
0000
H
2000
H
4000
H
6000
H
8000
H
Digital Input Code
A000
H
C000
H
E000
H
FFFF
H
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
LE (LSB)
DLE (LSB)
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR vs CODE
(DAC B, 40
C)
0000
H
2000
H
4000
H
6000
H
8000
H
Digital Input Code
A000
H
C000
H
E000
H
FFFF
H
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
LE (LSB)
DLE (LSB)
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR vs CODE
(DAC C, 40
C)
0000
H
2000
H
4000
H
6000
H
8000
H
Digital Input Code
A000
H
C000
H
E000
H
FFFF
H
LE (LSB)
DLE (LSB)
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR vs CODE
(DAC D, 40
C)
0000
H
2000
H
4000
H
6000
H
8000
H
Digital Input Code
A000
H
C000
H
E000
H
FFFF
H
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
LE (LSB)
DLE (LSB)
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR vs CODE
(DAC D, +85
C)
0000
H
2000
H
4000
H
6000
H
8000
H
Digital Input Code
A000
H
C000
H
E000
H
FFFF
H
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
13
DAC7744
TYPICAL PERFORMANCE CURVES: V
SS
= 15V
(Cont.)
At T
A
= +25
C, V
DD
= +5V, V
CC
= +15V, V
SS
= 15V, V
REF
H
= +10V, and V
REF
L
= 10V, representative unit, unless otherwise specified.
2.0
1.5
1.0
0.5
0
-0.5
1.0
1.5
0.5
0
0.5
1.0
1.5
2.0
2.5
3.0
V
REF
Current (mA)
V
REF
Current (mA)
CURRENT vs CODE
All DACs Sent to Indicated Code
(DAC A and B)
V
REFH
V
REFL
0000
H
2000
H
4000
H
6000
H
8000
H
Digital Input Code
A000
H
C000
H
E000
H
FFFF
H
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
0.5
0
0.5
1.0
1.5
2.0
2.5
3.0
V
REF
Current (mA)
V
REF
Current (mA)
CURRENT vs CODE
All DACs Sent to Indicated Code
(DAC C and D)
V
REFH
V
REFL
0000
H
2000
H
4000
H
6000
H
8000
H
Digital Input Code
A000
H
C000
H
E000
H
FFFF
H
2
1.5
1
0.5
0
0.5
1
1.5
2
Temperature (
C)
40
20
100
0
20
40
60
80
BIPOLAR ZERO SCALE ERROR vs TEMPERATURE
(Code 8000
H
)
Bipolar Zero Scale Error (mV)
DAC B
DAC D
DAC A
DAC C
2
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
Temperature (
C)
40
10
0
30 20
90
10
20
30
40
50 60
70
80
POSITIVE FULL-SCALE ERROR vs TEMPERATURE
(Code FFFF
H
)
Positive Full-Scale Error (mV)
DAC B
DAC A
DAC C
DAC D
2
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
Temperature (
C)
40
10
0
30 20
90
10
20
30
40
50 60
70
80
NEGATIVE FULL-SCALE ERROR vs TEMPERATURE
(Code 0000
H
)
Negative Full-Scale Error (mV)
DAC B
DAC A
DAC C
DAC D
7
6
5
4
3
2
1
0
1
2
3
4
5
6
7
Temperature (
C)
40
10
0
30 20
90
10
20
30
40
50 60
70
80
POWER SUPPLY CURRENT vs TEMPERTURE
Quiescent Current (mA)
I
SS
I
CC
I
DD
Data = FFFF
H
(all DACs)
No Load
14
DAC7744
TYPICAL PERFORMANCE CURVES: V
SS
= 15V
(Cont.)
At T
A
= +25
C, V
DD
= +5V, V
CC
= +15V, V
SS
= 15V, V
REF
H
= +10V, and V
REF
L
= 10V, representative unit, unless otherwise specified.
0
10
20
30
40
50
60
70
80
90
100
Frequency (Hz)
100
1k
10k
100k
1M
POWER SUPPLY REJECTION RATIO vs FREQUENCY
PSRR (dB)
15V
+15V
+5V
15
10
5
0
5
10
15
R
LOAD
(k
)
0.01
0.1
1
10
100
OUTPUT VOLTAGE vs R
LOAD
V
OUT
(V)
Sink
Source
Time (2
s/div)
OUTPUT VOLTAGE vs SETTLING TIME
(+10V to 10V)
Output Voltage
Large-Signal Settling Time: 5V/div
Small-Signal Settling Time: 3LSB/div
+5V
LDAC
0
Time (2
s/div)
OUTPUT VOLTAGE vs SETTLING TIME
(10V to +10V)
Output Voltage
Large-Signal Settling Time: 5V/div
Small-Signal Settling Time: 3LSB/div
+5V
LDAC
0
20
15
10
5
0
5
10
15
20
DUAL SUPPLY CURRENT LIMIT vs INPUT CODE
Short to Ground
I
OUT
(mA)
Digital Input Code
0000
H
2000
H
4000
H
6000
H
8000
H
A000
H
C000
H
E000
H
FFFF
H
7
6
5
4
3
2
1
0
1
2
3
4
5
6
7
SUPPLY CURRENT vs CODE
(mA)
Digital Input Code
0000
H
2000
H
4000
H
6000
H
8000
H
A000
H
C000
H
E000
H
FFFF
H
I
CC
I
DD
I
SS
15
DAC7744
TYPICAL PERFORMANCE CURVES: V
SS
= 15V
(Cont.)
At T
A
= +25
C, V
DD
= +5V, V
CC
= +15V, V
SS
= 15V, V
REF
H
= +10V, and V
REF
L
= 10V, representative unit, unless otherwise specified.
Time (1
s/div)
OUTPUT VOLTAGE
MID-SCALE GLITCH PERFORMANCE
Output Voltage (50mV/div)
7FFF
H
to 8000
H
+5V
LDAC
0
Time (1
s/div)
OUTPUT VOLTAGE
MID-SCALE GLITCH PERFORMANCE
Output Voltage (50mV/div)
8000
H
to 7FFF
H
+5V
LDAC
0
16
DAC7744
FIGURE 1. DAC7744 Architecture.
FIGURE 2. Basic Single-Supply Operation of the DAC7744.
THEORY OF OPERATION
The DAC7744 is a quad voltage output, 16-bit digital-to-
analog converter (DAC). The architecture is an R-2R ladder
configuration with the three MSB's segmented followed by
an operational amplifier that serves as a buffer. Each DAC
has its own R-2R ladder network, segmented MSBs and
output op amp (see Figure 1). The minimum voltage output
(zero scale) and maximum voltage output (full scale) are set
by the external voltage references (V
REF
L and V
REF
H, re-
spectively). The digital input is a 16-bit parallel word and
the DAC input registers offer a readback capability. The
converters can be powered from either a single +15V supply
or a dual
15V supply. The device offers a reset function
which immediately sets all DAC output voltages and DAC
registers to mid-scale code 8000
H
or to zero scale, code
0000
H
. See Figures 2 and 3 for the basic operation of the
DAC7744.
R
2R
2R
2R
2R
2R
2R
2R
2R
2R
V
REF
H
V
OUT
V
OUT
Sense
V
REF
H Sense
V
REF
L
V
REF
L Sense
R
F
DB15 (MSB)
DB14
DB13
DB12
DB11
DB10
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0 (LSB)
RSTSEL
RST
LOADDACS
R/W
A1
A0
CS
DGND
NC
NC
NC
NC
V
OUT
A Sense
V
OUT
A
V
REF
L AB Sense
V
REF
L AB
V
REF
H AB
V
REF
H AB Sense
V
OUT
B Sense
V
OUT
B
V
OUT
C Sense
V
OUT
C
V
REF
H CD Sense
V
REF
H CD
V
REF
L CD
V
REF
L CD Sense
V
OUT
D Sense
V
OUT
D
V
SS
AGND
V
CC
V
DD
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
DAC7744
Reset DACs
Data
Bus
Address
Load DAC Registers
READ/WRITE
Chip Select
NC = No Connection
0V to +10V
0V to +10V
0V to +10V
0V to +10V
+10.000V
+10.000V
+15V
0.1
F
1
F
+5V
0.1
F
1
F
+
+
17
DAC7744
ANALOG OUTPUTS
When V
SS
= 15V (dual supply operation), the output ampli-
fier can swing to within 4V of the supply rails, guaranteed
over the 40
C to +85
C temperature range. With V
SS
= 0V
(single-supply operation), and with R
LOAD
also connected to
ground, the output can swing to ground. Care must also be
taken when measuring the zero-scale error when V
SS
= 0V.
Since the output voltage cannot swing below ground, the
output voltage may not change for the first few digital input
codes (0000
H
, 0001
H
, 0002
H
, etc.), if the output amplifier has
a negative offset. At the negative limit of 5mV, the first
specified output starts at code 0021
H
.
Due to the high accuracy of these D/A converters, system
design problems such as grounding and contact resistance
become very important. A 16-bit converter with a 10V full-
scale range has a 1LSB value of 152
V. With a load current
of 1mA, series wiring and connector resistance of only
150m
(R
W2
) will cause a voltage drop of 150
V, as shown
in Figure 4. To understand what this means in terms of a
system layout, the resistivity of a typical 1 ounce copper-clad
printed circuit board is 1/2 m
per square. For a 1mA load,
a 20 milli-inch wide printed circuit conductor 6 inches long
will result in a voltage drop of 150
V.
The DAC7744 offers a force and sense output configuration
for the high open-loop gain output amplifiers. This feature
allows the loop around the output amplifier to be closed at
the load, thus ensuring an accurate output voltage, as shown
in Figure 4.
FIGURE 3. Basic Dual-Supply Operation of the DAC7744.
FIGURE 4. Analog Output Closed-Loop Configuration
(1/2 DAC7744). R
W
represents wiring resis-
tances.
DB15 (MSB)
DB14
DB13
DB12
DB11
DB10
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0 (LSB)
RSTSEL
RST
LOADDACS
R/W
A1
A0
CS
DGND
NC
NC
NC
NC
V
OUT
A Sense
V
OUT
A
V
REF
L AB Sense
V
REF
L AB
V
REF
H AB
V
REF
H AB Sense
V
OUT
B Sense
V
OUT
B
V
OUT
C Sense
V
OUT
C
V
REF
H CD Sense
V
REF
H CD
V
REF
L CD
V
REF
L CD Sense
V
OUT
D Sense
V
OUT
D
V
SS
AGND
V
CC
V
DD
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
DAC7744
Reset DACs
Data
Bus
Address
Load DAC Registers
READ/WRITE
Chip Select
NC = No Connection
10V to +10V
10V
10V to +10V
10V to +10V
10V to +10V
+10V
+10V
10V
+5V
15V
0.1
F
1
F
+15V
0.1
F
1
F
+5V
0.1
F
1
F
+
+
+
NC
NC
NC
NC
V
OUT
A Sense
V
OUT
A
V
REF
L AB Sense
V
REF
L AB
V
REF
H AB
V
REF
H AB Sense
V
OUT
B Sense
V
OUT
B
48
47
46
45
44
43
42
41
40
39
38
37
DAC7744
R
W1
R
W2
+10V
+V
V
OUT
R
W1
R
W2
V
OUT
R
LOAD
R
LOAD
18
DAC7744
REFERENCE INPUTS
The reference inputs, V
REF
L and V
REF
H, can be any voltage
between V
SS
+ 4V and V
CC
4V, provided that V
REF
H is at
least 1.25V greater than V
REF
L. The minimum output of
each DAC is equal to V
REF
L
plus a small offset voltage
(essentially, the offset of the output op amp). The maximum
output is equal to V
REF
H plus a similar offset voltage. Note
that V
SS
(the negative power supply) must either be
connected to ground or must be in the range of 14.25V to
15.75V. The voltage on V
SS
sets several bias points within
the converter. If V
SS
is not in one of these two configura-
tions, the bias values may be in error and proper operation
of the device is not guaranteed.
The current into the V
REF
H input and out of V
REF
L depends
on the DAC output voltages and can vary from a few
microamps to approximately 2.0mA. The reference input
appears as a varying load to the reference. If the reference
can sink or source the required current, a reference buffer is
not required. The DAC7744 features a reference drive and
sense connection such that the internal errors caused by the
changing reference current and the circuit impedances can be
minimized. Figures 5 through 12 show different reference
configurations and the effect on the linearity and differential
linearity.
The analog supplies (or the analog supplies and the reference
power supplies) have to come up first. If the power supplies
for the reference come up first, then the V
CC
and V
SS
supplies will be "powered from the reference via the ESD
protection diode", see page 4.
FIGURE 5. Dual Supply Configuration-Buffered References, used for Dual Supply Performance Curves (1/2 DAC7744).
FIGURE 6. Single-Supply Buffered Reference with a Reference Low of 50mV Used for Single-Supply Performance Curves
(1/2 DAC7744).
NC
NC
NC
NC
V
OUT
A Sense
V
OUT
A
V
REF
L AB Sense
V
REF
L AB
V
REF
H AB
V
REF
H AB Sense
V
OUT
B Sense
V
OUT
B
48
47
46
45
44
43
42
41
40
39
38
37
DAC7744
+10V
+V
10V
V
V
OUT
V
OUT
1000pF
2200pF
+V
OPA2234
100
1000pF
2200pF
100
NC
NC
NC
NC
V
OUT
A Sense
V
OUT
A
V
REF
L AB Sense
V
REF
L AB
V
REF
H AB
V
REF
H AB Sense
V
OUT
B Sense
V
OUT
B
48
47
46
45
44
43
42
41
40
39
38
37
DAC7744
99k
2k
+0.050V
+10V
+V
V
OUT
V
OUT
NOTE: V
REF
L has been chosen to be 50mV to allow for current sinking voltage
drops across the 100
resistor and the output stage of the buffer op amp.
1000pF
2200pF
+V
OPA350
OPA227
100
1000pF
2200pF
100
19
DAC7744
FIGURE 7. Integral Linearity and Differential Linearity Error Curves for Figure 8.
FIGURE 8. Dual-Supply Buffered Referenced with V
REF
L = 5V and V
REF
H = +5V (1/2 DAC7744).
NC
NC
NC
NC
V
OUT
A Sense
V
OUT
A
V
REF
L AB Sense
V
REF
L AB
V
REF
H AB
V
REF
H AB Sense
V
OUT
B Sense
V
OUT
B
48
47
46
45
44
43
42
41
40
39
38
37
DAC7744
+5V
V
+V
5V
V
OUT
V
OUT
1000pF
2200pF
+V
OPA2234
100
1000pF
2200pF
100
V
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR vs CODE
(DAC A, +25
C)
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
1.0
0.5
0
0.5
1.0
LE (LSB)
DLE (LSB)
0000
H
2000
H
4000
H
6000
H
8000
H
Digital Input Code
A000
H
C000
H
E000
H
FFFF
H
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
1.0
0.5
0
0.5
1.0
LE (LSB)
DLE (LSB)
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR vs CODE
(DAC B, +25
C)
0000
H
2000
H
4000
H
6000
H
8000
H
Digital Input Code
A000
H
C000
H
E000
H
FFFF
H
LE (LSB)
DLE (LSB)
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR vs CODE
(DAC C, +25
C)
0000
H
2000
H
4000
H
6000
H
8000
H
Digital Input Code
A000
H
C000
H
E000
H
FFFF
H
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
1.0
0.5
0
0.5
1.0
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR vs CODE
(DAC D, +25
C)
0000
H
2000
H
4000
H
6000
H
8000
H
Digital Input Code
A000
H
C000
H
E000
H
FFFF
H
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
1.0
0.5
0
0.5
1.0
LE (LSB)
DLE (LSB)
20
DAC7744
FIGURE 9. Single-Supply Buffered Reference with a Reference Low of 50mV and Reference High of +5V.
FIGURE 10. Integral Linearity and Differential Linearity Error Curves for Figure 9.
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
1.0
0.5
0
0.5
1.0
LE (LSB)
DLE (LSB)
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR vs CODE
(DAC A, +25
C)
0000
H
2000
H
4000
H
6000
H
8000
H
Digital Input Code
A000
H
C000
H
E000
H
FFFF
H
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
1.0
0.5
0
0.5
1.0
LE (LSB)
DLE (LSB)
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR vs CODE
(DAC B, +25
C)
0000
H
2000
H
4000
H
6000
H
8000
H
Digital Input Code
A000
H
C000
H
E000
H
FFFF
H
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
1.0
0.5
0
0.5
1.0
LE (LSB)
DLE (LSB)
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR vs CODE
(DAC C, +25
C)
0000
H
2000
H
4000
H
6000
H
8000
H
Digital Input Code
A000
H
C000
H
E000
H
FFFF
H
2.0
1.5
1.0
0.5
0
0.5
1.0
1.5
2.0
1.0
0.5
0
0.5
1.0
LE (LSB)
DLE (LSB)
LINEARITY ERROR AND
DIFFERENTIAL LINEARITY ERROR vs CODE
(DAC D, +25
C)
0000
H
2000
H
4000
H
6000
H
8000
H
Digital Input Code
A000
H
C000
H
E000
H
FFFF
H
NC
NC
NC
NC
V
OUT
A Sense
V
OUT
A
V
REF
L AB Sense
V
REF
L AB
V
REF
H AB
V
REF
H AB Sense
V
OUT
B Sense
V
OUT
B
48
47
46
45
44
43
42
41
40
39
38
37
DAC7744
V
OUT
V
OUT
99k
0.05V
1k
+5V
+V
1000pF
2200pF
+V
OPA350
OPA227
100
1000pF
2200pF
100
21
DAC7744
DIGITAL INTERFACE
Table I shows the basic control logic for the DAC7744. Note
that each DAC register is edge triggered and not level
triggered. When the LOADDACS signal is transitioned to
HIGH, the digital word currently in the DAC register is
latched. The first set of registers (the input registers) are
triggered via the A0, A1, R/W, and CS inputs. Only one of
these registers is transparent at any given time.
The double-buffered architecture is designed mainly so that
each DAC input register can be written to at any time and
then all DAC voltages updated simultaneously by the rising
edge of LOADDACS. It also allows a DAC input register to
be written to at any point then the DAC output voltages can
be synchronously changed via a trigger signal connected to
LOADDACS.
DIGITAL TIMING
Figure 11 and Table II provide detailed timing for the digital
interface of the DAC7744.
DIGITAL INPUT CODING
The DAC7744 input data is in Straight Binary format. The
output voltage is given by Equation 1.
where N is the digital input code. This equation does not
include the effects of offset (zero scale) or gain (full scale)
errors.
INPUT
DAC
A1
A0
R/W
CS
RST
RSTSEL LOADDACS
REGISTER
REGISTER
MODE
DAC
L
L
L
L
X
X
X
Write
Hold
Write Input
A
L
H
L
L
X
X
X
Write
Hold
Write Input
B
H
L
L
L
X
X
X
Write
Hold
Write Input
C
H
H
L
L
X
X
X
Write
Hold
Write Input
D
L
L
H
L
X
X
X
Read
Hold
Read Input
A
L
H
H
L
X
X
X
Read
Hold
Read Input
B
H
L
H
L
X
X
X
Read
Hold
Read Input
C
H
H
H
L
X
X
X
Read
Hold
Read Input
D
X
X
X
H
X
X
Hold
Write
Update
All
X
X
X
H
X
X
H
Hold
Hold
Hold
All
X
X
X
X
L
X
Reset to Zero
Reset to Zero
All
X
X
X
X
H
X
Reset to Midscale
Reset to Midscale
All
TABLE I. DAC7744 Logic Truth Table.
DIGITALLY-PROGRAMMABLE
CURRENT SOURCE
The DAC7744 offers a unique set of features that allows a
wide range of flexibility in designing applications circuits
such as programmable current sources. The DAC7744 offers
both a differential reference input as well as an open-loop
configuration around the output amplifier. The open-loop
configuration around the output amplifier allows transistor
to be placed within the loop to implement a digitally-
programmable, uni-directional current source. The availabil-
ity of a differential reference also allows programmability
for both the full-scale and zero-scale currents. The output
current is calculated as:
Figure 12 shows a DAC7744 in a 4-to-20mA current output
configuration. The output current can be determined by
Equation 3:
At full scale, the output current is 16mA plus the 4mA for
the zero current. At zero scale, the output current is the offset
current of 4mA (1V/250
).
(1)
V
V
L
V
H
V
L
N
OUT
REF
REF
REF
=
+
(
)
,
65 536
(3)
I
V
V
N
V
OUT
=








+
5
1
250
65 536
1
250
,
(2)
I
V
H
V
L
R
N
V
L R
OUT
REF
REF
SENSE
REF
SENSE
=












+
(
)
,
/
65 536
22
DAC7744
SYMBOL
DESCRIPTION
MIN
TYP
MAX
UNITS
t
RCS
CS LOW for Read
100
ns
t
RDS
R/W HIGH to CS LOW
10
ns
t
RDH
R/W HIGH after CS HIGH
10
ns
t
DZ
CS HIGH to Data Bus in High Impedance
10
70
ns
t
CSD
CS LOW to Data Bus Valid
85
130
ns
t
WCS
CS LOW for Write
40
ns
t
WS
R/W LOW to CS LOW
0
ns
t
WH
R/W LOW after CS HIGH
10
ns
t
AS
Address Valid to CS LOW
0
ns
t
AH
Address Valid after CS HIGH
15
ns
t
LS
CS LOW to LOADDACS HIGH
40
ns
t
LH
CS LOW after LOADDACS HIGH
80
ns
t
LX
LOADDACS HIGH
40
ns
t
DS
Data Valid to CS LOW
0
ns
t
DH
Data Valid after CS HIGH
15
ns
t
LWD
LOADDACS LOW
40
ns
t
SS
RSTSEL Valid Before RESET HIGH
0
ns
t
SH
RSTSEL Valid After RESET HIGH
120
ns
t
RSS
RESET LOW Before RESET HIGH
10
ns
t
RSH
RESET LOW After RESET HIGH
10
ns
t
S
Settling Time
11
s
TABLE II. Timing Specifications (T
A
= 40
C to +85
C).
FIGURE 11. Digital Input and Output Timing.
t
RCS
CS
t
RDS
t
RDH
t
AS
t
CSD
t
DZ
t
AH
R/W
A0/A1
Data Out
Data Valid
t
WCS
CS
t
WS
t
AS
t
AH
t
WH
R/W
A0/A1
t
LS
t
LWD
t
LH
t
S
0.003% of FSR
Error Band
0.003% of FSR
Error Band
t
LX
LOADDACS
t
DS
t
DH
Data In
V
OUT
Data Read Timing
Data Write Timing
t
RSH
RST
V
OUT
,RESET SEL LOW
+FS
FS
t
SS
t
SH
RESET SEL
V
OUT
,RESET SEL HIGH
MS
+FS
FS
DAC7744 Reset Timing
t
RSS
23
DAC7744
FIGURE 12. 4-to-20mA Digitally-Controlled Current Source (1/2 DAC7744).
NC
NC
NC
NC
V
OUT
A Sense
V
OUT
A
V
REF
L AB Sense
V
REF
L AB
V
REF
H AB
V
REF
H AB Sense
V
OUT
B Sense
V
OUT
B
48
47
46
45
44
43
42
41
40
39
38
37
DAC7744
I
OUT
V
PROGRAMMED
R
SENSE
250
I
OUT
V
PROGRAMMED
R
SENSE
250
GND
80k
+1.0V
20k
+V
1000pF
2200pF
+V
OPA2350
100
1000pF
2200pF
100
PACKAGING INFORMATION
ORDERABLE DEVICE
STATUS(1)
PACKAGE TYPE
PACKAGE DRAWING
PINS
PACKAGE QTY
DAC7744E
ACTIVE
SSOP
DL
48
30
DAC7744E/1K
ACTIVE
SSOP
DL
48
1000
DAC7744EB
ACTIVE
SSOP
DL
48
30
DAC7744EB/1K
ACTIVE
SSOP
DL
48
1000
DAC7744EC
ACTIVE
SSOP
DL
48
30
DAC7744EC/1K
ACTIVE
SSOP
DL
48
1000
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
PACKAGE OPTION ADDENDUM
www.ti.com
3-Oct-2003
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI's terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address:
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright
2003, Texas Instruments Incorporated