ChipFind - документация

Электронный компонент: TAS3103IDCP

Скачать:  PDF   ZIP
TAS3103
Digital Audio Processor With 3D Effects
October 2002
Digital Audio Solutions
Data Manual
SLES038A
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI's terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265
Copyright
2002, Texas Instruments Incorporated
iii
Contents
Section
Title
Page
1
Introduction
1-1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1
Features
1-1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2
Terminal Assignments
1-2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3
Hardware Block Diagram
1-3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4
Functional Block Diagram
1-4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.5
Ordering Information
1-5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.6
Terminal Functions
1-5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.7
Operational Modes
1-8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.7.1
Terminal-Controlled Modes
1-9
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.7.2
I
2
C Bus-Controlled Modes
1-10
. . . . . . . . . . . . . . . . . . . . . . . . . . .
2
Hardware Architecture
2-1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1
Input and Output Serial Audio Ports (SAPs)
2-3
. . . . . . . . . . . . . . . . . . . . . .
2.1.1
SAP Configuration Options
2-3
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.2
Processing Flow--SAP Input to SAP Output
2-10
. . . . . . . . . . .
2.2
DPLL and Clock Management
2-14
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3
Controller
2-16
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.1
8051 Microprocessor
2-16
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.2
I
2
C Bus controller
2-16
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4
Digital Audio Processor (DAP) Arithmetic Unit
2-21
. . . . . . . . . . . . . . . . . . .
2.5
Reset
2-23
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6
Power Down
2-23
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.7
Watchdog Timer
2-24
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.8
General-Purpose I/O (GPIO) Ports
2-24
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.8.1
GPIO Functionality--I
2
C Master Mode
2-25
. . . . . . . . . . . . . . . .
2.8.2
GPIO Functionality--I
2
C Slave Mode
2-26
. . . . . . . . . . . . . . . . . .
3
Firmware Architecture
3-1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1
I
2
C Coefficient Number Formats
3-1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.1
28-Bit 5.23 Number Format
3-1
. . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.2
48-Bit 25.23 Number Format
3-2
. . . . . . . . . . . . . . . . . . . . . . . . . .
3.2
Input Crossbar Mixers
3-4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3
3D Effects Block
3-8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.1
CH1/CH2 Effects Block
3-8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.2
CH3 Effects Block
3-8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4
Biquad Filters
3-10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5
Bass and Treble Processing
3-11
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5.1
Treble and Bass Processing and Concurrent I
2
C
Read Transactions
3-15
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6
Soft Volume/Loudness Processing
3-17
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
iv
3.6.1
Soft Volume
3-17
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6.2
Loudness Compensation
3-24
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6.3
Time Alignment and Reverb Delay Processing
3-26
. . . . . . . . . .
3.7
Dynamic Range Control (DRC)
3-29
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7.1
DRC Implementation
3-31
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7.2
Compression/Expansion Coefficient Computation
Engine Parameters
3-33
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7.3
DRC Compression/Expansion Implementation Examples
3-35
3.8
Spectrum Analyzer/VU Meter
3-45
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.9
Dither
3-47
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.9.1
Dither Seeds
3-48
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.9.2
Dither Mix Options
3-50
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.9.3
Dither Gain Mixers
3-50
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.9.4
Dither Statistics
3-51
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.10
Output Crossbar Mixers
3-54
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4
Electrical Specifications
4-1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1
Absolute Maximum Ratings Over Operating Temperature Ranges
4-1
. .
4.2
Recommended Operating Conditions
4-1
. . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3
Electrical Characteristics Over Recommended Operating
Conditions
4-2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4
TAS3100 Timing Characteristics
4-3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.1
Master Clock Signals Over Recommended Operating
Conditions
4-3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.2
Control Signals Over Recommended Operating Conditions
4-4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.3
Serial Audio Port Slave Mode Signals Over Recommended
Operating Conditions )
4-5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.4
Serial Audio Port Master Mode Signals Over Recommended
Operating Conditions
4-6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.5
I2C Slave Mode Interface Signals Over Recommended
Operating Conditions
4-7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.1
I
2
C Subaddress Table
A-1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.2
TAS3103 Firmware Block Diagram
A-19
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
v
List of Illustrations
Figure
Title
Page
2-1 TAS3103 Detailed Hardware Block Diagram
2-2
. . . . . . . . . . . . . . . . . . . . . . . . . . .
2-2 Discrete Serial Data Formats
2-3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-3 Four-Channel TDM Serial Data Formats
2-3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-4 SAP Configuration Subaddress Fields
2-4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-5 Recommended Procedure for Issuing SAP Configuration Updates
2-5
. . . . . . .
2-6 Format Options: Input Serial Audio Port
2-7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-7 TDM Format Options: Output Serial Audio Port
2-8
. . . . . . . . . . . . . . . . . . . . . . . .
2-8 Discrete Format Options: Output Serial Audio Port
2-9
. . . . . . . . . . . . . . . . . . . . .
2-9 Word Size Settings
2-9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-10 8 CH TDM Format Using SAP Modes 0101 and 1000
2-10
. . . . . . . . . . . . . . . .
2-11 6 CH Data, 8 CH Transfer TDM Format Using SAP Modes
0101 and 1000
2-10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-12 SAP Input-to-Output Latency
2-11
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-13 SAP Input-to-Output Latency for I
2
S Format Conversions
2-12
. . . . . . . . . . . . .
2-14 DPLL and Clock Management Block Diagram
2-15
. . . . . . . . . . . . . . . . . . . . . . .
2-15 I
2
C Slave Mode Communication Protocol
2-17
. . . . . . . . . . . . . . . . . . . . . . . . . . .
2-16 I
2
C Subaddress Access Protocol
2-18
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-17 Digital Audio Processor Arithmetic Unit Block Diagram
2-21
. . . . . . . . . . . . . . . .
2-18 DAP Arithmetic Unit Data Word Structure
2-22
. . . . . . . . . . . . . . . . . . . . . . . . . . .
2-19 DAP ALU Operation With Intermediate Overflow
2-22
. . . . . . . . . . . . . . . . . . . . .
2-20 TAS3103 Reset Circuitry
2-23
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-21 GPIO Port Circuitry
2-25
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-22 Volume Adjustment Timing--Master I
2
C Mode
2-27
. . . . . . . . . . . . . . . . . . . . . . .
3-1 5.23 Format
3-1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-2 Conversion Weighting Factors--5.23 Format to Floating Point
3-1
. . . . . . . . . . .
3-3 Alignment of 5.23 Coefficient in 32-Bit I
2
C Word
3-2
. . . . . . . . . . . . . . . . . . . . . . .
3-4 25.23 Format
3-2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-5 Alignment of 5.23 Coefficient in 32-Bit I2C Word
3-3
. . . . . . . . . . . . . . . . . . . . . . .
3-6 Alignment of 25.23 Coefficient in Two 32-Bit I
2
C Words
3-3
. . . . . . . . . . . . . . . . .
3-7 Serial Input Port to Processing Node Topology
3-5
. . . . . . . . . . . . . . . . . . . . . . . . .
3-8. Input Mixer and Effects Block Topology--Internal Processing
Nodes A, B, C, D, E, and F
3-6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-9 Input Mixer Topology--Internal Processing Nodes G and H
3-7
. . . . . . . . . . . . . .
vi
3-10 TAS3103 3D Effects Processing Block
3-9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-11 Biquad Filter Structure and Coefficient Subaddress Format
3-10
. . . . . . . . . . . .
3-12 Bass and Treble Filter Selections
3-12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-13 Bass and Treble Application Example--Subaddress Parameters
3-14
. . . . . . .
3-14 I
2
C Bass/Treble Activity Monitor Procedure
3-16
. . . . . . . . . . . . . . . . . . . . . . . . .
3-15 Soft Volume and Loudness Compensation Block Diagram
3-18
. . . . . . . . . . . . .
3-16 Detailed Block Diagram--Soft Volume and Loudness Compensation
3-25
. . .
3-17 Delay Line Memory Implementation
3-27
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-18 Maximum Delay Line Lengths
3-28
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-19 DRC Positioning in TAS3103 Processing Flow
3-29
. . . . . . . . . . . . . . . . . . . . . . .
3-20 Dynamic Range Compression (DRC) Transfer Function Structure
3-30
. . . . . .
3-21 DRC Block Diagram
3-32
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-22 DRC Input Word Structure for 0-dB Channel Processing Gain
3-36
. . . . . . . . .
3-23 DRC Transfer Curve--Example 1
3-38
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-24 DRC Transfer Curve--Example 2
3-40
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-25 DRC Transfer Curve--Example 3
3-42
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-26 DRC Transfer Curve--Example 4
3-44
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-27 Spectrum Analyzer/VU Meter Block Diagram
3-46
. . . . . . . . . . . . . . . . . . . . . . . .
3-28 Logarithmic Number Conversions--Spectrum Analyzer/VU Meter
3-47
. . . . . .
3-29 Dither Data Block Diagram
3-49
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-30 Dither Data Magnitude (Gain = 1.0)
3-51
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-31 Triangular Dither Statistics
3-52
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-32 Triangular Dither Statistics
3-53
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-33 Processing Node to Serial Output Port Topology
3-55
. . . . . . . . . . . . . . . . . . . . .
3-34 Output Crossbar Mixer Topology
3-56
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-1 Master Clock Signals Timing Waveforms
4-3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-2 Control Signals Timing Waveforms
4-4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-3 Serial Audio Port Slave Mode Timing Waveforms
4-5
. . . . . . . . . . . . . . . . . . . . . .
4-4 TAS3100 Serial Audio Port Master Mode Timing Waveforms
4-6
. . . . . . . . . . . . .
4-5 I
2
C SCL and SDA Timing Waveforms
4-8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-6 I
2
C Start and Stop Conditions Timing Waveforms
4-8
. . . . . . . . . . . . . . . . . . . . . .
vii
List of Tables
Table
Title
Page
2-1 TAS3103 Throughput Latencies vs MCLK and LRCLK
2-13
. . . . . . . . . . . . . . . . .
2-2 TAS3103 Clock Default Settings
2-16
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-3 I
2
C EEPROM Data
2-19
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-4 Four Byte Write Exceptions--Reserved and Factory-Test I
2
C
Subaddresses
2-20
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-5 Four Byte Read Exceptions--Reserved and Factory-Test I
2
C
Subaddresses
2-21
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-6 GPIO Port Functionality--I
2
C Master Mode
2-25
. . . . . . . . . . . . . . . . . . . . . . . . . .
3-1 Biquad Filter Breakout
3-10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-2 Bass Shelf Filter Indices for 1/2-dB Adjustments
3-14
. . . . . . . . . . . . . . . . . . . . . .
3-3 Treble Shelf Filter Indices for 1/2-dB Adjustments
3-15
. . . . . . . . . . . . . . . . . . . . .
3-4 Volume Adjustment Gain Coefficients
3-20
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-5 DRC Example 2 Parameters
3-39
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-6 DRC Example 3 Parameters
3-41
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-7 DRC Example 4 Parameters
3-45
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-8 Mixer Gain Setting for LSB Dither Data Insertion
3-50
. . . . . . . . . . . . . . . . . . . . . .
viii
1-1
1 Introduction
The TAS3103 is a fully configurable digital audio processor that preserves high-quality audio by using a 48-bit data
path, 28-bit filter coefficients, and a single cycle 28 x 48-bit multiplier and 76-bit accumulator. Because of the
coefficient-configurable fixed-program architecture of the TAS3103, a complete set of user-specific audio processing
functions can be realized, with short development times, in a small, low power, low-cost device. A personal computer
(PC) GUI-based software development package and a comprehensive evaluation board provide additional facilities
to further reduce development times. The TAS3103 uses 1.8-V core logic with 3.3-V I/O buffers, and requires only
3.3-V power. The TAS3103 is available in a 38-pin TSSOP package.
1.1
Features
Audio Input/Output
-
Four Serial Audio Input Channels
-
Three Serial Audio Output Channels
-
8-kHz to 96-kHz Sample Rates Supported
-
15 Stereo/TDM Data Formats Supported
-
Input/Output Data Format Selections Independent
-
16-, 18-, 20-, 24-, and 32-Bit Word Sizes Supported
Serial Master/Slave I
2
C Control Channel
Three Independent Monaural Processing Channels
-
Programmable Four Stereo Input Digital Mixer
-
3D Effect and Reverb Structure and Filters
-
Programmable 12 Band Digital Parametric EQ
-
Programmable Digital Bass and Treble Controls
-
Programmable Digital Soft Volume Control (24 dB to --
dB)
-
Soft Mute/Unmute
-
Programmable Dither
-
Programmable Loudness Compensation
-
VU Meter and Spectral Analysis I
2
C Output
-
Programmable Channel Delay (Up to 42 ms at 48 kHz)
-
192-dB Dynamic Range (Supports Up to 32-Bit Audio Data)
-
Dual Threshold Dynamic Range Compression/Expansion
Electrical and Physical
-
Single 3.3-V Power Supply
-
38-Pin TSSOP Package
-
Low Power Standby
1-2
1.2
Terminal Assignments
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
SCLKIN
PWRDN
REGULATOR_EN
XTALI (1.8-V logic)
XTALO (1.8-V logic)
AVDD_BYPASS_CAP
A_VDDS (3.3 V)
AVSS
MCLKI
TEST
MICROCLK_DIV
I2C_SDA
I2C_SCL
SDIN1
SDIN2
SDIN3
SDIN4
GPIO0
GPIO1
LRCLK
ORIN
SCLKOUT2
SCLKOUT1
MCLKO
SDOUT3
SDOUT2
VDDS (3.3 V)
SDOUT1
DVDD_BYPASS_CAP
DVSS
I2CM_S
RST
CS1
CS0
PLL1
PLL0
GPIO3
GPIO2
DBT PACKAGE
(TOP VIEW)
1-3
1.3
Hardware Block Diagram
SDIN1
COEF
RAM
Data
RAM
Code
ROM
Data
Path
Memory
Interface
Delay
Memory
(4K x 16)
8051
MCU
Control
Registers
Volume
Update
4
I2C_SCL
I2C_SDA
CS1
CS0
GPIO[3:0]
8
54
48
28
SDIN2
SDIN4
SDIN3
SDOUT1
SDOUT2
SDOUT3
LRCLK
SCLKIN
MCLKO
SCLKOUT1
SCLKOUT2
76-Bit
ALU
Digital Audio Processor
Serial
Audio
Port
Controller
(8-Bit)
4
External
Data
RAM
Internal
Data
RAM
Code
ROM
8
28
28
64
Oscillator
and
PLL
XTALI
XTALO
PWRDN
PLL0
PLL1
TEST
48
64
64
64
64
64
64
I2C
Serial
Interface
RST
I2CM_S
1-4
1.4
Functional Block Diagram
Cross-
bar
Mixer
Multi-
Mode
3D
Ef
fects
Block
Multi-
Mode
Serial
to
PCM
Input
Port
SDIN1
SDIN2
SDIN3
DRC
Center
Output
Cross-
bar
Multi-
plexer
Multi-
mode
PCM
to
Serial
Output
Port
PLL
and
Dividers
Oscillator
3 Mono Processing Channels
GPIO(3:0)
CS0
CS1
PLL1
VDDS
DVSS
XT
ALI
T
est
PWRDN
LRCLK
SCLKIN
SCLKOUT1
SCLKOUT2
MCLKO
DVDD_
BYP
ASS_
SDIN4
Input
T
reble
and
Soft
V
olume
Loudness
Compensation
Ganged
DRC
Delay
Programmable
Dither
Ch1
MCLKI
Ch1
Microprocessor
PLL0
MC/Div
V
oltage Regulation
XT
ALO
or
Spectrum Analyzer
Bass
12
Biquad
Filters
Ch2
Ch3
T
reble
and
Soft
V
olume
Loudness
Compensation
Bass
12
Biquad
Filters
T
reble
and
Soft
V
olume
Loudness
Compensation
Bass
12
Biquad
Filters
VU Meter
Delay
Delay
SDOUT1
SDOUT2
SDOUT3
ORIN
Programmable
Dither
Programmable
Dither
Ch2
Ch3
I2C_
SDA
I2C_
SCL
I2C_
M_S
CAP
A
VSS
A_VDDS
A
VDD_
BYP
ASS_
CAP
I2
S Clock Input/Generation
Ch3
RST
1-5
1.5
Ordering Information
TA
PLASTIC
38-PIN TSSOP
(DBT)
0
C to 70
C
TAS3103DBT
1.6
Terminal Functions
TERMINAL
DESCRIPTION
PULLUP/
(2)
NAME
NO.
I/O
TYPE(1)
DESCRIPTION
PULLUP/
DOWN(2)
A_VDDS (3.3 V)
7
PWR
The PWR pin is used to input 3.3-V power to the DPLL and clock oscillator.
This pin can be connected to the same power source used to drive the DVSS
power pin. To achieve low DPLL jitter, this pin should be bypassed to AVSS
with a 0.01-
F capacitor (low ESR preferable).
None
AVDD_BYPASS_CAP
6
PWR
AVDD_BYPASS_CAP is a pinout of the internally regulated 1.8-VDC power
used by the DPLL and crystal oscillator. This pin should be connected to pin 8
with a 0.01-
F capacitor (low ESR preferable). This pin must not be used to
power external devices.
None
AVSS
8
PWR
AVSS is the ground reference for the internal DPLL and oscillator circuitry.
This pin needs to reference the same ground as DVSS power pin. To achieve
low DPLL jitter, ground noise at this pin must be minimized. The availability of
the AVSS pin allows a designer to use optimizing techniques such as star
ground connections, separate ground planes, or other quiet ground
distribution techniques to achieve a quiet ground reference at this pin.
None
CS0
24
I
D
CS0 is the LSB of a 2-bit code used to generate part of an I2C device address
that makes it possible to address four TAS3103 ICs on the same bus without
additional chip select logic. The pulldowns on the inputs select 00 as a default
when neither pin is connected.
Pulldown
CS1
25
I
D
CS1 is the MSB of a 2-bit code used to generate part of an I2C device address
that makes it possible to address four TAS3103 ICs on the same bus without
additional chip select logic.
Pulldown
DVDD_BYPASS_CAP
29
PWR
DVDD_BYPASS_CAP is a pin-out of the internally regulated 1.8-V power
used by all internal digital logic. A low ESR capacitor in the range of 0.01
F
should be connected between this pin and pin 28. This pin must not be used to
power external devices
None
DVSS
28
PWR
DVSS is the digital ground pin.
None
GPIO0
18
I/O
D
GPIO0 is a general-purpose I/O, controlled by the internal microprocessor
through I2C commands. When in the I2C master mode, GPIO0 serves as a
volume up command for CH1/CH2
Pullup
GPIO1
19
I/O
D
GPIO1 is a general-purpose I/O, controlled by the internal microprocessor
through I2C commands. When in the I2C master mode, GPIO1 serves as a
volume down command for CH1/CH2
Pullup
GPIO2
20
I/O
D
GPIO2 is a general-purpose I/O, controlled by the internal microprocessor
through I2C commands. When in the I2C master mode, GPIO2 serves as a
volume up command for CH3
Pullup
GPIO3
21
I/O
D
GPIO3 is a general-purpose I/O, controlled by the internal microprocessor
through I2C commands. When in the I2C master mode, GPIO3 serves as a
volume down command for CH3
Pullup
I2CM_S
27
I
D
I2CM_S is a non-latched input that determines whether the TAS3103 acts as
an I2C master or slave. Logic high, or no connection, sets the TAS3103 as an
I2C master device. A logic low sets the TAS3103 as an I2C slave device. As a
master I2C device, the TAS3103 I2C port must have access to an external
EEPROM for input.
Pullup
1-6
TERMINAL
PULLUP/
DOWN(2)
DESCRIPTION
NAME
PULLUP/
DOWN(2)
DESCRIPTION
TYPE(1)
I/O
NO.
I2C_SCL
13
I/O
D
I2C_SCL is the I2C clock pin. When the TAS3103 I2C port is a master,
I2C_SCL is (1/2N) x (1/(M+1)) x 1/10 times the microprocessor clock, where N
and M are set to 2 and 8 respectively. When the TAS3103 I2C port is a slave,
input clock rates up to 400 kHz can be supported. This pin must be provided an
external pullup (5 k
is recommended for most applications).
External
pullup
required
I2C_SDA
12
I/O
D
I2C_SDA is the I2C bidirectional data pin. The TAS3103 I2C port can support
data rates up to 400K bits/sec. This pin must be provided an external pullup
(5 k
is recommended for most applications).
External
pullup
required
LRCLK
38
I/O
D
LRCLK is either an input or an output, depending on whether the TAS3103 is in
a master or slave serial audio port mode.
Pulldown
MCLKI
9
I
D
MCLKI is a master clock input that provides an alternative to using a fixed
crystal frequency. In DPLL modes, the input frequency of this clock can range
from 2.8 MHz to 24.576 MHz. In PLL bypass mode, frequencies up to 147 MHz
can be used. Whenever MCLKI is not used and XTALI/XTALO provide the
master clock input, MCLKI must be grounded.
None
MCLKO
34
O
D
MCLKO is the master output clock pin. It is produced by dividing MCLKI/XTALI
by 1, 2, or 4 (depending on the setting of a subaddress control field). MCLKO is
provided to interconnect, without the need for additional glue logic, the
TAS3103 interfaces chips that require different multiples of the audio sample
rate (FS) as a master clock.
None
MICROCLK_DIV
11
I
D
MICROCLK_DIV sets the division ratio between the digital audio processing
clock and the internal microprocessor clock. The audio-processing clock is the
DPLL output clock if PLL_bypass is not enabled. The audio-processing clock
is MCLKI/XTALI master clock if PLL_bypass is enabled. Logic high on this pin
sets the microprocessor clock equal to the audio-processing clock. A logic low
sets the microprocessor clock to 1/4 the digital audio-processing clock.
MICROCLK_DIV must be set low if the audio processing clock is > 36 MHz.
MICROCLK_DIV must be set high if the audio processing clock is
36 MHz.
Pulldown
ORIN
37
I
D
ORIN allows the processing of a multichannel signal set through two
TAS3103s without any additional components. One use of ORIN would be to
fully emulate a 6-channel audio processor at speeds up to a 96-kHz sample
rate with only two TAS3103s and no glue logic.
The two-chip configuration is accomplished by wiring the SDOUT1 port of one
of the two TAS3103 chips to the ORIN port of the second TAS3103. Internal to
the chip, the ORIN input is OR'ed with internal SDOUT1 data to generate the
resulting output data on channel SDOUT1. For TDM output formats, the
SDOUT1 outputs of the two chips differ in phasing in both the left and right
channels to arrive at the proper composite output. For discrete outputs, one
chip contributes the left channel of the composite SDOUT1, and the other chip
contributes the right channel of the composite SDOUT1.
If not used, ORIN must be connected to ground.
Pulldown
PLL0
22
I
D
PLL0 is the LSB of a 2-bit code used to select four different modes of DPLL
multiplexer/input divider operation. PLL[1:0] values of 00, 01, and 10 select
the DPLL input clock to be MCLKI/XTALI divided by 1, 2, and 4 respectively. A
value of 11 results in MCLKI/XTALI being substituted for the DPLL output. The
pullup/pulldown combination provides a default of 01 when neither pin is
connected.
Pullup
PLL1
23
I
D
PLL1 is the MSB of a 2-bit code used to select four different modes of DPLL
multiplexer/input divider operation. PLL[1:0] values of 00, 01, and 10 select
the DPLL input clock to be MCLKI/XTALI divided by 1, 2, and 4 respectively. A
value of 11 results in MCLKI/XTALI being substituted for the DPLL output. The
pullup/pulldown combination provides a default of 01 when neither pin is
connected.
Pulldown
PWRDN
2
I
D
PWRDN powers down all logic and stops all clocks whenever logic high is
applied. However, the coefficient memory remains stable through a power
down cycle, as long as a reset is not sent after a power down cycle.
Pulldown
1-7
TERMINAL
PULLUP/
DOWN(2)
DESCRIPTION
NAME
PULLUP/
DOWN(2)
DESCRIPTION
TYPE(1)
I/O
NO.
REGULATOR_EN
3
I
D
REGULATOR_EN is only used in factory tests. This pin should always be tied
to ground.
None
RST
26
I
D
RST is the master reset input. Applying a logic low to this pin generates a
master reset. The master reset results in all coefficients being set to their
power-up default state, all data memories being cleared, and all logic signals
being returned to their default values.
Pullup
SCLKIN
1
I
D
SCLKIN is the serial audio port (SAP) input data clock. This clock is only used
when the SAP is a slave. In master mode, SCLKOUT1 internally provides the
serial input clock (SCLKOUT1 from a given TAS3103 must not be connected
to SCLKIN on the same TAS3103 chip).
Pulldown
SCLKOUT1
35
O
D
SCLKOUT1 is one of two serial output bit clocks. It is divided from
MCLKI/XTALI in master mode, and SCLKIN in slave mode. Subaddress
control fields determine the divide ratio in both cases. When the serial audio
port is in a master mode, SCLKOUT1 is used to receive incoming serial data
and should be wired to the data source(s) providing data to the SDIN inputs.
None
SCLKOUT2
36
O
D
SCLKOUT2 is one of two serial output bit clocks. It is divided from
MCLKI/XTALI in master mode, and SCLKIN in slave mode. Subaddress
control fields determine the divide ratio in both cases. SCLKOUT2 is always
used to clock out serial data from the three serial SDOUT output data
channels. SCLKOUT2 is provided separately from SCLKOUT1 to allow
discrete in to TDM out and TDM in to discrete out data format conversions
without the use of external glue logic.
Output
SDIN1
14
I
D
SDIN1, SDIN2, SDIN3, and SDIN4 are the four TAS3103 serial data input
ports. All four input ports support four discrete (stereo) data formats. SDIN1 is
the only data input port that also supports eleven time division multiplexed
data formats. All four ports are capable of receiving data with bit rates up to
24.576 MHz.
Pulldown
SDIN2
15
I
D
SDIN2 is one of the four TAS3103 serial data input ports. SDIN2 supports four
discrete (stereo) data formats, and is capable of receiving data with bit rates
up to 24.576 MHz.
Pulldown
SDIN3
16
I
D
SDIN3 is one of the four TAS3103 serial data input ports. SDIN4 supports four
discrete (stereo) data formats, and is capable of receiving data with bit rates
up to 24.576 MHz.
Pulldown
SDIN4
17
I
D
SDIN4 is one of the four TAS3103 serial data input ports. SDIN4 supports four
discrete (stereo) data formats, and is capable of receiving data with bit rates
up to 24.576 MHz.
Pulldown
SDOUT1
30
O
D
SDOUT1, SDOUT2, and SDOUT3 are the three TAS3103 serial data output
ports. All three output ports support four discrete (stereo) data formats.
SDOUT1 is the only data output port that also supports eleven time division
multiplexed data formats. All three ports are capable of outputting data at bit
rates up to 24.576 MHz.
None
SDOUT2
32
O
D
SDOUT2 is one of the three serial data output ports. SDOUT2 supports four
discrete (stereo) data formats, and is capable of outputting data at bit rates up
to 24.576 MHz.
None
SDOUT3
33
O
D
SDOUT3 is one of the three serial data output ports. SDOUT3 supports four
discrete (stereo) data formats, and is capable of outputting data at bit rates up
to 24.576 MHz.
None
TEST
10
I
D
TEST is only used in factory tests. This pin must be left unconnected or
grounded.
Pulldown
VDDS (3.3 V)
31
-
PWR
VDDS is the 3.3-V pin that powers (1) the 1.8 V internal power regulator used
to supply logic power to the chip and (2) the I/O ring. It is recommended that
this pin be bypassed to DVSS (pin 28) with a low ESR capacitor in the range of
0.01
F.
None
1-8
TERMINAL
PULLUP/
DOWN(2)
DESCRIPTION
NAME
PULLUP/
DOWN(2)
DESCRIPTION
TYPE(1)
I/O
NO.
XTALI (1.8-V logic)
4
I
A
XTALO and XTALI provide a master clock for the TAS3103 via use of an
external fundamental mode crystal. XTALI is the 1.8-V input port for the
oscillator circuit. See Note 3 for recommended crystal type and accompanying
circuitry. This pin should be grounded when the MCLKI pin is used as the
source for the master clock.
None
XTALO (1.8-V logic)
5
O
A
XTALO and XTALI provide a master clock for the TAS3103 via use of an
external fundamental mode crystal. XTALO is the 1.8-V output drive to the
crystal. XTALO can support crystal frequencies between 2.8 MHz and
20 MHz. See Note 3 for recommended crystal type and accompanying
circuitry. This pin should be left unconnected in applications using an external
clock input to MCLKI
None
NOTES:
1. TYPE: A = analog; D = 3.3-V digital; PWR = power/ground/decoupling
2. All pullups are 20-
A weak pullups, and all pulldowns are 20-
A weak pulldowns. The pullups and pulldowns are included to assure
proper input logic levels if the pins are left unconnected (pullups => logic 1 input; pulldowns => logic 0 input). Devices that drive inputs
with pullups must be able to sink 20
A while maintaining a logic 0 drive level. Devices that drive inputs with pulldowns must be able
to source 20
A while maintaining a logic 1 drive level.
3. Crystal type and recommended circuit:
OSC
Circuit
XO
XI
C1
C2
rd
AVSS
TAS3103
Crystal type = parallel-mode, fundamental-mode crystal
r
d
= drive level control resistor--vendor specified
C
L
= Crystal load capacitance (capacitance of circuitry between the two terminals of the crystal)
C
L
= (C
1
C
2
) / (C
1
+ C
2
) + C
S
(where C
S
= board stray capacitance ~2 pF)
-
Example: Vendor recommended C
L
= 18 pF, C
S
= 3 pF
C
1
= C
2
= 2 x (18 - 3) = 30 pF
1.7
Operational Modes
The TAS3103 operation is governed by I/O terminal voltage level settings and register / coefficient settings within the
TAS3103. The terminal settings are wholly sufficient to address all external environments - allowing the remaining
configuration settings to be determined by either I
2
C commands or by the content of an I
2
C serial EEPROM (when
the I
2
C master mode is selected).
1-9
1.7.1
Terminal-Controlled Modes
1.7.1.1 Clock Control
PLL1
PLL0
DAP Clock
0
0
11 MCLK
0
1
(11 MCLK)/2
1
0
(11 MCLK)/4
1
1
MCLK (PLL bypass)
MICROCLK_DIV
MICROPROCESSOR CLOCK
0
DAP clock/4
1
DAP clock
XTALI
MCLKI
Reference
Divider
PLL
PLL0
Digital
Audio Processor
(DAP) Clock
Microprocessor
MICROCLK_DIV
Microprocessor
Clock
MCLK
PLL1
Scaler
11
1.7.1.2 I
2
C Bus Setup
I2CM_S
I2C BUS MODE
0
Slave
1
Master
a6 = 0
a5 = 1
a4 = 1
a3 = 0
a2 = 1
a1=CS1
a0=CS0
R/W
ACK
SDA
SCL
1
2
3
4
5
6
7
8
9
Start
TAS3103 I2C Slave Address
1.7.1.3 Power-Down/Sleep Selection
PWRDN
POWER STATUS
0
Active
1
Power-down/sleep
1-10
1.7.2
I
2
C Bus-Controlled Modes
SUBADDRESS(es)
P
ARAMETER(s)
0x00
Starting I
2
C Check W
ord
0xFC Ending I
2
C Check W
ord
S
Check words apply to

I2
C master mode only
S
In master I
2
C mode, the two check words are compared after EEPROM
download.
If comparison fails, a second attempt is made. If the second
m
s
b
S
Slave
Addr
Ack
Sub-Addr
Ack
xxxxxxx
Ack
xxxxxxxx
Ack
xxxxxxxx
Ack
xxxxxx
l
s
b
Ack
download.
If comparison fails, a second attempt is made. If the second
comparison
fails, the parameters default to the slave default values.
S
In slave I
2
C mode, the default value for both check words is:
0x81_42_24_18
Input Mixer 28-Bit Gain Coef
ficients
0x01 - 0x33
Output Mixer 28-Bit Gain Coef
ficients
0x84 0xA1
Gain Coefficient
(Format = 5.23)
28
m
s
b
S
Slave
Addr
Ack
Sub-Addr
Ack
xxx
0000
Ack
xxxxxxxx
Ack
xxxxxxxx
Ack
xxxxxx
l
s
b
Ack
Node
32 or 48
48
Node
Effects
Block BiQuad Filter Coefficients
0x34-0x4B
b
0
28
m
s
b
S
Slave
Addr
Ack
Sub-Addr
Ack
xxx
0000
Ack
xxxxxxxx
Ack
xxxxxxxx
Ack
xxxxxx
l
s
b
Ack
a
1
m
s
b
xxx
0000
Ack
xxxxxxxx
Ack
xxxxxxxx
Ack
xxxxxx
l
s
b
Ack
a
2
m
s
b
xxx
0000
Ack
xxxxxxxx
Ack
xxxxxxxx
Ack
xxxxxx
l
s
b
Ack
b
0
m
s
b
xxx
0000
Ack
xxxxxxxx
Ack
xxxxxxxx
Ack
xxxxxx
l
s
b
Ack
b
2
m
s
b
xxx
0000
Ack
xxxxxxxx
Ack
xxxxxxxx
Ack
xxxxxx
l
s
b
Ack
b
1
b
1
b
2
a
1
a
2
28
28
28
28
28
48
76
76
48
48
76
76
76
48
48
76
Magnitude
T
runcation
48
z
-1
z
-1
z
-1
z
-1
NOTE:
All gain coef
ficients 5.23 numbers.
Reverberation
Block Gains
Gain
Coef
ficient G0
Reverberation Block
Subaddress
Gain
Coef
ficient G0
(Format = 5.23)
Channel 1
0x4C
(Format = 5.23)
28
48
48
48
Channel 2
0x4D
48
48
48
Channel 3
0x4E
Gain
Coef
ficient G1
(Format = 5.23)
(Format = 5.23)
m
s
b
S
Slave
Addr
Ack
Sub-Addr
Ack
xxx
0000
Ack
xxxxxxxx
Ack
xxxxxxxx
Ack
xxxxxx
l
s
b
Ack
G0
m
s
b
xxx
0000
Ack
xxxxxxxx
Ack
xxxxxxxx
Ack
xxxxxx
l
s
b
Ack
G1
28
Reverberation
Delay
Reverberation Block
48
1-11
SUBADDRESS(es)
P
ARAMETER(s)
Cascaded
(T
welve/Channel) Main Filter BiQuads
MAIN FIL
TER
BLOCK
Subaddress
b
0
Channel 1
0x4F-0x5A
b
0
28
48
76
76
Magnitude
48
Channel 2
0x5B-0x66
28
48
76
76
Magnitude
T
runcation
48
Channel 3
0x67-0x72
b
1
a
1
T
runcation
b
1
a
1
28
28
z
-1
z
-1
m
s
b
S
Slave
Addr
Ack
Sub-Addr
Ack
xxx
0000
Ack
xxxxxxxx
Ack
xxxxxxxx
Ack
xxxxxx
l
s
b
Ack
a
1
m
s
b
xxx
0000
Ack
xxxxxxxx
Ack
xxxxxxxx
Ack
xxxxxx
l
s
b
Ack
a
2
m
s
b
xxx
0000
Ack
xxxxxxxx
Ack
xxxxxxxx
Ack
xxxxxx
l
s
b
Ack
b
0
m
s
b
xxx
0000
Ack
xxxxxxxx
Ack
xxxxxxxx
Ack
xxxxxx
l
s
b
Ack
b
2
m
s
b
xxx
0000
Ack
xxxxxxxx
Ack
xxxxxxxx
Ack
xxxxxx
l
s
b
Ack
b
1
NOTE: All gain coef
ficients 5.23 numbers
b
2
a
2
28
28
28
28
48
48
76
76
76
48
48
76
z
-1
z
-1
z
-1
z
-1
Bass and T
reble Gain Coefficients
Inline Gain Coeeficient
Channel 1 = 0x73
Inline Gain Coeeficient
(Format = 5.23)
28
Channel 2 = 0x74
Bass
T
reble
28
Channel 3 = 0x75
Bass
Shelf Filter
T
reble
Shelf Filter
Bypass Gain Coeeficient
(Format = 5.23)
m
s
b
S
Slave
Addr
Ack
Sub-Addr
Ack
xxx
0000
Ack
xxxxxxxx
Ack
xxxxxxxx
Ack
xxxxxx
l
s
b
Ack
Bypass Gain
m
s
b
xxx
0000
Ack
xxxxxxxx
Ack
xxxxxxxx
Ack
xxxxxx
l
s
b
Ack
Inline Gain
Bypass Gain Coeeficient
(Format = 5.23)
28
Bass and
T
reble
Block
1-12
Dynamic Range Control (DRC) Mixer Coef
ficients
m
s
b
S
Slave
Addr
Ack
Sub-Addr
Ack
xxx
0000
Ack
xxxxxxxx
Ack
xxxxxxxx
Ack
xxxxxx
l
s
b
Ack
m
s
b
S
Slave Addr
Ack
Sub-Addr
Ack
xxx
0000
Ack
xxxxxxxx
Ack
xxxxxxxx
Ack
xxxxxx
l
s
b
Ack
W
ord1
m
s
b
xxx
0000
Ack
xxxxxxxx
Ack
xxxxxxxx
Ack
xxxxxx
l
s
b
Ack
W
ord2
CH1
0x76
= Mix u to i
0x79
= Mix j to i
CH2
0x77
= Mix v to k
0x7A
= Mix l to k
CH3
0x78
= Mix w to m
0x7B
= Mix n to m
CH1-
0x7C
W
ord 1
=
Mix j to o - Inline
W
ord 2
=
Mix j to o - Bypass
CH2-
0x7D
W
ord 1
=
Mix l to p - Inline
W
ord 2
=
Mix l to p - Bypass
CH1-
0x7E
W
ord 1
=
Mix n to q - Inline
W
ord 2
=
Mix n to q - Bypass
CH 1
Bass and
T
reble
Block
u
CH 1 Soft
V
olume
Loudness
j
Mix_u_to_i
Mix_j_to_i
i
Dynamic
Range Control
v
l
CH 2 Soft
V
olume
Loudness
Mix_v_to_k
k
Mix_l_to_k
Dynamic
Range Control
w
n
Loudness
Mix_w_to_m
m
Mix_n_to_m
Mix_j_to_o_via_DRC_mult
Mix_l_to_p_via_DRC_mult
o
p
DRC_bypass_1
DRC_bypass_2
Mix_n_to_q_via_DRC_mult
q
DRC_bypass_3
CH 2
Bass and
T
reble
Block
CH 3
Bass and
T
reble
Block
CH 3 Soft
V
olume
CH1
CH2
CH3
1-13
SUBADDRESS(es)
P
ARAMETER(s)
Dither Mix Gain Coefficients
Channel 1
0x7F = Mix Dither 1 to o - 28-Bit Coef
ficient
Channel 2
0x80 = Mix Dither 2 to p - 28-Bit Coef
ficient
m
s
b
S
Slave
Addr
Ack
Sub-Addr
Ack
xxx
0000
Ack
xxxxxxxx
Ack
xxxxxxxx
Ack
xxxxxx
l
s
b
Ack
o
Channel 1
Loudness / Soft V
olume
Processed Output
Dynamic
Range Control
Dither 1
Mix_Dither1_to_o
Dither-Processed
Audio Out _ CH
1
Channel 2
0x80 = Mix Dither 2 to p - 28-Bit Coef
ficient
Channel 3
0x81 = Mix Dither 3 to q - 28-Bit Coef
ficient
p
Channel 2
Loudness / Soft V
olume
Processed Output
Range Control
Mix_Dither2_to_p
Dither 2
Dither-Processed
Audio Out _ CH 2
q
Channel 3
Loudness / Soft V
olume
Processed Output
Dynamic
Range Control
Mix_Dither3_to_q
Dither 3
Dither-Processed
Audio Out _ CH
3
Channel
3 to Channel 1 and Channel 2 Mix Gain Coefficients
m
s
b
S
Slave
Addr
Ack
Sub-Addr
Ack
xxx
0000
Ack
xxxxxxxx
Ack
xxxxxxxx
Ack
xxxxxx
l
s
b
Ack
32-Bit T
runcate
Node o
Channel 1
Processed
Audio
Delay 1
Mix-Delay3_to_o
Channel 1
0x82 = Mix Channel 3 Output to o - 28-Bit Coef
ficient
Channel 2
0x83 = Mix Channel 3 Output to p - 28-Bit Coef
ficient
Mix-Delay3_to_o
Node p
Delay 2
Channel 2
Processed
Audio
32-Bit T
runcate
Mix-Delay3_to_p
Node q
Channel 3
Processed
Audio
Delay 3
32-Bit T
runcate
1-14
Soft V
olume and Loudness Subaddress
S
Slave
Addr
Ack
Sub-Addr
Ack
xxxxxxxx
xxxxxxxx
xxxxxx
l
s
b
a
1
b
0
b
1
b
2
a
1
a
2
28
28
28
28
28
z
-1
z
-1
z
-1
z
-1
All biquad gain coef
ficients 5.23 numbers.
48
Loudness Compensation
48
48
AUDIO OUT
AUDIO IN
28
48
a
2
b
0
b
1
b
2
O
G
CH 1 = 0xA3
CH 2 = 0xA8
CH 3 = 0xAD
LO Is
A
25.23 Format Number
CH 1 = 0xA4
CH 2 = 0xA9
CH 3 = 0xAE
G Is
A
5.23 Format Number
CH 1 = 0xA5
CH 2 = 0xAA
CH 3 = 0xAF
O Is
A
25.23 Format Number
S
Slave Addr
Ack
Sub-Addr
Ack
00000000
Ack
00000000
Ack
Ack
xxxxxxxx
Ack
LO
MSBs
xxxxxxx
m
s
b
xxxxxxxx
xxxxxxxx
xxxxxxx
l
s
b
Ack
LO LSBs
xxxxxxxx
2
LO
CH 1 = 0xA2
CH 2 = 0xA7
CH 3 = 0xAC
LG Is
A
5.23 Format Number
LOUDNESS
BiQuad Coef
ficients
CH 1 = 0xA6
CH 2 = 0xAB
CH 3 = 0xB0
LG
( )
LG
Commanded 5.23
V
olume Command
S
Slave
Addr
Sub-Addr
xxxxxxxx
xxxxxxxx
xxxxxxxx
VCS
xxxxxxx
v
c
s
0xF1
Original
V
olume
Commanded
V
olume
VCS
= 0
t
t
r
ans
it
ion
= 2048/FS
VCS = 1
t
t
r
ans
it
ion
= 4096/FS
SOFT VOLUME
t
t
r
ans
it
ion
I
2
C Master Mode
I
2
C Slave Mode
V
olume Commands
- GPIO
T
erminals
GPIO0 - V
olume Up - CH1 / CH2
GPIO1 - V
olume Down - CH1 / CH2
GPIO2 - V
olume Up - CH3
GPIO3 - V
olume Down - CH1 / CH2
S
Slave
Addr
Ack
Sub-Addr
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxx
CCC
HHH
321
Mute / Unmute Command
0xF0
CH 1 = 0xF2
CH 2 = 0xF3
CH 3 = 0xF4
Mute Command = 1 => 0x0000000 V
olume Control
V
olume
Command
V
olume Command
(5.23 Precision)
Note: Negative V
olume Commands Result In
Audio Polarity Inversion
= x16 Boost
MA
X
= 1/2
23
Cut
MA
X
(LSB)
= Zero Output For 0x0000000 V
olume Control
V
olume
Commands
I
2
C Bus
Ack
Ack
Ack
S
Slave
Addr
Ack
Sub-Addr
Ack
Ack
Ack
Ack
Ack
G
xxxxxxxx
xxxxxxx
l
s
b
xxxxxxxx
m
s
b
xxx
0000
m
s
b
xxx
0000
S
Slave Addr
Ack
Sub-Addr
Ack
00000000
Ack
00000000
Ack
Ack
xxxxxxxx
Ack
0 MSBs
xxxxxxx
m
s
b
xxxxxxxx
xxxxxxxx
xxxxxxx
l
s
b
Ack
0 LSBs
xxxxxxxx
Ack
Ack
Ack
Ack
Ack
Ack
Ack
xxxxxxxx
xxxxxxxx
xxxxxx
l
s
b
m
s
b
xxx
0000
Ack
Ack
Ack
Ack
xxxxxxxx
xxxxxxxx
xxxxxx
l
s
b
m
s
b
xxx
0000
Ack
Ack
Ack
Ack
xxxxxxxx
xxxxxxxx
xxxxxx
l
s
b
m
s
b
xxx
0000
Ack
Ack
Ack
Ack
xxxxxxxx
xxxxxxxx
xxxxxx
l
s
b
m
s
b
xxx
0000
Ack
Ack
Ack
Ack
S
Slave
Addr
Ack
Sub-Addr
Ack
xxxxxxxx
xxxxxxxx
xxxxxx
l
s
b
m
s
b
xxx
0000
Ack
Ack
Ack
Ack
Ack
Ack
Ack
Ack
Ack
Ack
Ack
Ack
Ack
Ack
Ack
S
Slave Addr
Ack
Sub-Addr
Ack
Ack
Ack
Ack
Ack
xxxxxxxx
xxxxxxx
l
s
b
xxxxxxxx
m
s
b
xxx
0000
Soft
V
olume
Loudness
S
Mute/Unmute = 0xF0
S
V
olume Slew Command = 0xF1
V
olume Command
Parameter
V
olume Command
Subaddress
CH1
CH2
CH3
0xF2
0xF3
0xF4
Parameter
Subaddress
CH1
CH2
CH3
LG
0xA2 0xA7 0xAC
LO
0xA3 0xA8 0xAD
G
0xA4 0xA9 0xAE
O
0xA5 0xAA 0xAF
BiQuad
0xA6 0xAB 0xB0
1-15
Subaddress -- Dynamic Range Control (DRC) Block
S
Slave
Addr
Ack
Sub-Addr
00000000
O1-MSBits
xxxxxxx
m
s
b
xxxxxxxx
Ack
Ack
00000000
Ack
Ack
Ack
xxxxxxxx
O1-LSBits
xxxxxxxx
xxxxxxx
l
s
b
Ack
xxxxxxxx
Ack
Ack
Ack
00000000
O2-MSBits
xxxxxxx
m
s
b
xxxxxxxx
Ack
00000000
Ack
Ack
Ack
xxxxxxxx
O2-LSBits
xxxxxxxx
xxxxxxx
l
s
b
Ack
xxxxxxxx
Ack
Ack
Ack
CH1/CH2
= 0xB4
CH3 = 0xB9
S
Slave
Addr
Ack
Sub-Addr
00000000
T1-MSBits
xxxxxxx
m
s
b
xxxxxxxx
Ack
Ack
00000000
Ack
Ack
Ack
xxxxxxxx
T1-LSBits
xxxxxxxx
xxxxxxx
l
s
b
Ack
xxxxxxxx
Ack
Ack
Ack
00000000
T2-MSBits
xxxxxxx
m
s
b
xxxxxxxx
Ack
00000000
Ack
Ack
Ack
xxxxxxxx
T2-LSBits
xxxxxxxx
xxxxxxx
l
s
b
Ack
xxxxxxxx
Ack
Ack
Ack
CH1/CH2
= 0xB2
CH3 = 0xB7
S
Slave
Addr
Ack
Sub-Addr
K0
Ack
Ack
Ack
Ack
Ack
K1
xxxxxxxx
xxxxxxx
l
s
b
Ack
xxxxxxxx
Ack
Ack
Ack
K2
Ack
Ack
Ack
Ack
CH1/CH2
= 0xB3
CH3 = 0xB8
xxxxxxxx
xxxxxxx
l
s
b
xxxxxxxx
xxxxxxx
l
s
b
xxxxxxxx
xxxxxxxx
m
s
b
xxx
0000
m
s
b
xxx
0000
m
s
b
xxx
0000
S
Slave
Addr
Ack
Sub-Addr
aa
Ack
Ack
Ack
Ack
Ack
1-aa
xxxxxxxx
xxxxxxx
l
s
b
Ack
xxxxxxxx
Ack
Ack
Ack
ad
Ack
Ack
Ack
Ack
CH1/CH2
= 0xB5
CH3 = 0xBA
xxxxxxxx
xxxxxxx
l
s
b
xxxxxxxx
xxxxxxx
l
s
b
xxxxxxxx
xxxxxxxx
m
s
b
xxx
0000
m
s
b
xxx
0000
m
s
b
xxx
0000
1-ad
Ack
Ack
Ack
Ack
xxxxxxxx
xxxxxxx
l
s
b
xxxxxxxx
m
s
b
xxx
0000
S
Slave
Addr
Ack
Sub-Addr
00000000
ae
xxxxxxx
m
s
b
xxxxxxxx
Ack
Ack
00000000
Ack
Ack
Ack
xxxxxxxx
1-ae
xxxxxxxx
xxxxxxx
l
s
b
Ack
xxxxxxxx
Ack
Ack
Ack
CH1/CH2
= 0xB1
CH3 = 0xB6
Cut
Attack / Decay Control
V
olume
t
a
-1/[F
S
x ln(1-aa)]
t
d
-1/[F
S
x ln(1-ad)]
t
a
t
d
DRC-Derived
Gain Coef
ficient
28
5.23 Format
5.23 Format
5.23 Format
25.23
Format
25.23
Format
K2
T2
K1
K0
T1
{
O1
{
O2
Compression / Expansion
Coef
ficient Computation
NOTE: Compression / Expansion / Compression Displayed
t
Window
-1/[F
S
x ln(1-ae)] Where F
S
= Audio Sample Frequency
ae and (1-ae) Set T
i
me Window Over Which RMS V
alue is Computed
Applies to DRC Servicing CH1/CH2 Only
Comparator
RMS
V
oltage
Estimator
RMS
V
oltage
Estimator
5.23 Format
32
32
Audio Input
CH1 or CH3
Audio Input
CH2
1-16
Spectrum
Analyzer/VU Meter
Spectrum Analyzer/VU Meter
BiQuad 1 to 10 Subaddresses = 0xBC to 0xC5
S
Slave
Addr
Ack
Sub-Addr
a
1
Ack
Ack
Ack
Ack
Ack
xxxxxxxx
xxxxxxx
l
s
b
xxxxxxxx
m
s
b
xxx
0000
a
2
Ack
Ack
Ack
Ack
xxxxxxxx
xxxxxxx
l
s
b
xxxxxxxx
m
s
b
xxx
0000
b
0
Ack
Ack
Ack
Ack
xxxxxxxx
xxxxxxx
l
s
b
xxxxxxxx
m
s
b
xxx
0000
b
1
Ack
Ack
Ack
Ack
xxxxxxxx
xxxxxxx
l
s
b
xxxxxxxx
m
s
b
xxx
0000
b
2
Ack
Ack
Ack
Ack
xxxxxxxx
xxxxxxx
l
s
b
xxxxxxxx
m
s
b
xxx
0000
BiQuad 1
RMS V
oltage
Estimator
Spectrum
Analyzer / VU Meter
Log
RMS Window T
ime Constant Subaddress = 0xBB
BiQuad 1
RMS V
oltage
Estimator
RMS V
oltage
Log
S
Slave
Addr
Ack
Sub-Addr
asa
Ack
Ack
Ack
Ack
Ack
xxxxxxxx
xxxxxxx
l
s
b
xxxxxxxx
m
s
b
xxx
0000
1-asa
Ack
Ack
Ack
Ack
xxxxxxxx
xxxxxxx
l
s
b
xxxxxxxx
m
s
b
xxx
0000
BiQuad 2
BiQuad 3
BiQuad 4
r
RMS V
oltage
Estimator
RMS V
oltage
Estimator
RMS V
oltage
Log
Log
Log
Spectrum
Analyzer Output Subaddress = 0xFD
BiQuad 4
s
coder
RMS V
oltage
Estimator
Log
S
Slave
Addr
Ack
Sub-Addr
BiQuad
1
Ack
Ack
xxxxx.xxx
BiQuad 2
Ack
xxxxx.xxx
BiQuad 3
Ack
xxxxx.xxx
BiQuad 4
Ack
xxxxx.xxx
BiQuad 5
Ack
xxxxx.xxx
BiQuad 6
Ack
xxxxx.xxx
BiQuad 7
Ack
xxxxx.xxx
BiQuad 8
Ack
xxxxx.xxx
BiQuad 9
Ack
xxxxx.xxx
BiQuad 10
Ack
xxxxx.xxx
BiQuad 5
BiQuad 6
BiQuad 7
BiQuad 9
BiQuad 10
s
t
Sub-Address Decod
BiQuad 8
Estimator
RMS V
oltage
Estimator
RMS V
oltage
Estimator
RMS V
oltage
Estimator
RMS V
oltage
Estimator
RMS V
oltage
Estimator
RMS V
oltage
Estimator
t Window
-1/[F
S
x ln(1-asa)] Where F
S
= Audio Sample Frequency
asa and (1-asa) Set T
ime Window Over Which RMS V
alue Is
Computed
I2
C Bus
Log
Log
Log
Log
Log
Log
VU Meter Output = 0xFE
S
Slave
Addr
Ack
Sub-Addr
VU Meter Output 1
(BiQuad 5)
Ack
Ack
xxxxx.xxx
Ack
xxxxx.xxx
VU Meter Output 1
(BiQuad 6)
1-17
Dither Block
S
Slave
Addr
Ack
Sub-Addr
Distribution 1 Mix
Ack
Ack
Ack
Ack
Ack
xxxxxxxx
xxxxxxx
l
s
b
xxxxxxxx
m
s
b
xxx
0000
Distribution 2 Mix
Ack
Ack
Ack
Ack
xxxxxxxx
xxxxxxx
l
s
b
xxxxxxxx
m
s
b
xxx
0000
LFSR1 Mix and LFSR2 Mix Are 5.23 Format Coef
ficients
S
Slave Addr
Ack
Sub-Addr
Dither Seed
Ack
Ack
Ack
Ack
Ack
xxxxxx
l
s
b
00000000
00000000
m
s
b
xxxxxx
l
s
b
m
s
b
0xC6
0xC7
Condensed
LFSR2
Seed
Condensed
LFSR1
Seed
Linear Feedback Shift Register Block
Dither 1
Dither 2
Dither 3
LFSR1
LFSR2
Seed Build Logic
L
- W 0 +W
0.25
0.5
p
Output
Sampler
S
t1
S
t2
S
t3
S
t4
S
t5
S
t6
NOTE: W = 16.0 => 0x000008000000 in 25.23 Format
O
G
I
C
1-18
GPIO and W
atchdog T
imer Subaddresses
SUBADDRESS(es)
P
ARAMETER(s)
0xC8-0xC9
Factory T
est Subaddresses
0xCA-0xCF
SDIN4 Input Mixers
0xD0-0xD1
CH1/CH2 to CH3
After Effects
Mixers
0xD2-0xEA
Reserved
GPIO0
GPIO1
GPIO2
GPIO3
D
Q
D
Q
D
Q
D
Q
Sample
Logic
0xEF
Down
Counter
LD
LRCLK
Decode 0
W
atchdog
Counter
Reset
0xEB
PWRDN
DA
T
A
P
A
TH

SWITCH
Reset
GPIODIR
3
READ
EN
Determines
How Many Consecutive Logic 0 Samples
(Where Each Sample Is Spaced by GPIOFSCOUNT LRCLKs)
Are Required to Read a Logic 0 on a GPIO Input Port
S
Slave Addr
Sub-Addr
Ack
00000000
Ack
Ack
21
0
0000
Ack
GPIOFSCOUNT
Ack
GPIO_samp_int
Ack
31
24
23
20
19
16
15
8
7
0
S
Slave Addr
Sub-Addr
Ack
00000000
Ack
Ack
31
24
00000000
23
16
Ack
00000000
15
8
Ack
0000000x
70
Ack
1 (Default State)
Disables W
atchdog
T
imer
Decode 2
16
Microprocessor
Clock
Microprocessor
Microprocessor
Firmware
Microprocessor
Bus
Microprocessor
Control
0xEE
GPIO_in_out
3
S
Slave Addr
Sub-Addr
Ack
00000000
Ack
Ack
21
0
Ack
31
24
23
16
0
00000000
15
8
00000000
Ack
74
0000
Ack
3
I2
C Slave Mode
and
I2
C Master Mode
W
rite
I2
C Master
Mode Read
1-19
SUBADDRESS(es)
P
ARAMETER(s)
0xEC-0xED
Reserved/Factory
T
est Subaddresses
0xEE-0xEF--See Subaddress 0xEB
GPIO Port I/O V
alues and GPIO Parameters
0xF0--See Subaddress 0xA2
Master Mute/Un-Mute
0xF1--Also See Subaddress 0xA2 and Subaddress 0xF5
S
Slave
Addr
Ack
Sub-Addr
t T
r
ans
ition
= TBLC[7:0] x 1/LRCLK
Ack
Ack
Ack
Ack
Ack
xxxxxxxx
0000000
v
s
c
00000000
00000000
T
reble and Bass
Slew Rate
TBLC[7:0]
0xF1
31
24
23
16
15
8
7
0
Bass
Filter Set N
T
reble
Filter Set N
t T
r
ans
ition
= TBLC[7:0] x 1/LRCLK
0xF2-0xF4--See
Subaddress 0xA2
CH1-CH3 V
olume CMDS
1-20
Subaddress--Bass and Treble Shelf Filter Parameters
S
Slave Addr
Ack Sub-Addr Ack
Ack
Ack
00000xxx
00000000
0xF5
CH3
Ack
00000xxx
CH2
Ack
00000xxx
CH1
S
Slave Addr
Ack Sub-Addr Ack
Ack
Ack
00000xxx
00000000
0xF7
CH3
Ack
00000xxx
CH2
Ack
00000xxx
CH1
S
Slave Addr
Ack Sub-Addr Ack
Ack
Ack
xxxxxxxx
00000000
0xF6
Ack
xxxxxxxx
Ack
xxxxxxxx
S
Slave Addr
Ack Sub-Addr Ack
Ack
Ack
xxxxxxxx
00000000
0xF8
Ack
xxxxxxxx
Ack
xxxxxxxx
CH1
Treble Shelf Selection (Filter Index)
CH2
CH3
CH1
CH2
CH3
Bass Shelf Selection (Filter Index)
Treble Filter Set Selection
Bass Filter Set Selection
BASS
FILTER 5
BASS
FILTER 4
BASS
FILTER 3
BASS
FILTER 2
BASS
FILTER 1
TREBLE
FILTER 5
TREBLE
FILTER 3
TREBLE
FILTER 1
TREBLE
FILTER 4
TREBLE
FILTER 2
MID-BAND
MAX BOOST
SHELF
MAX CUT
SHELF
Treble & Bass Filter Set Commands
0 => No Change
1 - 5 => Filter Sets 1 - 5
6 - 7 => Illegal (Behavior Indeterminate)
Treble & Bass Filter Shelf Commands
0 =>
Illegal (Behavior Indeterminate)
1 - 150 => Filter Shelves 1 - 150
1 => +18-dB Boost
150 => -18-dB Cut
151 - 255 => Illegal (Behavior Indeterminate)
FREQUENCY
S
Slave Addr
Ack Sub-Addr Ack
Ack
Ack
00000000
00000000
0xF1
Ack
0000000
Ack
xxxxxxxx
Treble/Bass Slew Rate = TBLC
(Slew Rate = TBLC/FS,
Where FS = Audio Sample Rate)
Treble/Bass Slew Rate Selection
V
C
S
0
7
FS
3-dB CORNERS (kHz)
FS
(LRCLK)
FILTER SET 5
FILTER SET 4
FILTER SET 3
FILTER SET 2
FILTER SET 1
(LRCLK)
BASS
TREBLE
BASS
TREBLE
BASS
TREBLE
BASS
TREBLE
BASS
TREBLE
96 kHz
0.25
6
0.5
12
0.75
18
1
24
1.5
36
88.4 kHz
0.23
5.525
0.46
11.05
0.691
16.575
0.921
22.1
1.381
33.15
64 kHz
0.167
4
0.333
8
0.5
12
0.667
16
1
24
48 kHz
0.125
3
0.25
6
0.375
9
0.5
12
0.75
18
44.1 kHz
0.115
2.756
0.23
5.513
0.345
8.269
0.459
11.025
0.689
16.538
32 kHz
0.083
2
0.167
4
0.25
6
0.333
8
0.5
12
24 kHz
0.063
1.5
0.125
3
0.188
4.5
0.25
6
0.375
9
22.05 kHz
0.057
1.378
0.115
2.756
0.172
4.134
0.23
5.513
0.345
8.269
16 kHz
0.042
1
0.083
2
0.125
3
0.167
4
0.25
6
12 kHz
0.031
0.75
0.063
1.5
0.094
2.25
0.125
3
0.188
4.5
11.025 kHz
0.029
0.689
0.057
1.378
0.086
2.067
0.115
2.756
0.172
4.134
1-21
W
ord Size Code
I
2
S FORMA
T
,
CLOCK MANAGEMENT
, AND I
2
C M AND N ASSIGNMENTS
n[2:0]
0
2
m[3:0]
3
6
OSC
XT
ALI
0
1
2
3
MCLKO
0
1
2
PLL0
x1
1
PLL
MUX
MUX
PLL
BYP
ASS
Digital Audio
Processor
Clock
PLL[1:0]
1
0
MUX
MICROCLK_DIV
1/(M+1)
I2C_SDA
0
1
2
3
4
5
6
7
MUX
MUX
CR
YST
AL
0
1
2
3
MUX
1
0
MUX
0
1
2
3
4
5
6
7
MUX
0
1
2
3
4
5
6
7
MUX
1
0
MUX
0
1
SCLKIN
SCLKOUT2
SCLKOUT1
LRCLK
Microprocessor
Clock
0xFB
0xF9
DWFMT
(Data W
ord
Format)
W
ord Size
32 Bit
16 Bit
18 Bit
20 Bit
24 Bit
32 Bit
IM0/OM0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
Mode
Discrete, Left Justified
Discrete, Left Justified
Discrete, Right Justified
Discrete, I
2
S
Discrete, 16 - Bit Packed
TDM_LJ_8
TDM_LJ_6
TDM_LJ_4
TDM_I2S_8
TDM_I2S_6
TDM_I2S_4
TDM_20Bit_6
6 Ch, Single Chip, Crystal (LJ)
6 Ch, Single Chip (LJ)
6 Ch, Single Chip, Crystal (I
2
S)
6 Ch, Single Chip, 20 - Bit
AB
assigns TDM time slots for those TDM
outputs involving two T
AS3103s. For these
output formats, one of the T
AS3103 chips
must be defined as AB = 0. The other
T
AS3103 chip must be defined as AB = 1.
MCLKI
IW2/OW2
0
0
0
0
1
1
1
1
IW1/OW1
0
0
1
1
0
0
1
1
IW0/OW0
0
1
0
1
0
1
0
1
Ack
IOM
Ack
OW[2:0]
15
IW[2:0]
0
AB
14
13
1
1
10
8
7
DWFMT
8
15
Ack
z[2:0]
IMS
x[2:0]
ICS
Ack
x[2:0]
y[2:0]
w[1:0]
000
Ack
Sub-Addr
Ack
Slave
Addr
S
16
18
19
21
22
23
24
26
27
28
29
31
OM[3:0]
IM[3:0]
74
3
0
2
4
16
32
8
2
4
16
32
8
2
4
2
4
PLL1
4
I2C_SCL
2
N
I
2
C
Sampling
Clock
10
I
2
C
Master
SCL
I
2
C
Module
32
64
128
192
256
512
384
00000000
Ack
Sub-Addr
Ack
Slave Addr
S
Ack
00000000
Ack
00000000
Ack
0xxxxxxx
Ack
IM1/OM1
IM2/OM2
IM3/OM3
XT
ALO
32 Bit
32 Bit
NOTE:
F9 must not be updated without first muting all three monaural channels in the T
AS3103.
Please see Section 2.1.1 for a detailed discussion of this restriction.
Serial
Audio Port (AP) Mode Code
Input and output mode selections are independent.
Input and output word sizes are
independent.
1-22
Delay Channel 1 = 2 x {D1[11:0] + 1}
S
Slave Addr
Ack Sub-Addr
D1 and R1
Ack
Ack
Ack
Ack
Ack
xxxxxxx
l
s
b
m
s
b
xxx
0000
D2 and R2
Ack
Ack
Ack
Ack
xxxxxxx
l
s
b
m
s
b
xxx
0000
Note: 2 x (D1 + D2 + D3) + 3 x (R1 +R2 +R3)
4076
0xFA
l
s
b
l
s
b
xxxxxxx
xxxxxxx
m
s
b
xxx
0000
m
s
b
xxx
0000
D3 and R3
Ack
Ack
Ack
Ack
xxxxxxx
l
s
b
m
s
b
xxx
0000
l
s
b
xxxxxxx
m
s
b
xxx
0000
Delay
Reverb
Delay Channel 2 = 2 x {D2[11:0] + 1}
Delay Channel 3 = 2 x {D3[11:0] + 1}
Reserved
Reverb Channel 1 = 2 x {R1[11:0] + 1}
Reserved
Reverb Channel 2 = 2 x {R2[11:0] + 1}
Reverb Channel 3 = 2 x {R3[11:0] + 1}
Delay/Reverb Assignments
NOTE: Changes in reverb and delay assignments can result in unplesasant and extended audio artifacts.
It is recommended that the TAS3103 always be muted before making reverb and delay changes.
See section 3.6.3 for a detailed discussion of this restriction.
1-23
SUB-ADDRESS(ES)
PARAMETER(S)
0xFC--See Subaddress 0x00
Ending I2C Check Word
0xFD-0xFE--See Subaddress 0xBB
Spectrum Analyzer/VU Meter Ouputs
0xFF--Volume Busy Flag
0xFF--Volume Busy Flag
S
Slave Addr
Ack Sub-Addr Ack
Ack
0000000x
Volume
Flag
S
Volume Flag = 0
No volume commands are active.
S
Volume Flag = 1
One or more volume commands are
active.
1-24
2-1
2 Hardware Architecture
Figure 2-1 depicts the hardware architecture of the chip. The architecture consists of five major blocks:
Input Serial Audio Port (SAP)
Output Serial Audio Port (SAP)
DPLL and Clock Management
Controller
Digital Audio Processor (DAP)
2-2
76-Bit Adder
Regs
Regs
32 Bits
32 Bits
32 Bits
32 Bits
SDIN1
32 Bits
SDIN2
32 Bits
SDIN3
32 Bits
SDIN4
INPUT SAP
256 Bits
64 Bits
OUTPUT SAP
SDOUT3
SDOUT2
SDOUT1
SCLKIN
OSC
PLL and Clock Management
ORIN
I2C_SDA
GPIO0
Controller
Arithmetic
Engine
Dual Port
Data RAM
Coefficient
RAM
4K x 16
Delay Line
RAM
Program
ROM
DAP
Instruction Decoder/Sequencer
Digital Audio Processor
(DAP)
Arithmetic Unit
MCLKO
PLL1 PLL0
SCLKOUT1
LRCLK
MICROCLK_DIV SCLKOUT2
CS0
CS1
I2C_SCL
GPIO1
GPIO2
GPIO3
Volume
Update
2K x 8
Data
RAM
16K x 8
Program
ROM
256 x 8
Data
RAM
8-Bit
WARP
8051 Microprocessor
1/2N
Reg
1/(M+1)
I2C
Master/Slave
Controller
10
Master
SCL
Reg
64 Bits
MCLKI
XTALI
XTALO
M
U
X
Y
X
M
U
X
Z
M
U
X
2
2
M
U
X
MCLK
PLL
(x11)
M
U
X
2
2
M
U
X
4
M
U
X
I2CM_S
Oversample Clock
Figure 2-1. TAS3103 Detailed Hardware Block Diagram
2-3
2.1
Input and Output Serial Audio Ports (SAPs)
The TAS3103 accepts data in various serial data formats including left/right justified and I
2
S, 16 through 32 bits,
discrete, or TDM. Sample rates from 8 kHz through 96 kHz are supported. Each TAS3103 has four input serial ports
and three output serial ports, labeled SDIN[4:1] and SDOUT[3:1] respectively. All ports accommodate stereo data
formats, and SDIN1 and SDOUT1 also accommodate time-division multiplex (TDM) data formats. The formats are
selectable via I
2
C commands. All input channels are assigned the same format and all output channels are assigned
the same format; and the two formats need not be the same. The TAS3103 can accommodate system architectures
that require data format conversions without the need for additional glue logic. If a TDM format is selected for the input
port, only SDIN1 is active; the other three input channels cannot be used. If a TDM format is selected for the output
port, only SDOUT1 is active; the other two channels cannot be used.
2.1.1
SAP Configuration Options
The TAS3103 serial interface data format options for discrete (stereo) data are detailed in Figure 2-2.
Left / Right
Justified
LRCLK
SCLK
MSB-1
LSB
LSB
Left Justified
LSB
LSB+1
LSB+1
Right Justified
LSB
LSB+1
Bit 31
Bit 0
Bit 31
Bit 0
Bit 31
SCLK
LSB
Bit 0
Bit 31
Bit 31
MSB
Bit 0
SCLK
Bit 31
Bit 31
Bit 0
Bit 0
Bit 31
Bit 31
Bit 0
MSB
I
2
S
I
2
S
MSB-1
MSB
MSB-1
MSB
MSB-1
MSB
MSB-1
MSB
LSB+1
LSB
LSB+1
MSB-1
MSB
MSB-1
MSB
Figure 2-2. Discrete Serial Data Formats
When the TAS3103 is transmitting serial data, it uses the negative edge of SCLK to output a new data bit. The
TAS3103 samples incoming serial data on the rising edge of SCLK.
The TDM modes on the TAS3103 only provide left justified and I
2
S formats, and each word in the TDM data stream
adheres to the bit placement shown in Figure 2-2. Figure 2-3 illustrates the output data stream for a 4-channel TDM
mode. Two cases are illustrated; an I
2
S data format case (SAP output mode 1010) and a left-justified data format case
(SAP output mode 0111).
MSB-1
LSB
LSB
LSB
LSB
MSB
Left
LRCLK
Data
LRCLK
Data
Justified
MSB
MSB-1
MSB
MSB-1
MSB
MSB-1
MSB
LSB
LSB
LSB
LSB
MSB-1
MSB
I
2
S
Left Channel 1
Left Channel 2
Right Channel 1
Right Channel 2
Left Channel 1
Left Channel 2
Right Channel 1
Right Channel 2
MSB-1
MSB
MSB-1
MSB
MSB-1
MSB
Figure 2-3. Four-Channel TDM Serial Data Formats
2-4
A 16-bit field contained in the 32-bit word located at I
2
C subaddress 0xF9 configures both the input and output serial
audio ports. Figure 2-4 illustrates the format of this 16-bit field. The data is shown in the transmitted I
2
C protocol
format, and thus, in addition to the data, the start bit S, the slave address, the subaddress, and the acknowledges
required by every byte are also shown.
0xF9
DWFMT (Data Word Format)
Ack
IOM
Ack
OW[2:0]
15
IW[2:0]
0
AB
14
13
11 10
8
7
DWFMT
8
15
Ack
xxxxxxxx
Ack
Sub-Addr
Ack
Slave Addr
S
24
31
OM[3:0]
IM[3:0]
7
4
3
0
xxxxxxxx
Ack
16
23
Output
Port
Format
Input
Port
Format
Output Port
TDM Alignment
Input Port
Word
Size
Output Port
Word
Size
Figure 2-4. SAP Configuration Subaddress Fields
Commands to reconfigure the SAP cannot be issued as standalone commands, but must accompany mute and
unmute commands. The reason for this is that an SAP configuration change while a volume or bas and treble update
is taking place can cause the update to not properly be completed. Figure 2-5 shows the recommended procedure
for issuing SAP configuration update commands.
2-5
Enter
Issue Mute Command
Vol
Busy
Yes
No
Vol
Busy
Yes
No
Issue SAP Configuration
Change Command
Issue Un-Mute Command
Vol
Busy
Yes
No
Exit
Mute Command = 0x00000007 at subaddress x0F0
Un-mute command = 0x00000000 at subaddress 0xF0
SAP configuration subaddress = 0x59
Volume busy flag = LSB of subaddress 0xFF. Logic 1 = busy
Figure 2-5. Recommended Procedure for Issuing SAP Configuration Updates
Figure 2-6, Figure 2-7, and Figure 2-8 tabularize the formatting and word size options available for the input SAP
and output SAP. In these figures, data formats are paired when the only difference between the pair is whether the
word placement within the LRCLK period is left justified or I
2
S. The TDM formats available include single chip TDM
output formats (SDOUT1
chipA
or SDOUT1
chipB
) and two chip TDM output formats (SDOUT1
chipA
OR'ed with
SDOUT1
chipB
). For two chip TDM output formats, the OR'ing operation is accomplished by routing SDOUT1 from
one of the two TAS3103 chips to ORIN of the other TAS3103 chip. The AB bit also comes into play for two chip TDM
formats; AB must be set to 1 on one of the two TAS3103 chips and set to 0 on the other TAS3103 chip. For a given
connection of SDOUT1 to ORIN, it does not matter which TAS3103 is set up as chip AB = 1 and which chip is set
up as chip AB = 0. However, the routing of the processed data to the output registers in the TAS3103 is dependent
on which chip is chip AB = 0 and which chip is chip AB = 1. Figure 2-10 and Figure 2-11 illustrate this dependence.
2-6
In Figure 2-10 and Figure 2-11, the paired TDM output formats 0101 and 1000 are unique in that each format, in
effect, services two distinct industry formats. For these two modes, if register Y in chip AB = 1 is set to zero (by
appropriate output mixer coefficient settings), the resulting format is a standard 8 CH TDM format. This option is
illustrated in Figure 2-7.
2-7
INPUT
IM[3:0]
FORMA
T
WORDSIZE
DA
T
A
DISTRIBUTION: A, B, C, D, E, F
,
G, H = INPUT MIXER INPUTS
INPUT
TYPE
IM[3:0]
FORMA
T
WORDSIZE
SDIN1
SDIN2
SDIN3
000X
(1)
Left justified
All options valid
LR
LR
LR
0010
Right justified
All options valid
LR
AB
LR
LR
DISCRETE
001
1
I2
S
A
l
l
options valid except 32 bit
AB
32
32
CD
32
32
EF
32
32
DISCRETE
0100
16-bit
packed
IW[2:0] = 001
LR
AB
16
16
Not available
Not available
0101
8 CH transfer
, left
justified
All options valid
LR
Not available
Not available
1000
8 CH transfer
, I
2
S
A
l
l
options valid except 32 bit
G
E
CAH
F
DB
32
32
32
32
32
32
32
32
Not available
Not available
01
10/1
101
(2)(3)
6 CH, left justified
All options valid
LR
Not available
Not available
1001
(3)
6 CH, I
2
S
A
l
l
options valid except 32 bit
EC
A
32
32
32
FD
B
32
32
32
Not available
Not available
TIME
DIVISION
01
1
1
4 CH, left justified
All options valid
LR
Not available
Not available
DIVISION
MUL
TIPLEX
(TDM)
1010
4 CH, I
2
S
A
l
l
options valid except 32 bit
CA
32
32
DB
32
32
Not available
Not available
101
1/1
1
1
1
(4)
6 CH, 20 bit
IW[2:0] = 01
1
LR
ECA
20
20
20
4
FD
B
20
20
20
4
Not available
Not available
1
100
6 CH data, 8 CH
transfer
, left justified
All options valid
LR
Not available
Not available
111
0
6 CH data, 8 CH
transfer
, I
2
S
A
l
l
options valid except 32 bit
EC
A
F
D
B
32
32
32
32
32
32
32
32
Not available
Not available
NOTES:
1.
Left justified, stereo is the default input format.
2.
IM[3:0] modes 01
10 and 1
101 are identical for the input SAP
. OM[3:0] modes 01
10 and 1
101 do produce dif
ferent results in the
output SAP (see Figure 2-7).
3.
If a 6 CH input format is selected, the output format must also be set to 6 CH. When in a 6 CH mode, data format selections--I
2
S and left justified--for the 6 Ch input
SAP can be made independent of the data format selections--I
2
S and left justified--made for the 6 CH output SAP
.
4.
IM[3:0] modes 101
1 and 1
1
1
1
are identical for the input SAP
. OM[3:0] modes 101
1 and 1
1
1
1
do produce dif
ferent results in the
output SAP (see Figure 2-7).
Figure 2-6.
Format Options: Input Serial Audio Port
2-8
OUTPUT
OM[3:0]
FORMA
T
WORDSIZE
DA
T
A
DISTRIBUTION: U, V
,
W
,
X, Y
,
Z = OUTPUT MIXER OUTPUTS
OUTPUT
TYPE
OM[3:0]
FORMA
T
WORDSIZE
SDOUT1
SDOUT2
SDOUT3
0101
8 CH, 2 chip, left
justified
All options valid
LR
U
AB
= 0
V
W
X
Not available
Not available
1000
8 CH, 2 chip, I
2
S
All options valid except 32 bit
U
AB
= 0
V
W
X
32
32
32
32
32
32
32
32
AB = 1
U
V
W
Y
X
32
32
32
32
32
32
32
32
Not available
Not available
01
10
(1)
6 CH, 2 chip, left
justified
All options valid
LR
U
AB
= 0
V
W
Not available
Not available
1001
(1)
6 CH, 2 chip, I
2
S
All options valid except 32 bit
U
AB
= 0
V
W
32
32
32
32
32
32
AB = 1
U
W
Y
32
32
32
32
32
32
Not available
Not available
01
1
1
4 CH, left justified
All options valid
LR
Not available
Not available
TIME
1010
4 CH, I
2
S
All options valid except 32 bit
UV
32
32
WX
32
32
Not available
Not available
TIME
DIVISION
MUL
TIPLEX
(TDM)
101
1
6 CH, 2 chip,
20 bit
OW[2:0] = 01
1
LR
UV
20
20
20
4
W
20
20
20
4
AB
= 0
AB = 1
U
20
20
20
4
VW
20
20
20
4
Not available
Not available
1
100
6 CH data,
8 CH transfer
,
left justified
All options valid
LR
Not available
Not available
111
0
6 CH data,
8 CH transfer
,
I2
S
All options valid except 32 bit
U
AB
= 0
W
X
Z
32
32
32
32
32
32
32
32
V
Y
Not available
Not available
1
101
(1)
6 CH,
left justified
All options valid
LR
UV
W
32
32
32
XY
Z
32
32
32
Not available
Not available
1111
6 CH, 20 bit
OW[2:0] = 01
1
LR
UV
W
20
20
20
4
XY
Z
20
20
20
4
Not available
Not available
NOTE
1:
If a 6 CH output
format is selected, the input format must also be set to 6 CH. When in a 6 CH mode, data format selecti
ons--I
2
S and left justified--for the output SAP can
be made independent of the data format selections--I
2
S and left justified--can be made for the input SAP
.
Figure 2-7.
TDM Format Options: Output Serial Audio Port
2-9
OUTPUT
OM[3:0]
FORMA
T
WORDSIZE
DA
T
A
DISTRIBUTION: U, V
,
W
,
X, Y
,
Z = OUTPUT MIXER OUTPUTS
OUTPUT
TYPE
OM[3:0]
FORMA
T
WORDSIZE
SDOUT1
SDOUT2
SDOUT3
000X
(1)
Left justified
All options valid
LR
LR
LR
0010
Right justified
All options valid
LR
UV
LR
WX
LR
YZ
DISCRETE
001
1
I2
S
All options valid except 32 bit
UV
32
32
WX
32
32
YZ
32
32
DISCRETE
0100
16-bit packed
OW[2:0] = 001
LR
UV
16
16
Not available
Not available
NOTE 1:
Left justified, stereo is the default input format.
Figure 2-8.
Discrete Format Options: Output Serial Audio Port
SAMPLE
SIZE
INPUT IW[2:0]
OUTPUT OW[2:0]
SAMPLE
SIZE
IW2
IW1
IW0
OW2
OW1
OW0
(32)
0
0
0
0
0
0
DEF
AUL
T
16 Bit
0
0
1
0
0
1
18 Bit
0
1
0
0
1
0
20 Bit
0
1
1
0
1
1
24 Bit
1
0
0
1
0
0
32 Bit
1
0
1
1
0
1
(32)
1
1
0
1
1
0
(32)
1
1
1
1
1
1
(32)
Reserved for future family members. Selection of 000, 1
10, or 1
1
1 in the
T
AS3103
selects a 32-bit sample size.
Figure 2-9.
W
ord Size Settings
2-10
U1
ORIN
TAS3103
SDOUT1
U2
ORIN
TAS3103
SDOUT1
(AB = '1')
(AB = '0')
L
R
U
U2
LRCLK
SDOUT1
U1
32
32
32
32
32
32
32
32
L
R
U
LRCLK
U2
V
W
X
32
32
32
32
32
32
32
32
U1
U
V
W
0
X
32
32
32
32
32
32
32
32
U
U1
V
U2
W
U2
X
U2
V
U1
W
U1
X
U1
Figure 2-10. 8 CH TDM Format Using SAP Modes 0101 and 1000
U1
ORIN
TAS3103
SDOUT1
U2
ORIN
TAS3103
SDOUT1
(AB = 0)
(AB = 1)
L
R
U
U1
LRCLK
SDOUT1
U1
32
32
32
32
32
32
32
32
L
R
U
LRCLK
U1
V
W
0
32
32
32
32
32
32
32
32
U2
U
0
W
Y
0
32
32
32
32
32
32
32
32
U
U2
V
U1
W
U1
Y
U2
W
U2
Figure 2-11. 6 CH Data, 8 CH Transfer TDM Format Using SAP Modes 0101 and 1000
For these same two modes, if register X in chip AB = 0 is set to zero, and registers V and X in chip AB = 1 are set
to zero, the resulting format is a 6 CH data, 8 CH transfer format. This option is shown in Figure 2-11.
The data output format in Figure 2-11 is identical to that realized using data output formats 1100 and 1110 in
Figure 2-7. The difference is that SAP modes 1010 and 1000 provide six independent monaural channels to process
the data, whereas SAP modes 1100 and 1110 provide only three independent monaural channels to process the data.
2.1.2
Processing Flow--SAP Input to SAP Output
All SAP data format options other than I
2
S result in a two-sample delay from input to output, as illustrated in
Figure 2-12. Figure 2-12 is also relevant if I
2
S formatting is used for both the input SAP and the output SAP (the
polarity of LRCLK in Figure 2-12 has to be inverted in this case). However, if I
2
S format conversions are performed
between input and output, the delay becomes either 1.5 samples or 2.5 samples, depending on the processing clock
frequency selected for the digital audio processor (DAP) relative to the sample rate of the incoming data. The input
to output delay for an I
2
S input format and a non-I
2
S output format is illustrated in Figure 2-13(a), and Figure 2-13(b)
illustrates the delay for a non-I
2
S input format and an I
2
S output format. In each case, two distinct input to output delay
times are shown: a 1.5 sample delay time if the processing time in the DAP is less than half the sample period, and
a 2.5 sample delay time if the processing time in the DAP is greater than half the sample period.
The departure from the two-sample input to output processing delay when I
2
S format conversions are performed is
due to the use of a common LRCLK. The I
2
S format uses the falling edge of LRCLK to begin a sample period, whereas
all other formats use the rising edge of LRCLK to begin a sample period. This means that the input SAP and digital
audio processor (DAP) operate on sample windows that are 180
out of phase with respect to the sample window
used by the output SAP. This phase difference results in the output SAP outputting a new data sample at the midpoint
of the sample period used by the DAP to process the data. If the processing cycle completes all processing tasks
before the midpoint of the processing sample period, the output SAP outputs this processed data. However, if the
processing time extends past the midpoint of the processing sample period, the output SAP outputs the data
processed during the previous processing sample period. In the former case, the delay from input to output is 1.5
samples. In the latter case, the delay from input to output is 2.5 samples.
2-11
SDIN1
SDOUT1
Sample T
ime N
Sample T
ime N + 1
Sample T
ime N + 2
1
st
Half - Sample T
ime N
Serial
Rx
Regs
Input
Holding
Regs
Input
Holding
Regs
A
Channel
1
U
V
B
SDIN2
SDOUT2
C
Channel 2
W
X
D
SDIN3
SDOUT3
E
Channel 3
Y
Z
F
G
H
SDIN1
SDOUT1
Sample T
ime N
Sample T
ime N + 1
Sample T
ime N + 2
2
nd
Half - Sample T
ime N
Serial
Rx
Regs
Input
Holding
Regs
Input
Holding
Regs
A
Channel
1
U
V
B
SDIN2
SDOUT2
C
Channel 2
X
D
SDIN3
SDOUT3
E
Channel 3
Y
Z
F
SDIN4
G
H
SDIN1
SDOUT1
Sample T
ime N
Sample T
ime N + 1
Sample T
ime N + 2
Sample
T
ime N + 1
Serial
Rx
Regs
Input
Holding
Regs
Input
Holding
Regs
A
Channel
1
U
V
B
SDIN2
SDOUT2
C
Channel 2
X
D
SDIN3
SDOUT3
E
Channel 3
Y
Z
F
G
H
SDIN1
SDOUT1
Sample T
ime N
Sample T
ime N + 1
Sample T
ime N + 2
Sample
T
ime N + 2
Serial
Rx
Regs
Input
Holding
Regs
Input
Holding
Regs
A
Channel
1
U
V
B
SDIN2
SDOUT2
C
Channel 2
X
D
SDIN3
SDOUT3
E
Channel 3
Y
Z
F
G
H
W
W
W
SDIN4
SDIN4
SDIN4
Figure
2-12.
SAP
Input-to-Output Latency
2-12
L2
LRCLK
R2
L3
R3
L4
R4
L1, R1
L2, R2
L3, R3
L0
R0
L1
R1
L2
L1, R1
L2, R2
L3, R3
R0
L1
R1
L2
R2
L3
SDIN
Processing Cycle
Load Output Holding Registers
Holding Register
Output Serial Registers
SDOUT
2.5
Cycle
Delay
1.5
Cycle
Delay
Processing Cycle
Load Output Holding Registers
Holding Register
Output Serial Registers
SDOUT
(a) Left-Justified Input / I
2
S Output
L2
LRCLK
R2
L3
R3
L4
R4
L1, R1
L2, R2
L3, R3
L0
R0
L1
R1
L2
L1, R1
L2, R2
L3, R3
R0
L1
R1
L2
R2
L3
SDIN
Processing Cycle
Load Output Holding Registers
Holding Register
Output Serial Registers
SDOUT
2.5
Cycle
Delay
1.5
Cycle
Delay
Processing Cycle
Load Output Holding Registers
Holding Register
Output Serial Registers
SDOUT
(b) I
2
S Input / Left-Justified Output
Figure 2-13. SAP Input-to-Output Latency for I
2
S Format Conversions
The delay from input to output can thus be either 1.5 or 2.5 sample times when data format conversions are performed
that involves the I
2
S format. However, which delay time is obtained for a particular application is determinable and
fixed for that application, providing care is taken in the selection of MCLKI/XTALI with respect to the incoming sample
clock LRCLK.
2-13
Table 2-1 lists all viable clock selections for a given audio sample rate (LRCLK). The table only includes those clock
choices that allow enough processing throughput to accomplish all tasks within a given sample time (T
s
= 1/LRCLK).
For each entry in the table, the DAP processing time is given in terms of whether the time is greater than 0.5 T
s
(resulting in an input to output delay of 2.5 T
s
), or less than 0.5 T
s
(resulting in an input to output delay of 1.5 T
s
).
Table 2-1 is valid for both master and slave I
2
S modes (bit IMS at subaddress 0xF9 determines I
2
S master/slave
selection--see the DPLL and Clock Management section that follows). For all applications, MCLK must be
128
LRCLK (FS). In the I
2
S master mode, MCLK, SCLK (I
2
S bit clock) LRCLK are all harmonically related. Furthermore,
in the I
2
S master mode, if a master clock value given in Table 2-1 is used, the latency realized in performing I
2
S format
conversions, 1.5 samples or 2.5 samples, is stable and fixed over the duration of operation. However, greater care
must be taken for the I
2
S slave mode. In this mode, the device has the proper operational throughput to perform all
required computations as long as MCLK is
128 LRCLK. But there is no longer the requirement that MCLK be
harmonically related to SCLK and LRCLK. Values of MCLK could be chosen such that the output dithers between
latencies of 1.5 and 2.5 sample times. There may be cases where part of the data stream output exhibits sample time
latencies of 1.5 T
s
and the other portion of the output data stream exhibits sample time latencies of 2.5 T
s
. To assure
that such cases do not happen in the I
2
S slave mode, the relationships between MCLK and LRCLK given in Table 2-1
should be followed for data format conversions involving the I
2
S format. The MCLKI/XTALI frequencies given in
Table 2-1 (if set to within
5% of the nominal value shown) assure that the DAP processing time falls above 0.5 T
s
or below 0.5 T
s
with enough margin to assure that there is no race condition between the outputting of data and the
completion of the processing tasks.
Table 2-1. TAS3103 Throughput Latencies vs MCLK and LRCLK
AUDIO
SAMPLE RATE
(LRCLK)
MASTER CLOCK(2)
(MCLKI/XTALI)
DAP(1) CLOCK
(PLL_OUTPUT)
DAP CLOCK
Cycles/LRCLK
DAP
PROCESSING
TIME
THROUGH-
PUT DELAY
96 kHz
24.576 MHz, 12.288 MHz
135.168 MHz
1408
> Ts/2
2.5 Ts
88.2 kHz
22.5792 MHz, 11.2896 MHz
124.1856 MHz
1408
> Ts/2
2.5 Ts
48 kHz
24.576 MHz, 12.288 MHz
135.168 MHz
2816
< Ts/2
1.5 Ts
48 kHz
24.576 MHz, 12.288 MHz, 6.144 MHz
67.584 MHz
1408
> Ts/2
2.5 Ts
44.1 kHz
22.5792 MHz, 11.2896 MHz
124.1856 MHz
2816
< Ts/2
1.5 Ts
44.1 kHz
22.5792 MHz, 11.2896 MHz, 5.6448 MHz
62.0928 MHz
1408
> Ts/2
2.5 Ts
32 kHz
16.384 MHz, 8.192 MHz
90.112 MHz
2816
< Ts/2
1.5 Ts
32 kHz
16.384 MHz, 8.192 MHz, 4.096 MHz
45.056 MHz
1408
> Ts/2
2.5 Ts
24.576 MHz, 12.2858 MHz
135.168 MHz
5632
< Ts/2
1.5 Ts
24 kHz
24.576 MHz, 12.2858 MHz, 6.144 MHz
67.584 MHz
2816
< Ts/2
1.5 Ts
24 kHz
12.288 MHz, 6.144 MHz, 3.072 MHz
33.792 MHz
1408
> Ts/2
2.5 Ts
22.5792 MHz, 11.2896 MHz
124.1856 MHz
5632
< Ts/2
1.5 Ts
22.05 kHz
22.5792 MHz, 11.2896 MHz, 5.6448 MHz
62.0928 MHz
2816
< Ts/2
1.5 Ts
22.05 kHz
11.2896 MHz, 5.6448 MHz, 2.8224 MHz
31.0464 MHz
1408
> Ts/2
2.5 Ts
24.576 MHz, 12.288 MHz
135.168 MHz
16896
< Ts/2
1.5 Ts
8 kHz
24.576 MHz, 12.288 MHz, 6.144 MHz
67.584 MHz
8448
< Ts/2
1.5 Ts
8 kHz
12.288 MHz, 6.144 MHz, 3.072 MHz
33.792 MHz
4224
< Ts/2
1.5 Ts
6.144 MHz, 3.072 MHz, 1.536 MHz
16.896 MHz
2112
> Ts/2
2.5 Ts
NOTES:
1. DAP clock is the internal digital audio processor clock. It is equal to 11
MCLK1/XTALI, 11/2
MCLKI/XTALI, or 11/4
MCLKI/XTALI
(as determined by a bit field in I2C subaddress 0xF9). The DAP clock must always be greater than or equal to 1400 FS (LRCLK).
2. MCLKI must always be less than or equal to 25 MHz. XTALI must always be less than or equal to 20 MHz.
2-14
2.2
DPLL and Clock Management
Clock management for the TAS3103 consists of two control structures:
Master clock management: oversees the selection of the clock frequencies for the microprocessor, the I
2
C
controller, and the digital audio processor (DAP). The master clock (MCLKI or XTALI) serves as the source
for these clocks. In most applications, the master clock is input to an on-chip digital phase lock loop (DPLL),
and the DPLL output is used to drive the microprocessor and DAP clocks. A DPLL bypass mode can also
be used, in which case the master clock is used to drive the microprocessor and DAP clocks.
Serial audio port (SAP) clock management: oversees SAP master/slave mode, the settings of SCLKOUT1
and SCLKOUT2, and the setting of LRCLK in the SAP master mode.
Figure 2-14 illustrates the clock circuitry in the TAS3103. The bold lines in Figure 2-14 highlight the default settings
at power turn on, or after a reset. Inputs MCLKI and XTALI source the master clock for the TAS3103. Within the
TAS3103, these two inputs are combined by an OR gate, and thus only one of these two sources can be active at
any one time. The source that is not active must be set to logic 0. In normal operation, the master clock is divided
by 1, 2, or 4 (as determined by the logic levels set at input pins PLL0 and PLL1) and then multiplied by 11 in frequency
by the on-chip DPLL. The ability to bypass the DPLL is also an option under I
2
C command control. The DPLL output
(or MCLKI/XTALI if the DPLL is bypassed) is the processing clock used by the digital audio processor (DAP).
The DAP processing clock can also serve as the clock for the on-chip microprocessor, or the DAP clock can be divided
by four prior to sending it to the microprocessor. The input pin MICROCLK_DIV makes this clock choice. A logic 1
input level on this pin selects the DAP clock for the microprocessor clock; a logic 0 input level on this pin selects the
DAP clock/four for the microprocessor clock. The selected microprocessor clock is also used to drive the clocks used
by the I
2
C control block. Two parameters, N and M, define the clocks used by the I
2
C control block. The I
2
C control
block sampling frequency is set by 1/2
N
, where N can range in value from 0 to 7. A 1/(1 + M) divisor followed by a
1/10 divisor generates the data bit clock (SCL). This drived SCL clock is only used when the I
2
C control block is set
to master mode (input pin I2CM_S = 1). The default value for the I
2
C parameter N depends on whether the I
2
C
controller is in a slave mode (I2CM_S = 0) or a master mode (I2CM_S = 1). In the I
2
C master mode N = 2 (2
N
= 4),
which assures that a 100-kHz I
2
C data clock (SCL) can be generated when the digital audio processor (DAP) is
running at its maximum frequency of 135 MHz. In the I
2
C slave mode N = 1 (2
N
= 2), which assures the I
2
C controller
an adequate over-sampling clock when the DAP is running at the minimum clock frequency required to process 8-kHz
audio data (approximately 11.2 MHz).
2-15
SCLKIN
OSC
PLL and Clock Management
I2C_SDA
Digital Audio Processor
(DAP)
MCLKO
PLL1 PLL0
SCLKOUT1
LRCLK
MICROCLK_DIV SCLKOUT2
I2C_SCL
8-Bit
WARP
8051 Microprocessor
1/2N
1/(M+1)
I2C
Master/Slave
Controller
10
Master
SCL
MCLKI
XTALI
XTALO
M
U
X
Y = 64
DEFAULT
M
U
X
M
U
X
2
2
M
U
X
MCLK
PLL
(x11)
M
U
X
2
2
M
U
X
4
M
U
X
Input
SAP
Microprocessor
and
I2C Bus Controller
Output
SAP
N = 1 (I2C Slave Default)
= 2 (I2C Master Default)
I2CM_S
X = 1
DEFAULT
Z = 2
DEFAULT
Oversample Clock
Figure 2-14. DPLL and Clock Management Block Diagram
When the SAP is in the master mode, the serial audio port (SAP) uses the MCLKI/XTALI master clock to drive the
serial port clocks SCLKOUT1, SLCKOUT2, and LRCLK. When the SAP is in the slave mode, LRCLK is an input and
SCLKOUT2 and SCLKOUT1 are derived from SCLKIN. As shown in Figure 2-14, SCLKOUT1 clocks data into the
input SAP and SCLKOUT2 clocks data from the output SAP. Two distinct clocks are required to support TDM to
discrete and discrete to TDM data format conversions. Such format conversions also require that SCLKIN be the
higher valued bit clock frequency. For TDM in/discrete out format conversions, SCLKIN must be equal to the input
bit clock. For discrete in/TDM out format conversions, SCLKIN must be equal to the output bit clock. The frequency
settings for SCLKOUT1, SCLKOUT2, and LRCLK in the SAP master mode, as well as the SAP master/slave mode
selection, are all controlled by I
2
C commands.
Table 2-2 lists the default settings at power turn on or after a received reset.
2-16
Table 2-2. TAS3103 Clock Default Settings
CLOCK
DEFAULT SETTING
SCLKOUT1
SCLKIN
SCLKOUT2
SCLKIN
LRCLK
Input
MCLKO
MCLKI or XTALI
DAP processing clock
Set by pins PLL0 and PLL1
Microprocessor clock
Set by pin MICROCLK_DIV
I2C sampling clock
I2C master mode
Microprocessor clock/4
I2C slave mode
Microprocessor clock/2
I2C master SCL
I2C sampling clock/90
The selections provided by the dedicated TAS3103 input pins and the programmable settings provided by I
2
C
subaddress commands give the TAS3103 a wealth of clocking options. Table 2-1, in the section describing the serial
audio port (SAP), lists typical clocking selections for different audio sampling rates. However, the following clocking
restrictions must be adhered to:
MCLKI or XTALI
128 F
S
(NOTE: For some TDM modes, MCLKI or XTALI must be
256
F
S
)
Microprocessor clock/20
I
2
C SCL clock
Microprocessor clock
35 MHz
I
2
C oversample clock/10
I
2
C SCL clock
XTALI
12.288 MHz
MCLKI
25 MHz
As long as these restrictions are met, all other clocking options are allowed.
2.3
Controller
The controller serves as the interface between the digital audio processor (DAP), the asynchronous I
2
C bus interface,
and the four general-purpose I/O (GPIO) pins. Included in the controller block is an industry-standard 8051
microprocessor and an I
2
C master/slave bus controller.
2.3.1
8051 Microprocessor
The 8051 microprocessor receives and distributes I
2
C write data, retrieves and outputs to the I
2
C bus controller the
required I
2
C read data, and participates in most processing tasks requiring multiframe processing cycles. The
microprocessor also controls the flow of data into and out of the GPIO pins, which includes volume control when in
the I
2
C master mode The microprocessor has its own data RAM for storing intermediate values and queuing I
2
C
commands, and a fixed program ROM. The microprocessor's program cannot be altered.
2.3.2
I
2
C Bus controller
The TAS3103 has a bidirectional, two-wire, I
2
C-compatible interface. Both 100K-bps and 400K-bps data transfer
rates are supported, and the TAS3103 controller can serve as either a master I
2
C device or a slave I
2
C device.
Master/slave operation is defined by the logic level input into pin I2CM_S (logic 1 = master mode, logic 0 = slave
mode). If this input level is changed, the TAS3103 must be reset.
In the I
2
C master mode, data rate transfer is fixed at 100 kHz, assuming MCLKI or XTALI = 12.288 MHz, PLL0 = PLL1
= 0, and MICROCLK_DIV = 0. In the I
2
C slave mode, data rate transfer is determined by the master device. However,
the setting of I
2
C parameter N at subaddress 0xF8 (see the PLL and Clock Management section) does play a role
in setting the data transfer rate. In the I
2
C slave mode, bit rates other than (and including) the I
2
C-specific 100K-bps
and 400K-bps bit rates can be obtained, but N must always be set so that the over-sample clock into the I
2
C
master/slave controller is at least a factor of 10 higher in frequency than SCL.
2-17
The I
2
C communication protocol for the I
2
C slave mode is shown in Figure 2-15.
I2C_SDA
I2C_SCL
C
S
1
S
Start
(By Master)
Slave Address
(By Master)
0
1
1
0
1
C
S
0
Read or Write
(By Master)
R
/
W
A
C
K
M
S
B
Acknowledge
(By TAS3103)
L
S
B
Data Byte
(By Transmitter)
A
C
K
Acknowledge
(By Receiver)
M
S
B
L
S
B
Data Byte
(By Transmitter)
A
C
K
Acknowledge
(By Receiver)
S
Stop
(By Master)
MSB
MSB-1 MSB-2
LSB
Start Condition
I2C_SDA
While I2C_SCL = 1
Stop Condition
I2C_SDA
While I2C_SCL = 1
Bits CS1 and CS0 in the TAS3103 slave address are compared to the logic levels on pins CS0 and CS1 for address verification. This provides
the ability to address up to four TAS3103 chips on the same I2C bus.
Figure 2-15. I
2
C Slave Mode Communication Protocol
In the slave mode, the I
2
C bus is used to:
Update coefficient values and output data to those GPIO ports configured as output.
Read status flags, input data from those GPIO ports configured as inputs and retrieve spectrum
analyzer/VU meter data.
In the master mode, the I
2
C bus is used to download a user-specific configuration from an I
2
C compatible EEPROM.
In the slave mode only, specific registers and memory locations in the TAS3103 are accessible with the use of I
2
C
subaddresses. There are 256 such I
2
C subaddresses. The protocol required to access a specific subaddress is
presented in Figure 2-16.
As shown in Figure 2-16, a read transaction requires that the master device first issue a write transaction to give the
TAS3103 the subaddress to be used in the read transaction that follows. This subaddress assignment write
transaction is then followed by the read transaction. For write transactions, the subaddress is supplied in the first byte
of data written, and this byte is followed by the data to be written. For write transactions, the subaddress must always
be included in the data written. There cannot be a separate write transaction to supply the subaddress, as was
required for read transactions. If a subaddress assignment only write transaction is followed by a second write
transaction supplying the data, erroneous behavior results. The first byte in the second write transaction is interpreted
by the TAS3103 as another subaddress replacing the one previously written.
2-18
S
Start
(By Master)
TAS3103
Address
Acknowledge
(By TAS3103)
7-Bit Slave
Address
(By Master)
W
Write
(By Master)
ACK
Subaddress
TAS3103
Subaddress
(By Master)
Acknowledge
(By TAS3103)
ACK
S
Stop
(By Master)
S
Start
(By Master)
TAS3103
Address
Acknowledge
(By TAS3103)
7-Bit Slave
Address
(By Master)
R
Read
(By Master)
ACK
Data
Data
(By TAS3103)
ACK
Data
Data
(By TAS3103)
Acknowledge
(By Master)
ACK
Acknowledge
(By Master)
S
Stop
(By Master)
NAK
No Acknowledge
(By Master)
S
Start
(By Master)
TAS3103
Address
Acknowledge
(By TAS3103)
7-Bit Slave
Address
(By Master)
W
Write
(By Master)
ACK
Data
Data
(By Master)
ACK
Data
Data
(By Master)
ACK
S
Stop
(By Master)
ACK
Subaddress
TAS3103
Subaddress
(By Master)
Acknowledge
(By TAS3103)
ACK
Acknowledge
(By TAS3103)
Acknowledge
(By TAS3103)
Acknowledge
(By TAS3103)
I
2
C Write Transaction
I
2
C Read Transaction
Figure 2-16. I
2
C Subaddress Access Protocol
2.3.2.1 I
2
C Master Mode Operation
The TAS3103 uses the master mode to download an operational configuration. The configuration downloaded must
contain data for all 256 subaddresses, with spacer data supplied for those subaddresses that are GPIO
subaddresses, read-only subaddresses, factory-test subaddresses, or unused (reserved) subaddresses. The spacer
data must always be assigned the value zero. Table 2-3 organizes the 256 subaddresses (and their corresponding
EEPROM addresses) into sequential blocks, with each block containing either valid data or spacer data.
Table 2-3 also illustrates that the subaddresses and their corresponding EEPROM memory addresses do not directly
correlate. This is because many subaddresses are assigned more than one 32-bit word. For example, there is a
unique subaddress for each biquad filter in the TAS3103, but each subaddress is assigned five 32-bit
coefficients--resulting in twenty bytes of memory being assigned to each biquad subaddress.
The TAS3103, in the I
2
C master mode, can execute a complete download without requiring any wait states. After the
TAS3103 has downloaded all 2367 bytes of coefficient and spacer data, the I
2
C bus is disabled and cannot be used
to update coefficient values or retrieve status or spectrum/VU meter data. Volume control is available in the master
mode via the four GPIO pins.
2-19
Table 2-3. I
2
C EEPROM Data
DATA TYPE
EEPROM BYTE
ADDRESSES
SUB-ADDRESS(es)
Starting I2C check word
0x00-0x03
0x00
Input mixers--set 1
0x04-0xD3
0x01-0x33
Effects block Bi-quads
0xD4-0x29B
0x34-0x4B
Reverb block mixers
0x29C-0x2C7
0x4C-0x4E
CH1 Bi-Quads
0x2C8-0x3B7
0x4F-0x5A
CH2 Bi-Quads
0x3B8-0x4A7
0x5B-0x66
CH3 Bi-Quads
0x4A8-0x597
0x67-0x72
Bass and treble inline/bypass mixers
0x5980x5AF
0x73-0x75
DRC mixers
0x5B0-0x5DF
0x76-0x7E
Dither input mixers
0x5E0-0x5EB
0x7F-0x81
Valid data
CH3 (sub-woofer) To CH 1/2 (L/R) mixers
0x5EC-0x5F3
0x82-0x83
Valid data
Spectrum analyzer/VU meter mixers
0x5F4-0x60B
0x84-0x89
Output mixers
0x60C-0x66B
0x8A-0xA1
CH1 loudness parameters
0x66C-0x697
0xA2-0xA6
CH2 loudness parameters
0x698-0x6C3
0xA7-0xAB
CH3 loudness parameters
0x6C4-0x6EF
0xAC-0xB0
CH 1/2 DRC parameters
0x6F0-0x733
0xB1-0xB5
CH3 DRC parameters
0x734-0x777
0xB6-0xBA
Spectrum analyzer parameters
0x778-0x847
0xBB-0xC5
Dither output mixers
0x848-0x84F
0xC6
Dither speed
0x850-0x853
0xC7
Factory Test Data (EEPROM spacer data)
0x854-0x85F
0xC8-0xC9
Valid data
Input mixers--set 2
0x860-0x87F
0xCA-0xD1
Spacer Data
0x880-0x8E3
0xD2-0xEA
Valid data
Watchdog timer enable
0x8E4-0x8E7
0xEB
Factory Test Data (EEPROM spacer data)
0x8E8-0x8F3
0xEC-0xED
GPIO port parameters
0x8F4-0x8FB
0xEE-0xEF
Volume parameters
0x8FC-0x90F
0xF0-0xF4
Bass/treble filter selections
0x910-0x91F
0xF5-0xF8
Valid data
I2S command word
0x920-0x923
0xF9
Valid data
Delay/reverb settings
0x924-0x92F
0xFA
I2C M and N
0x930-0x933
0xFB
Ending I2C check word
0x934-0x937
0xFC
Read Only Data (EEPROM spacer data)
0x938-0x943
0xFD-0xFF
NOTE: EEPROM organization must be big endian-MS byte of data word allocated to the lowest address in memory.
The I
2
C master mode also utilizes the starting and ending I
2
C check words to verify a proper EEPROM download.
The first 32-bit data word received from the EEPROM, the starting I
2
C check word at subaddress 0x00, is stored and
compared against the 32-bit data word received for subaddress 0xFC, the ending I
2
C check word. These two data
words must be equal as stored in the EEPROM. If the two words do not match when compared in the TAS3103, the
TAS3103 conducts another parameter download from the EEPROM. If the comparison check again fails, the
TAS3103 discards all downloaded parameters and set all parameters to the default values listed in the subaddress
table presented in the Appendix. In the I
2
C slave mode, these default values are used to initialize the TAS3103 at
power turnon or after a reset.
2-20
2.3.2.2 I
2
C Slave Mode Operation
The I
2
C slave mode is the mode that must be used if it is required to change configuration parameters (other than
volume via the GPIO pins for the I
2
C master mode) during operation. The I
2
C slave mode is also the only I
2
C mode
that provides access to the spectrum analyzer and VU meter outputs. Configuration downloads from a master device
can be used to replace the I
2
C master mode EEPROM download.
For I
2
C read commands, the TAS3103 responds with data, a byte at a time, starting at the subaddress assigned, as
long as the master device continues to respond with acknowledges. If a given subaddress does not use all 32 bits,
the unused bits are read as logic 0. I
2
C write commands, however, are treated in accordance with the data assignment
for that address space. If a write command is received for a biquad subaddress, the TAS3103 expects to see five
32-bit words. If fewer than five data words have been received when a stop command (or another start command)
is received, the data received is discarded. If a write command is received for a mixer coefficient, the TAS3103
expects to see only one 32-bit word.
Supplying a subaddress for each subaddress transaction is referred to as random I
2
C addressing. The TAS3103 also
supports sequential I
2
C addressing. For write transactions, if a subaddress is issued followed by data for that
subaddress and the fifteen subaddresses that follow, a sequential I
2
C write transaction has taken place, and the data
for all 16 subaddresses is successfully received by the TAS3103. For I
2
C sequential write transactions, the
subaddress then serves as the start address and the amount of data subsequently transmitted, before a stop or start
is transmitted, determines how many subaddresses are written to. As was true for random addressing, sequential
addressing requires that a complete set of data be transmitted. If only a partial set of data is written to the last
subaddress, the data for the last subaddress is discarded. However, all other data written is accepted; just the
incomplete data is discarded.
The GPIO subaddresses and most reserved read-only and factory test subaddresses require the downloading of four
bytes of zero-valued spacer data in order to proceed to the next subaddress. However, there are five exceptions to
this rule and Table 2-4 lists the subaddresses of these fexceptions and the number of zero-valued bytes that must
be written.
Table 2-4. Four Byte Write Exceptions--Reserved and Factory-Test I
2
C Subaddresses
SUB-ADDRESS
NUMBER OF ZERO-VALUED BYTES
THAT MUST BE WRITTEN
0xC9
8
0xED
8
0xFD
10 (0xA)
0xFE
2
0xFF
1
The TAS3103 can always receive sequential I
2
C addressing write data without issuing wait states. If it is desired to
download data to all subaddresses using one sequential write transaction, spacer data for the reserved, GPIO,
read-only, and factory-test subaddresses must be supplied as per Table 2-3 and Table 2-4.
The TAS3103 also supports sequential read transactions. When an I
2
C subaddress assignment write transaction is
followed by a read transaction, the TAS3103 outputs the data for that subaddress, and then continue to output data
for the subaddresses that follow as long as the master continues to issue data received acknowledges. Except for
two exceptions, the TAS3103 outputs four bytes of zero-valued data for reserved and factory-test subaddresses. The
subaddresses of the exceptions and the number of bytes supplied by the TAS3103 for each exception are given in
Table 2-5. If a GPIO port is assigned as an output port, a logic 0 bit value is supplied by the TAS3103 for this GPIO
port in response to a read transaction at subaddress 0xEE.
CAUTION: Sequential write transactions must be in ascending subaddress order. The
TAS3103 does not wrap around from subaddress 0xFF to 0x00
Sequential read transactions wrap around from subaddress 0xFF to 0x00.
2-21
Table 2-5. Four Byte Read Exceptions--Reserved and Factory-Test I
2
C Subaddresses
SUB-ADDRESS
NUMBER BYTES SUPPLIED BY TAS3103
0xC9
8
0xED
8
NOTE: Table 2-5 does not include read-only subaddresses and thus does
not include subaddresses 0xFD, 0xFE, and 0xFF. When read, these
read-only subaddresses output 10, 2, and 1 byte respectively.
Thus, for all reserved and factory-test subaddresses, except subaddresses OxC9 and 0xED, the master device must
issue four data received acknowledges for the four bytes of zero-valued data. For subaddresses OxC9 and 0xED,
the master device must issue eight data received acknowledges for the eight bytes of zero-valued data.
Sequential read transactions do not have restrictions on outputting only complete subaddress data sets. If the master
does not issue enough data received acknowledges to receive all the data for a given subaddress, the master device
simply does not receive all the data. If the master device issues more data received acknowledges than required to
receive the data for a given subaddress, the master device simply receives complete or partial sets of data, depending
on how many data received acknowledges are issued, from the subaddress(es) that follow.
I
2
C read transactions, both sequential and random, can impose wait states. For the standard I
2
C mode
(SCL = 100 kHz), worst-case wait state times, for an 8-MHz microprocessor clock, is on the order of 2 microseconds.
Nominal wait state times, for the same 8-MHz microprocessor clock, is on the order of 1 microsecond. For the fast
I
2
C mode (SCL = 400 KHz), and the same 8-MHz microprocessor clock, worst-case wait state times can extend up
to 10.5 microseconds in duration. Nominal wait state times for this same case lie in a range from 2 microseconds to
4.6 microseconds. Increasing the microprocessor clock frequency lowers the wait state times, and, for the standard
I
2
C mode, a higher microprocessor clock can totally eliminate the presence of wait states. For example, increasing
the microprocessor clock to 16 MHz results in no wait states. For the fast I
2
C mode, higher microprocessor clocks
shortens the wait state times encountered, but does not totally eliminate their presence.
2.4
Digital Audio Processor (DAP) Arithmetic Unit
The digital audio processor (DAP) arithmetic unit is a fixed-point computational engine consisting of an arithmetic unit
and data and coefficient memory blocks. Figure 2-17 is a block diagram of the arithmetic unit.
76-Bit Adder
Regs
Regs
Arithmetic
Engine
Dual Port
Data RAM
Coefficient
RAM
4K x 16
Delay Line
RAM
Program
ROM
DAP
Instruction Decoder/Sequencer
Digital Audio Processor
(DAP)
Arithmetic Unit
Figure 2-17. Digital Audio Processor Arithmetic Unit Block Diagram
The DAP arithmetic unit is used to implement all firmware functions--soft volume, loudness compensation, bass and
treble processing, dynamic range control, channel filtering, 3D effects, input and output mixing, spectrum analyzer,
VU meter, and dither.
Figure 2-18 shows the data word structure of the DAP arithmetic unit. Eight bits of overhead or guard bits are provided
at the upper end of the 48-bit DAP word, and 8 bits of computational precision or noise bits are provided at the lower
end of the 48-bit word. The incoming digital audio words are all positioned with the most significant bit abutting the
8-bit overhead/guard boundary. The sign bit in bit 39 indicates that all incoming audio samples are treated as signed
data samples.
2-22
CAUTION: Audio data into the TAS3103 is always treated as signed data.
S
S
S
S
S
S
47
40
39
32
31
24
23
22
21
20
19
16
15
8
7
0
Overhead/Guard Bits
16-Bit
Audio
18-Bit
Audio
20-Bit
Audio
24-Bit
Audio
Precision/Noise Bits
32-Bit
Audio
Figure 2-18. DAP Arithmetic Unit Data Word Structure
The arithmetic engine is a 48-bit (25.23 format) processor consisting of a general-purpose 76-bit arithmetic logic unit
and function-specific arithmetic blocks. Multiply operations (excluding the function-specific arithmetic blocks) always
involve 48-bit DAP words and 28-bit coefficients (usually I
2
C programmable coefficients). If a group of products are
to be added together, the 76-bit product of each multiplication is applied to a 76-bit adder, where a DSP-like
multiply-accumulate (MAC) operation takes place. Biquad filter computations use the MAC operation to maintain
precision in the intermediate computational stages.
To maximize the linear range of the 76-bit ALU, saturation logic is not used. Intermediate overflows are then permitted
in multiply-accumulate operations, but it is assumed that subsequent terms in the multiply-accumulate computation
flow corrects the overflow condition. The biquad filter structure used in the TAS3103 is the direct form I structure and
has only one accumulation node. With this type of structure, intermediate overflow is allowed as long as the designer
of the filters has assured that the final output is bounded and does not overflow. Figure 2-19 shows a bounded
computation that experiences intermediate overflow condition. 8-bit arithmetic is used for ease of illustration.
The DAP memory banks include a dual port data RAM for storing intermediate results, a coefficient RAM, a 4K x 16
RAM for implementing the delay stages, and a fixed program ROM. Only the coefficient RAM, assessable via the I
2
C
bus, is available to the user.
8-Bit ALU Operation
(Without Saturation)
10110111
(-73)
-73
+ 11001101
(-51)
+ -51
10000100
(-124)
-124
+ 11010011
(-45)
+ -45
Rollover
01010111
(57)
-169
+ 00111011
(59)
+ 59
10010010
(-110)
-110
Figure 2-19. DAP ALU Operation With Intermediate Overflow
2-23
The DAP processing clock is set by pins PLL0 and PLL1, in conjunction with the source clock XTALI or MCLKI. The
DAP operates at speeds up to 136 MHz, which is sufficient to process 96-kHz audio.
2.5
Reset
The reset circuitry in the TAS3103 is shown in Figure 2-20. A reset is initiated by inputting logic 0 on the reset pin
RST. A reset is also issued at power turnon by the internal 1.8-V regulator subsystem.
MCLKI
XTALI
DPLL
1.8-V Regulator Subsystem
Reset Timer
CLR
Lock
Chip Reset
VDSS
Enable
dpll_clk
PWR GOOD
RST
A_VDSS
Figure 2-20. TAS3103 Reset Circuitry
At power turnon, the internal 1.8-V regulator subsystem issues an internal reset that remains active until regulation
is reached. The duration of this signal assures that all reset activities are conducted at power turnon. This means that
the external reset pin RST does not require an RC time constant derived external reset to assure that a reset is applied
at power turnon. The reset pin RST can then be used exclusively for exception resets, saving the cost and size impact
of additional RC components. However, since RST is an asynchronous clear, it can respond to narrow negative signal
transitions. Some applications, therefore, might require a high-frequency capacitor on the RST pin in order to remove
unwanted noise excursions.
2.6
Power Down
Setting the PWRDN pin to logic 1 enables power down. Power down stops all clocks in the TAS3103, but preserves
the state of the TAS3103. When PWRDN is deactivated (set to logic 0) after a period of activation, the TAS3103
resumes the processing of audio data upon receiving the next LRCLK (indicating a new sample of audio data is
available for processing). The configuration of the TAS3103 and all programmable parameters are retained during
power down.
There is a time lag between setting PWRDN to logic 1 and entering the power down state. PWRDN is sampled every
GPIOFSCOUNT LRCLK periods (see the subaddress 0xEF and the watchdog timer and GPIO ports sections). This
means that a time lag as great as GPIOFSCOUNT(1/LRCLK) could exist between the activation of PWRDN (setting
to logic 1) and the time at which the microprocessor recognizes that the PWRDN pin has been activated. Normally,
upon recognizing that the PWRDN pin has been activated, the TAS3103 enters the power-down state approximately
80 microprocessor clock cycles later. However, if a soft volume update is in progress, the TAS3103 waits until the
soft volume update is complete before entering the power down state. For this case then, the worst case time lag
2-24
between recognizing the activation of pin PWRDN and entering the power down would be 4096 LRCLK periods,
assuming a volume slew rate selection (bit VSC of I
2
C subaddress 0xF1) of 4096 and the issuance of a volume
update immediately preceding the reading of pin PWRDN. The worst case time lag between setting PWRDN to logic
1 and entering the power down state is then:
power down time lag
Worst-Case
+
4096
)
GPIOFSCOUNT
LRCLK
)
80
Microprocessor-Clock
There is also a time lag between deactivating PWRDN (setting PWRDN to logic 0) and exiting the power down state.
This time lag is set by the time it takes the internal digital PLL to stabilize, and this time, in turn, is set by the master
clock frequency (MCLKI or XTALI) and the PLL output clock frequency. For a 135-MHz PLL output clock and a 24.576
MCLKI, the time lag is approximately 25 microseconds. For an 11.264-MHz PLL output clock and a 1.024-MHz
MCLKI, the time lag is approximately 360 microseconds.
Power consumption in the power-down state is approximately 12 mW.
2.7
Watchdog Timer
There is a watchdog timer in the TAS3103 that monitors the microprocessor activity. If the microprocessor ever
ceases to execute its stored program, the watchdog timer fires and resets the TAS3103. This capability was included
in the TAS3103 for factory test purposes and has little use in applications. The program structure used in the
microprocessor assures that the microprocessor always executes its stored program unless a hardware failure
occurs.
The watchdog timer is governed by the parameter GPIOFSCOUNT in subaddress 0xEF and the LSB of the 32-bit
word at subaddress 0xEB. The default value of the LSB of the 32-bit word at subaddress 0xEB is 1 and this value
disables the watchdog timer. The GPIOFSCOUNT is also used in other functions and balancing the needs of these
other functions regarding GPIOFSCOUNT with the requirements of the watchdog timer is an involved process. For
this reason, it is strongly recommended that the LSB of the 32-bit word at subaddress 0xEB remain a 1. If an
application does require use of the watchdog timer, it is requested that the user contact an application engineer in
the Digital Audio Department of Texas Instruments for details in properly using this feature.
2.8
General-Purpose I/O (GPIO) Ports
The TAS3103 has four general-purpose I/O (GPIO) ports. Figure 2-21 is a block diagram of the GPIO circuitry in the
TAS3103.
2-25
GPIO0
GPIO1
GPIO2
GPIO3
D
Q
D
Q
D
Q
D
Q
Sample
Logic
0xEF
Down
Counter
LD
LRCLK
Decode 0
DATA PATH SWITCH
GPIODIR
3
Determines How Many Consecutive Logic 0 Samples
(Where Each Sample Is Spaced by GPIOFSCOUNT
LRCLKs) are Required to Read a Logic 0 on a
GPIO Input Port
S Slave Addr
Sub-Addr
Ack
00000000
Ack
Ack
2 1 0
0000
Ack GPIOFSCOUNT Ack GPIO_samp_int Ack
31
24
23 20 19
16
15
8
7
0
Microprocessor
Microprocessor
Firmware
Microprocessor
Control
0xEE
GPIO_in_out
3
S Slave Addr
Sub-Addr
Ack
00000000
Ack
Ack
2 1 0
Ack
31
24
23
16
0
00000000
15
8
00000000 Ack
7
4
0000
Ack
3
I2C Slave Mode
and
I2C Master Mode
Write
I2C Master
Mode Read
Figure 2-21. GPIO Port Circuitry
2.8.1
GPIO Functionality--I
2
C Master Mode
In the I
2
C master mode, the GPIO ports are strictly input ports and are used to control volume. Table 2-6 lists the
functionality of each GPIO port in the I
2
C master mode. Bit field GPIOFSCOUNT (15:8) of I
2
C subaddress 0xEF
governs the rate at which the GPIO pins are sampled for a volume update. The sample rate is:
GPIO_Port
+
LRCLK
GPIOFSCOUNT
Table 2-6. GPIO Port Functionality--I
2
C Master Mode
GPIO PORT
FUNCTION
GPIO0 (pin 18)
Volume up--CH1 and CH2
GPIO1 (pin 19)
Volume down--CH1 and CH2
GPIO2 (pin 20)
Volume up--CH3
GPIO3 (pin 21)
Volume down--CH3
GPIOFSCOUNT also governs the rate at which the power down pin PWRDN is sampled and the rate at which the
watchdog counter is reset. GPIOFSCOUNT then cannot be independently used to tune the volume adjustment. For
this reason, bit field GPIO_samp_int of the same I
2
C subaddress (0xEF) is included to provide the ability to adjust
the responsiveness (or sluggishness) of the volume switches.
Each GPIO port has a weak pullup to VDDS. A volume control switch then typically switches the signal line to the GPIO
port between ground and an open circuit. The parameter GPIO_samp_int sets how many consecutive GPIO port
2-26
samples must be logic 0 before a logic 0 is read. A read logic 0 on a given GPIO port is interpreted as a command
to increase or decrease volume. If a logic 0 is read, and the signal level into the GPIO port remains at logic 0 for another
GPIO_samp_int consecutive samples, a second logic 0 value is read.
For each logic 0 read, the volume is increased or decreased 0.5 dB. After two consecutive logic 0 readings, each logic
0 reading that follows results in the volume level increasing or decreasing 5 dB instead of 0.5 dB. Figure 2-22 shows
an example of activating a volume switch. For the example in Figure 2-22, GPIOFSCOUNT is set to 3 and
GPIO_samp_int is set to 2. It is also noted in Figure 2-22 that the parameter GPIO_samp_int only comes into play
on logic 0 valued samples. As soon as the GPIO sample goes to logic 1, the audio updating ceases.
2.8.2
GPIO Functionality--I
2
C Slave Mode
In the I
2
C slave mode, the GPIO ports can be used as true general-purpose ports. Each port can be individually
programmed, via the I
2
C bus, to be either an input or an output port. The default assignment for all GPIO ports, in
the I
2
C slave mode, is an input port.
When a given GPIO port is programmed as an output port, by setting the appropriate bit in the bit field GPIODIR
(19:16) of subaddress 0xEF to logic 1, the logic level output is set by the logic level programmed into the appropriate
bit in bit field GPIO_in_out (3:0) of subaddress 0xEE. The I
2
C bus then controls the logic output level for those GPIO
ports assigned as output ports.
When a given GPIO port is programmed as an input port by setting the appropriate bit in bit field GPIODIR (19:16)
of subaddress 0xEF to logic 0, the logic input level into the GPIO port is written to the appropriate bit in bit field
GPIO_in_out (3:0) of subaddress 0xEE. The I
2
C bus can then be used to read bit field GPIO_in_out to determine
the logic levels at the input GPIO ports. Whether a given bit in the bit field GPIO_in_out is a bit to be read via the I
2
C
bus or a bit to be written to via the I
2
C bus is strictly determined by the corresponding bit setting in bit field GPIODIR.
In the I
2
C slave mode, the GPIO input ports are read every GPIOFSCOUNT LRCLKs, as was the case in the I
2
C
master mode. However, parameter GPIO_samp_int does not have a role in the I
2
C slave mode. If a GPIO port is
assigned as an output port, a logic 0 bit value is supplied by the TAS3103 for this GPIO port in response to a read
transaction at subaddress 0xEE.
If the GPIO ports are left in their power turnon state default state, they are input ports with a weak pullup on the input
to VDSS.
2-27
GPIOFSCOUNT = 3
GPIO_samp_int = 2
Read = 1
Read = 1
Read = 0
Read = 0
Read = 0
Read = 0
Read = 1
Read = 1
Read = 0
Read = 0
GPIO Pin
Input
LRCLK
GPIO Data
Samples
GPIO Reads
Adjust 0.5 dB
Adjust 0.5 dB
Adjust 5 dB
Adjust 5 dB
Adjust 0.5 dB
Adjust 0.5 dB
Figure 2-22.
V
olume Adjustment T
iming--Master I
2
C Mode
2-28
3-1
3 Firmware Architecture
3.1
I
2
C Coefficient Number Formats
The firmware for the TAS3103 is housed in ROM resources within the TAS3103 and cannot be altered. However,
mixer gain, level offset, and filter tap coefficients, which can be entered via the I
2
C bus interface, provide a user with
the flexibility to set the TAS3103 to a configuration that achieves the system level goals.
The firmware is executed in a 48-bit signed fixed-point arithmetic machine. The most significant bit of the 48-bit data
path is a sign bit, and the 47 lower bits are data bits. Mixer gain operations are implemented by multiplying a 48-bit
signed data value by a 28-bit signed gain coefficient. The 76-bit signed output product is then truncated to a signed
48-bit number. Level offset operations are implemented by adding a 48-bit signed offset coefficient to a 48-bit signed
data value. In most cases, if the addition results in overflowing the 48-bit signed number format, saturation logic is
used. This means that if the summation results in a positive number that is greater than 0x7FFF_FFFF_FFFF (the
spaces are used to ease the reading of the hexadecimal number), the number is set to 0x7FFF_FFFF_FFFF. If the
summation results in a negative number that is less than 0x8000_0000_0000 0000, the number is set to
0x8000_0000_0000 0000. There are exceptions to the use of saturation logic for summations that overflow--see the
section Digital Audio Processor (DAP) Arithmetic Unit.
3.1.1
28-Bit 5.23 Number Format
All mixer gain coefficients are 28-bit coefficients using a 5.23 number format. Numbers formatted as 5.23 numbers
means that there are 5 bits to the left of the decimal point and 23 bits to the right of the decimal point. This is shown
in the Figure 3-1.
2-23 Bit
S_xxxx.xxxx_xxxx_xxxx_xxxx_xxx
2-4 Bit
2-1 Bit
20 Bit
Sign Bit
23 Bit
Figure 3-1. 5.23 Format
The decimal value of a 5.23 format number can be found by following the weighting shown in Figure 3-2. If the most
significant bit is logic 0, the number is a positive number, and the weighting shown yields the correct number. If the
most significant bit is a logic 1, then the number is a negative number. In this case every bit must be inverted, a 1 added
to the result, and then the weighting shown in Figure 3-2 applied to obtain the magnitude of the negative number.
(1 or 0) x 23 + (1 or 0) x 22 +
...
+ (1 or 0) x 20 + (1 or 0) x 2-1 +
...
+ (1 or 0) x 2-4 +
...
+ (1 or 0) x 2-23
23 Bit
22 Bit
20 Bit
2-1 Bit
2-4 Bit
2-23 Bit
Figure 3-2. Conversion Weighting Factors--5.23 Format to Floating Point
3-2
Gain coefficients, entered via the I
2
C bus, must be entered as 32-bit binary numbers. The format of the 32-bit number
(4-byte or 8-digit hexadecimal number) is shown in Figure 3-3.
u
Coefficient
Digit 8
u
u
u
S
x
x
x
Coefficient
Digit 7
x.
x
x
x
Coefficient
Digit 6
x
x
x
x
Coefficient
Digit 5
x
x
x
x
Coefficient
Digit 4
x
x
x
x
Coefficient
Digit 3
x
x
x
x
Coefficient
Digit 2
x
x
x
x
Coefficient
Digit 1
Fraction
Digit 5
Sign
Bit
0
Fraction
Digit 6
Fraction
Digit 4
Fraction
Digit 3
Fraction
Digit 2
Fraction
Digit 1
Integer
Digit 1
u = unused or don't care bits
Digit = hexadecimal digit
Figure 3-3. Alignment of 5.23 Coefficient in 32-Bit I
2
C Word
As Figure 3-3 shows, the hex value of the integer part of the gain coefficient cannot be concatenated with the hex
value of the fractional part of the gain coefficient to form the 32-bit I
2
C coefficient. The reason is that the 28-bit
coefficient contains 5 bits of integer, and thus the integer part of the coefficient occupies all of one hex digit and the
most significant bit of the second hex digit. In the same way, the fractional part occupies the lower 3 bits of the second
hex digit, and then occupies the other five hex digits (with the eighth digit being the zero-valued most significant hex
digit).
3.1.2
48-Bit 25.23 Number Format
All level adjustment and threshold coefficients are 48-bit coefficients using a 25.23 number format. Numbers
formatted as 25.23 numbers means that there are 25 bits to the left of the decimal point and 23 bits to the right of the
decimal point. This is shown in Figure 3-4.
2-23 Bit
S_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx.xxxx_xxxx_xxxx_xxxx_xxxx_xxx
20 Bit
216 Bit
222 Bit
Sign Bit
223 Bit
2-1 Bit
2-10 Bit
Figure 3-4. 25.23 Format
3-3
Figure 3-5 shows the derivation of the decimal value of a 48-bit 25.23 format number.
(1 or 0) x 223 + (1 or 0) x 222 +
...
+ (1 or 0) x 20 + (1 or 0) x 2-1 +
...
+ (1 or 0) x 2-23
223 Bit
222 Bit
20 Bit
2-1 Bit
2-23 Bit
Figure 3-5. Alignment of 5.23 Coefficient in 32-Bit I
2
C Word
Two 32-bit words must be sent over the I
2
C bus to download a level or threshold coefficient into the TAS3103. The
alignment of the 48-bit, 25.23 formatted coefficient in the 8-byte (two 32-bit words) I
2
C word is shown in Figure 3-6.
u
Coefficient
Digit 16
u
u
u
u
u
u
u
Coefficient
Digit 15
u
u
u
u
Coefficient
Digit 14
u
u
u
u
Coefficient
Digit 13
S
x
x
x
Coefficient
Digit 12
x
x
x
x
Coefficient
Digit 11
x
x
x
x
Coefficient
Digit 10
x
x
x
x
Coefficient
Digit 9
Word 1
(Most
Significant
Word)
Integer
Digit 3
Integer
Digit 4
(Bits 23 - 21)
Integer
Digit 2
Integer
Digit 1
Sign
Bit
x
Coefficient
Digit 8
x
x
x
x
x
x
x
Coefficient
Digit 7
x.
x
x
x
Coefficient
Digit 6
x
x
x
x
Coefficient
Digit 5
x
x
x
x
Coefficient
Digit 4
x
x
x
x
Coefficient
Digit 3
x
x
x
x
Coefficient
Digit 2
x
x
x
x
Coefficient
Digit 1
Word 2
(Least
Significant
Word)
Fraction
Digit 5
Integer
Digit 4
(Bit 20)
0
Fraction
Digit 6
Fraction
Digit 4
Fraction
Digit 3
Fraction
Digit 2
Fraction
Digit 1
Integer
Digit 6
Integer
Digit 5
u = unused or don't care bits
Digit = hexadecimal digit
Figure 3-6. Alignment of 25.23 Coefficient in Two 32-Bit I
2
C Words
3-4
3.2
Input Crossbar Mixers
The TAS3103 has four serial input ports--SDIN1, SDIN2, SDIN3 and SDIN4. SDIN1, SDIN2, and SDIN3 provide the
input resources to process 5.1 channel audio in two TAS3103 chips. SDIN4 provides the capability to multiplex
between a full 5.1 channel system and a stereo source or an information/warning audio message as might be found
in an automotive application.
Each serial input port is assigned two internal processing nodes. The mixers following these internal processing
nodes serve to distribute the input audio data to various processing nodes within the TAS3103. Figure 3-7 shows
the assignment of the internal processing nodes to the serial input ports. Two cases are shown in Figure 3-7--
discrete mode and TDM mode.
The input crossbar mixer topology for internal processing nodes A, B, C, D, E and F is shown in Figure 3-8. Each
of the six nodes is assigned six mixers. These six mixers provide the ability to route the incoming serial port data on
SDIN1, SDIN2, and SDIN3 to:
Processing node d--bypassing effects block and directly feeding monaural CH1
Processing node e--bypassing effects block and directly feeding monaural CH2
Processing node f--directly feeding the section of the effects block assigned to monaural CH3
Processing nodes a and b--directly feeding paths that contain the reverb delay elements assigned to CH1
and CH2
Processing node c--directly feeding an effects block path assigned to CH1 and CH2 that bypasses all
reverb delay elements.
The ability to route all input nodes to the same set of processing nodes fully decouples the input order (what audio
components are wired to which serial input ports) from the processing flow. As is seen in the discussion of the output
crossbar mixers, the output serial ports are fully decoupled from the three monaural channels (any monaural channel
output can be routed to either the left or the right side of any output port). The TAS3103 thus provides full flexibility
in the routing of audio data into and out of the chip.
The mixer topology for internal processing nodes g and h is shown in Figure 3-9. Nodes g and h are each assigned
three mixers. The mixers provide the ability to route the incoming data on serial port SDIN4 to
Output processing nodes to facilitate input to output pass through
CH1/CH2 effects block input nodes that bypass reverb delay
CH3 effects block input node
3-5
L
R
L
R
L
R
L
R
SDIN4
L
R
A
B
time
C
D
E
F
G
H
SDIN1
A
B
C
D
E
F
G
H
LRCLK
L
R
SDIN3
time
LRCLK
L
R
SDIN2
time
LRCLK
L
R
SDIN1
time
LRCLK
(b) TDM Mode
Internal
Processing
Nodes
(a) Discrete Mode - For I2S Format, Polarity
of LRCLK Opposite That Shown
Internal
Processing
Nodes
Internal
Processing
Nodes
Internal
Processing
Nodes
Internal
Processing
Nodes
Internal
Processing
Nodes
Internal
Processing
Nodes
Internal
Processing
Nodes
Figure 3-7. Serial Input Port to Processing Node Topology
3-6
Input Crossbar
Mixers
4
Reverb
Delay
d
e
a
g
c
h
b
Monaural
CH 1
Monaural
CH 2
Monaural
CH 3
aa
f
3-D Effects Block
Processing
Node A
Processing
Node B
Processing
Node C
Processing
Node D
Processing
Node E
Processing
Node F
BiQuad
Filters
4
BiQuad
Filters
4
BiQuad
Filters
4
BiQuad
Filters
4
BiQuad
Filters
4
BiQuad
Filters
Reverb
Delay
Reverb
Delay
Figure 3-8.
Input Mixer and Effects Block T
opology--Internal Processing Nodes A, B, C, D, E, and F
3-7
Processing
Node G
Processing
Node H
g
h
f
Effects Block
(See Figure 3-10)
Output Crossbar
Mixer
(See Figure 3-33)
U
V
W
X
Y
Z
Monaural
CH 1
Monaural
CH 2
Monaural
CH 3
Monaural channels consist of 12 biquad filters, followed by bass and treble processing, followed by
bolume and loudness processing, followed by dynamic range control, followed by fither processing.
See the T
AS3103 Firmware Block Diagram in the Appendix.
Figure 3-9.
Input
Mixer T
opology--Internal Processing Nodes G and H
3-8
All input crossbar mixers use signed 5.23 format mixer gain coefficients and all are programmable via the I
2
C bus.
The 5.23 format provides a range of gain adjustment from 2
-23
(-138 dB) to 2
4
1 (23.5 dB).
3.3
3D Effects Block
The 3D effects block, shown in Figure 3-10, performs the first suite of processing tasks conducted on the incoming
serial audio data streams. The TAS3103 has three monaural channels--CH1, CH2, and CH3. CH1 and CH2 share
the same effects block, as well as the same dynamic range compression block. CH 3 has its own effects block and
its own dynamic range compression block. In typical two TAS3103 chip configurations for processing 5.1 audio,
monaural channels CH1 and CH2 are used to process left/right front and left/right surround audio components, and
CH3 is used to process the subwoofer and center audio components. To support such a processing structure, the
effects block for CH1/CH2 offers more option for inserting audio effects into the audio data stream than does the
effects block for CH3.
3.3.1
CH1/CH2 Effects Block
This block consists of five signal flow paths, starting at processing nodes a, b, c, g, and h. All five paths contain four
programmable biquad filters, and paths a and b contain reverb delay lines as well. Nodes a, b and c can be sourced
by any of the input nodes A, B, C, D, E, and F (SDIN1, SDIN2, SDIN3). Nodes g and h can be sourced by input nodes
G and H respectively (SDIN4) and/or by weighted replicas of the data on nodes A and B respectively. Nodes g and
h can also be sourced by the same weighted replica of the data on node f. Node c can also be sourced by weighted
replicas of the data on both node a and node b.
3D effects processing typically consist of installing sound direction effects. Sound direction effects are typically
created by the use of three major components.
Time differentiation
Loudness differentiation
Spectral differentiation
Time differentiation is achieved by using the paths containing the reverb delay elements. Loudness differentiation
is achieved both by the mixers feeding the five paths and the two mixers located at the output of each of the five paths.
Spectral differentiation is achieved using the four biquad filters located in each path.
3.3.2
CH3 Effects Block
This block, starting at node f, typically processes center and sub-woofer audio components. Time and spectral
differentiation with respect of CH1 and CH2 can be realized via the reverb delay line and the four biquad filters.
Loudness differentiation can be achieved by adjusting the volume level of CH3. Weighted replicas of the effects block
output for CH1 and CH2 can also be summed into the output of the CH3 effects block. This capability is typically used
when processing the center channel audio component.
3-9
Processing Nodes

A, B, C, D, E, F
Input Crossbar
Mixers
d
e
a
g
c
h
b
4
BiQuad
Filters
Monaural
CH 1
Monaural
CH 2
aa
f
3-D Ef
fects Block
Processing
Node G
Processing
Node H
g1
g0
Reverb
Delay
g1
Delay
Line
g0
g1
g0
0x27
0x25
0x26
0x28
0x33
0x34 - 0x37
0x3C - 0x3F
0x44 - 0x47
0x40 - 0x43
0x38 - 0x3B
g0/g1 = 0x4C
g0/g1 = 0x4D
g0/g1 = 0x4E
0x2D
0x2E
0x31
0x32
0x2F
0x30
0xF
A
0x29
0x2A
0x2B
0x2C
0xD0
0xD1
0x48 - 0x4B
Reverb
Delay
Delay
Line
0xF
A
Delay
Line
0xF
A
Reverb
Delay
4
BiQuad
Filters
4
BiQuad
Filters
4
BiQuad
Filters
4
BiQuad
Filters
4
BiQuad
Filters
S
Slave
Addr
Ack
Sub-Addr
Ack
xxxxxxxx
xxxxxxxx
xxxxxx
l
s
b
m
s
b
xxx
0000
Ack
Ack
Ack
Ack
S
Slave Addr
Ack
Sub-Addr
Ack
xxxxxxxx
xxxxxxxx
xxxxxx
l
s
b
m
s
b
xxx
0000
Ack
Ack
Ack
Ack
Mixer Gain Coef
ficient Sub-Address Format
BiQuad Filter Coef
ficients Sub-Address Format
xxxxxxxx
xxxxxxxx
xxxxxx
l
s
b
m
s
b
xxx
0000
Ack
Ack
Ack
Ack
a
1
a
2
xxxxxxxx
xxxxxxxx
xxxxxx
l
s
b
m
s
b
xxx
0000
Ack
Ack
Ack
Ack
b
0
xxxxxxxx
xxxxxxxx
xxxxxx
l
s
b
m
s
b
xxx
0000
Ack
Ack
Ack
Ack
b
1
xxxxxxxx
xxxxxxxx
xxxxxx
l
s
b
m
s
b
xxx
0000
Ack
Ack
Ack
Ack
b
2
S
Slave
Addr
Ack
Sub-Addr
Ack
xxxxxxxx
xxxxxxxx
xxxxxx
l
s
b
m
s
b
xxx
0000
Ack
Ack
Ack
Ack
Reverb
Mixer Coef
ficients Sub-Address Format
xxxxxxxx
xxxxxxxx
xxxxxx
l
s
b
m
s
b
xxx
0000
Ack
Ack
Ack
Ack
g0
g1
S
Slave
Addr
Ack
Sub-Addr
Ack
xxxxxx
l
s
b
m
s
b
xxx
0000
Ack
Ack
Ack
Ack
Reverb
and Delay Assignments Sub-Address Format
xxxxxx
l
s
b
m
s
b
xxx
0000
Ack
Ack
Ack
Ack
D1 & R1
D2 & R2
xxxxxx
l
s
b
m
s
b
xxx
0000
Ack
Ack
Ack
Ack
D3 & R3
0xF
A
xxxxxx
l
s
b
xxxxxx
l
s
b
xxxxxx
l
s
b
m
s
b
xxx
0000
m
s
b
xxx
0000
m
s
b
xxx
0000
Delay
Reverb
Monaural
CH 3
Figure 3-10.
T
AS3103
3D Effects Processing Block
3-10
3.4
Biquad Filters
There are a total of 73 biquad filters in the TAS3103. The breakout of the biquad filters per functional element is given
in Table 3-1.
Table 3-1. Biquad Filter Breakout
FUNCTION
BIQUAD FILTERS
SUBADDRESS
3D effects block
24
0x34-0x4B
Monaural channel CH1
12
0x4F-0x5A
Monaural channel CH2
12
0x5B-0x66
Monaural channel CH3
12
0x67-0x72
0xA6-CH1
Loudness processing
3
0xAB-CH2
Loudness processing
3
0xB0-CH3
Spectrum analyzer/VU meter
10
0xBC-0xC5
All 73 biquad filters are second order direct form I structures. A block diagram of the structure of the biquad filter is
shown in Figure 3-11.
b 0
b 1
b 2
a1
a2
28
28
28
28
28
48
76
76
48
48
76
76
76
48
48
76
Magnitude
Truncation
48
z-1
z-1
z-1
z-1
NOTE: All gain coefficients 5.23 numbers.
Biquad Filter Coefficient Subaddress Format
Biquad Filter Structure
m
s
b
S
Slave Addr
Ack Sub-Addr Ack
xxx
0000
Ack
xxxxxxxx
Ack
xxxxxxxx
Ack
xxxxxx
l
s
b
Ack
a1
m
s
b
xxx
0000
Ack
xxxxxxxx
Ack
xxxxxxxx
Ack
xxxxxx
l
s
b
Ack
a2
m
s
b
xxx
0000
Ack
xxxxxxxx
Ack
xxxxxxxx
Ack
xxxxxx
l
s
b
Ack
b0
m
s
b
xxx
0000
Ack
xxxxxxxx
Ack
xxxxxxxx
Ack
xxxxxx
l
s
b
Ack
b2
m
s
b
xxx
0000
Ack
xxxxxxxx
Ack
xxxxxxxx
Ack
xxxxxx
l
s
b
Ack
b1
NOTE: Each Biquad filter has one subaddress which contains the mixer gain coefficients a1, a2, b0, b1, b2
Figure 3-11. Biquad Filter Structure and Coefficient Subaddress Format
The transfer function for the biquad filter is given by
V
OUT
(z)
V
IN
(z)
+
b
0
)
b
1
z
*
1
)
b
2
z
*
2
1
*
a
1
z
*
1
*
a
2
z
*
2
3-11
The direct form I structure provides a separate delay element and mixer (gain coefficient) for each node in the biquad
filter. Each mixer output is a signed 76-bit product of a signed 48-bit data sample (25.23 format number) and a signed
28-bit coefficient (5.23 format number). A 76-bit ALU in the TAS3103 allows the 76-bit resolution to be retained when
summing the mixer outputs (filter products). This is an important factor as it removes the need to carefully tailor the
order of addition for each filter implementation to minimize the effects of finite-precision arithmetic. Intermediate
overflows are allowed while summing the biquad terms to further minimize the effects of finite-precision arithmetic
(see the Digital Audio Processor DAP Arithmetic Unit section for more discussion on intermediate overflow).
3.5
Bass and Treble Processing
The TAS3103 has three fully independent bass and treble adjustment blocks--one for each of the three monaural
channels. Adjustments in bass and treble are accomplished by selecting a bass filter set and a treble filter set, and
then selecting a shelf filter within each filter set. The filter set selected, of which there are five sets for treble and five
sets for bass to select from, determines the frequency at which the bass and treble adjustments take effect. The shelf
filters determine the gain to be applied to the bass and treble components of the incoming audio. All selections are
independent of one another--any bass filter set can be combined with any treble filter set and any shelf filter can be
selected in a given filter set.
Figure 3-12 shows the bass and treble selections available, their I
2
C subaddresses, and the data fields in each
subaddress used to make the selections. Each bass filter set has 150 low pass shelving filters to choose from, with
the shelves ranging from a cut (attenuation) of 18 dB to a boost (gain) of 18 dB. A shelf selection of 0 dB effectively
removes bass processing. All 150 filters in a given filter set have the same 3-dB frequency, as measured from the
shelf. The only difference in the 150 filters in a given bass filter set is the gain of the shelf.
Each treble filter set has 150 high-pass shelving filters to choose from, with the shelves again ranging from a cut
(attenuation) of 18 dB to a boost (gain) of 18 dB. A shelf selection of 0 dB effectively removes treble processing. All
150 filters in a given filter set have the same 3-dB frequency, as measured from the shelf. The only difference in the
150 filters in a given treble filter set is the gain of the shelf.
Commands to adjust the bass and treble levels within a given filter set (by commanding the selection of different
shelving filters) results in a soft adjustment to the newly commanded levels. The filters are labeled 1 through 150,
with filter #1 implementing the maximum cut (18 dB) and filter #150 implementing the maximum boost (18 dB). If a
command is received to change a shelf setting, the transition is made by stepping through each filter, one at a time,
until the shelf filter commanded is reached. A soft transition is achieved by residing at each step (or shelf filter) for
a period determined by the programmable parameter TBLC (bit field 7:0 of subaddress 0xF1). The time period set
by TBLC is TBLC/FS (where FS is the audio sample rate). For an audio sample rate of 48 kHz, and a TBLC setting
of 64, the dwell time on each shelf filter is approximately 1.33 ms. The transition time then depends on the number
of shelves separating the current and commanded shelf values. For 48-kHz audio, and a TBLC setting of 64, a
maximum transition time of approximately 198 ms is required to transition from shelf #1 to shelf #150, and a minimum
time of approximately 1.33 ms is required to transition from shelf x to shelf x + 1.
3-12
S
Slave Addr
Ack Sub-Addr Ack
Ack
Ack
00000xxx
00000000
0xF5
CH3
Ack
00000xxx
CH2
Ack
00000xxx
CH1
S
Slave Addr
Ack Sub-Addr Ack
Ack
Ack
00000xxx
00000000
0xF7
CH3
Ack
00000xxx
CH2
Ack
00000xxx
CH1
S
Slave Addr
Ack Sub-Addr Ack
Ack
Ack
xxxxxxxx
00000000
0xF6
Ack
xxxxxxxx
Ack
xxxxxxxx
S
Slave Addr
Ack Sub-Addr Ack
Ack
Ack
xxxxxxxx
00000000
0xF8
Ack
xxxxxxxx
Ack
xxxxxxxx
CH1
Treble Shelf Selection (Filter Index)
CH2
CH3
CH1
CH2
CH3
Bass Shelf Selection (Filter Index)
Treble Filter Set Selection
Bass Filter Set Selection
BASS
FILTER 5
BASS
FILTER 4
BASS
FILTER 3
BASS
FILTER 2
BASS
FILTER 1
TREBLE
FILTER 5
TREBLE
FILTER 3
TREBLE
FILTER 1
TREBLE
FILTER 4
TREBLE
FILTER 2
MID-BAND
MAX BOOST
SHELF
MAX CUT
SHELF
Treble & Bass Filter Set Commands
0 => No Change
1 - 5 => Filter Sets 1 - 5
6 - 7 => Illegal (Behavior Indeterminate)
Treble & Bass Filter Shelf Commands
0 =>
Illegal (Behavior Indeterminate)
1 - 150 => Filter Shelves 1 - 150
1 => +18-dB Boost
150 => -18-dB Cut
151 - 255 => Illegal (Behavior Indeterminate)
FREQUENCY
S
Slave Addr
Ack Sub-Addr Ack
Ack
Ack
00000000
00000000
0xF1
Ack
0000000
Ack
xxxxxxxx
Treble/Bass Slew Rate = TBLC
(Slew Rate = TBLC/FS,
Where FS = Audio Sample Rate)
Treble/Bass Slew Rate Selection
V
C
S
0
7
FS
3-dB CORNERS (kHz)
FS
(LRCLK)
FILTER SET 5
FILTER SET 4
FILTER SET 3
FILTER SET 2
FILTER SET 1
(LRCLK)
BASS
TREBLE
BASS
TREBLE
BASS
TREBLE
BASS
TREBLE
BASS
TREBLE
96 kHz
0.25
6
0.5
12
0.75
18
1
24
1.5
36
88.4 kHz
0.23
5.525
0.46
11.05
0.691
16.575
0.921
22.1
1.381
33.15
64 kHz
0.167
4
0.333
8
0.5
12
0.667
16
1
24
48 kHz
0.125
3
0.25
6
0.375
9
0.5
12
0.75
18
44.1 kHz
0.115
2.756
0.23
5.513
0.345
8.269
0.459
11.025
0.689
16.538
38 kHz
0.099
2.375
0.198
4.75
0.297
7.125
0.396
9.5
0.594
14.25
32 kHz
0.083
2
0.167
4
0.25
6
0.333
8
0.5
12
24 kHz
0.063
1.5
0.125
3
0.188
4.5
0.25
6
0.375
9
22.05 kHz
0.057
1.378
0.115
2.756
0.172
4.134
0.23
5.513
0.345
8.269
16 kHz
0.042
1
0.083
2
0.125
3
0.167
4
0.25
6
12 kHz
0.031
0.75
0.063
1.5
0.094
2.25
0.125
3
0.188
4.5
11.025 kHz
0.029
0.689
0.057
1.378
0.086
2.067
0.115
2.756
0.172
4.134
Figure 3-12. Bass and Treble Filter Selections
3-13
CAUTION: There is no soft transition implemented when changing bass and treble filter
sets; soft transitions only apply when adjusting gains (shelves) within a given filter set.
The variable TBLC should be set so that the dwell time at each shelf is never less than
32 audio sample periods; otherwise audio artifacts could be introduced into the audio
data stream.
Figure 3-12 summarizes the bass and treble adjustments available within each monaural channel. As noted in
Figure 3-12, the 3-dB frequency for the bass filter sets decreases in value as the filter set number is increased,
whereas the 3-dB frequency for the treble filter set increases in value as the filter set number is increased. The valid
selection for bass and treble sets ranges from 1 to 5.
Table 3-2 and Table 3-3 list, respectively, the bass and treble filter shelf selections for all 1/2 dB settings between
18-dB cut and 18-dB boost. The treble and bass selections are not the same, and the delta in the selection values
between 1/2 dB points are not constant across the 36-dB range. Table 3-2 and Table 3-3 do not list all 150 filter shelf
selections, but all 150 selection values for both bass and treble are valid, allowing the use of linear potentiometer or
GUI-based sliders. Table 3-2 and Table 3-3 are provided for those applications requiring the adjustment of bass and
treble in 1/2 dB steps.
CAUTION: Filter set selections 6 and 7 are illegal. Filter shelf selections 0 and 151
through 255 are illegal. Programming an illegal value could result in erratic and
erroneous behavior.
As an example, consider the case of a 44.1-kHz audio sample rate. For this audio rate it is desired to have, for all
three monaural channels
A 3-dB bass shelf corner frequency of 100 Hz
A bass shelf volume boost of 9 dB
A 3-dB treble shelf corner frequency of 8.1 kHz
A treble shelf volume cut of 4 dB
Bass and treble filter set selections can be made by referring to Figure 3-12. For a 44.1-kHz audio sample rate, filter
set 5 provides a 3-dB bass corner frequency at 115 Hz, and filter set 3 provides a 3-dB treble corner frequency at
8.269 kHz. These corner frequencies are the closest realizable corner frequencies to the specified 100-Hz bass and
8.1-kHz treble corner frequencies.
Table 3-2 provides the indices for achieving specified bass volume levels. An index of 0x55 yields a bass shelf gain
of 9 dB, which matches the specified shelf volume boost of 9 dB. Table 3-3 provides the indices for achieving specified
treble volume levels. An index of 0x7A yields a treble shelf cut of 4 dB (-4-dB gain), which matches the specified shelf
volume cut of 4 dB.
Figure 3-13 presents the resulting subaddress entries required to implement the parameters specified in the bass
and treble example.
3-14
S
Slave Addr
Ack Sub-Addr Ack
Ack
Ack
00000101
00000000
0xF5
CH3
Ack
00000101
CH2
Ack
00000101
CH1
Bass Filter Set Selection
Filter Set 5 Selected
S
Slave Addr
Ack Sub-Addr Ack
Ack
Ack
00000011
00000000
0xF7
CH3
Ack
00000011
CH2
Ack
00000011
CH1
Treble Filter Set Selection
Filter Set 3 Selected
S
Slave Addr
Ack Sub-Addr Ack
Ack
Ack
01010101
00000000
0xF6
Ack
01010101
Ack
01010101
Bass Shelf Selection (Filter Index)
Filter Shelf 0x55 Selected
S
Slave Addr
Ack Sub-Addr Ack
Ack
Ack
01111010
00000000
0xF8
CH3
Ack
01111010
CH2
Ack
01111010
CH1
Treble Shelf Selection (Filter Index)
Filter Shelf 0x7A Selected
CH3
CH2
CH1
Figure 3-13. Bass and Treble Application Example--Subaddress Parameters
Table 3-2. Bass Shelf Filter Indices for 1/2-dB Adjustments
ADJUSTMENT
(DB)
INDEX(1)
ADJUSTMENT
(DB)
INDEX(1)
ADJUSTMENT
(DB)
INDEX(1)
18
0x01
5.5
0x63
-7
0x80
17.5
0x08
5
0x64
-7.5
0x81
17
0x10
4.5
0x66
-8
0x82
16.5
0x16
4
0x67
-8.5
0x83
16
0x1D
3.5
0x69
-9
0x84
15.5
0x23
3
0x6A
-9.5
0x85
15
0x28
2.5
0x6B
-10
0x86
14.5
0x2D
2
0x6D
-10.5
0x87
14
0x32
1.5
0x6E
-11
0x88
13.5
0x37
1
0x6F
-11.5
0x89
13
0x3B
0.5
0x71
-12
0x8A
12.5
0x3F
0
0x72
-12.5
0x8B
12
0x42
-0.5
0x73
-13
0x8C
11.5
0x46
-1
0x74
-13.5
0x8D
11
0x49
-1.5
0x75
-14
0x8E
10.5
0x4C
-2
0x76
-14.5
0x8F
10
0x4F
-2.5
0x77
-15
0x90
9.5
0x52
-3
0x78
-15.5
0x91
9
0x55
-3.5
0x79
-16
0x92
8.5
0x58
-4
0x7A
-16.5
0x93
8
0x5A
-4.5
0x7B
-17
0x94
7.5
0x5C
-5
0x7C
-17.5
0x95
7
0x5E
-5.5
0x7D
-18
0x96
6.5
0x60
-6
0x7E
6
0x62
-6.5
0x7F
(1) CH1 Index is Subaddress 0xF6, Bit Field 7:0. CH2 Index is Subaddress 0xF6, Bit Field 15:8. CH3
Index is Subaddress 0xF6, Bit Field 23:16.
3-15
Table 3-3. Treble Shelf Filter Indices for 1/2-dB Adjustments
ADJUSTMENT
(DB)
INDEX(1)
ADJUSTMENT
(DB)
INDEX(1)
ADJUSTMENT
(DB)
INDEX(1)
18
0x01
5.5
0x63
-7
0x80
17.5
0x09
5
0x65
-7.5
0x81
17
0x10
4.5
0x66
-8
0x82
16.5
0x16
40
0x68
-8.5
0x83
16
0x1C
3.5
0x69
-9
0x84
15.5
0x22
3
0x6B
-9.5
0x85
15
0x28
2.5
0x6C
-10
0x86
14.5
0x2D
2
0x6D
-10.5
0x87
14
0x31
1.5
0x6F
-11
0x88
13.5
0x35
1
0x70
-11.5
0x89
13
0x3A
0.5
0x71
-12
0x8A
12.5
0x3E
0
0x72
-12.5
0x8B
12
0x42
-0.5
0x73
-13
0x8C
11.5
0x45
-1
0x74
-13.5
0x8D
11
0x49
-1.5
0x75
-14
0x8E
10.5
0x4C
-2
0x76
-14.5
0x8F
10
0x4F
-2.5
0x77
-15
0x90
9.5
0x52
-3
0x78
-15.5
0x91
9
0x55
-3.5
0x79
-16
0x92
8.5
0x57
-4
0x7A
-16.5
0x93
8
0x5A
-4.5
0x7B
-17
0x94
7.5
0x5C
-5
0x7C
-17.5
0x95
7
0x5E
-5.5
0x7D
-18
0x96
6.5
0x60
-6
0x7E
6
0x62
-6.5
0x7F
(1) CH1 Index is Subaddress 0xF8, Bit Field 7:0. CH2 Index is Subaddress 0xF8, Bit Field 15:8. CH3
Index is Subaddress 0xF8, Bit Field 23:16.
3.5.1
Treble and Bass Processing and Concurrent I
2
C Read Transactions
I
2
C read transactions at subaddresses 0x01 through 0xD1 are not allowed during: (1) transitions between filter
shelves within a given bass or treble filter set or (2) transitions between filter sets. This means that after issuing an
I
2
C command to change treble or bass filter shelves or filter sets, time must be allowed to complete the bass/treble
activity before proceeding to read subaddresses 0x01 through 0xD1. There is no subaddress available to directly
monitor bass/treble activity. However, there is a means of probing the state of bass/treble activity via the factory test
subaddresses 0xEC and 0xED.
If it is required to read subaddress data that falls in the subaddress range of 0x01 through 0xD1 after issuing an I
2
C
command to change treble or bass filter shelves or filter sets, the procedure presented in Figure 3-14 can be used
to monitor bass/treble activity. As Figure 3-14 shows, six readings must be taken to verify that none of the three
monaural channels have on-going bass or treble activity. If all six readings show the value zero in the 8
th
or least
significant byte of the 8-byte data word output at subaddress 0xED, then all commanded bass/treble activity has
completed and it is safe to resume I
2
C read transactions at subaddresses 0x01 through 0xD1.
3-16
Start
Write 0x00, 0x06, 0x00, 0xCD
Read 8 byte output from
8th Byte = 0
Y
Write 0x00, 0x06, 0x00, 0xD1
Read 8 byte output from
8th Byte = 0
Y
Write 0x00, 0x06, 0x00, 0xCE
Read 8 byte output from
8thByte = 0
Y
Write 0x00, 0x06, 0x00, 0xD2
Read 8 byte output from
8thByte = 0
Y
8thByte = 0
Y
Write 0x00, 0x06, 0x00, 0xD5
Read 8 byte output from
CH 1 Treble
CH 1 Bass
CH 2 Treble
CH 2 Bass
CH 3 Treble
CH 3 Bass
Write 0x00, 0x06, 0x00, 0xD3
Read 8 byte output from
N
N
N
N
N
8thByte = 0
Y
N
Bass / Treble Processing Active
Bass / Treble Processing Inactive
Figure 3-14. I
2
C Bass/Treble Activity Monitor Procedure
subaddress 0xEC
subaddress 0xED
subaddress 0xEC
subaddress 0xED
subaddress 0xEC
subaddress 0xED
subaddress 0xEC
subaddress 0xED
subaddress 0xEC
subaddress 0xED
subaddress 0xEC
subaddress 0xED
3-17
3.6
Soft Volume/Loudness Processing
Each of the three monaural channels in the TAS3103 has dedicated soft volume control and loudness compensation.
Volume level changes are issued by I
2
C bus commands in the I
2
C slave mode and by setting the appropriate GPIO
pin to logic 0 in the I
2
C master mode. Commanded changes in volume are implemented softly, using a smooth S-curve
trajectory to transition the volume to the newly commanded level.
Volume commands are formatted as signed 5.23 numbers. The maximum volume boost then is 24 dB
(4 bits x 6 dB/bit); the maximum volume cut is
with a volume command of zero. The maximum finite volume cut
is 138 dB (23 bits x 6 dB/bit). The resolution of the volume adjustment is not fixed over all gain settings. For large gains
the resolution of the volume adjustment is very fine, and the resolution of the volume adjustment decreases as the
volume gain decreases. As an example, at maximum gain, the volume level can be adjusted to a resolution of
0.000001 dB [(138 + 24) dB adjustment range/2
27
adjustment steps]. At the other end of the gain scale, if the volume
setting is at the maximum finite cut (volume command = 0x0000001) and is increased by one count (volume command
= 0x0000002), a 6-dB adjustment is realized.
Each monaural channel volume control is also assigned a separate mute command, which has the same effect as
issuing a zero-valued volume command. If loudness is enabled, disabling it by setting the parameter G to zero is
necessary to obtain a total cut (-
dB). This requirement is further discussed in the paragraphs that follow.
Loudness compensation tracks the volume control setting to allow spectral compensation. An example of loudness
compensation would be a boost in bass frequencies to compensate for weak perceived bass at low volume levels.
Both linear and log control laws can be implemented for volume gain tracking, and a dedicated biquad filter can be
used to achieve spectral discernment.
3.6.1
Soft Volume
Figure 3-14 is a simplified block diagram of the implementation of soft volume and loudness compensation. A volume
level change (either via an I
2
C bus issued command in the I
2
C slave mode, or a GPIO-issued command in the I
2
C
master mode) initiates a transition process that assures a smooth transition to the newly commanded volume level
without producing artifacts such as pops, clicks, and zipper noise. The transition time, or volume slew rate, can be
selected to occupy a time window of either 2048 or 4096 audio sample periods. For 48-kHz audio, for example, this
equates to a transition time of 42.67 ms or 85.34 ms. It is anticipated that 42.67 ms is the transition time of choice
for most applications, and the 4096 sample transition option is primarily included to yield the same 42.67-ms transition
time for 96-kHz audio. The slope of the S-curve (and its implementation) is proprietary and cannot be altered.
If additional volume commands for a given monaural channel are received, while a previously commanded volume
change is still active, the last command received over-writes previous commands and is used. When the previously
commanded transition completes, the volume command last received while the transition was taking place is acted
upon and a new transition to this volume level initiated. For example, assume three volume commands are
sequentially issued, via the I
2
C bus, to adjust the volume levels of the three monaural channels in the TAS3103. The
first command received immediately triggers the start of a soft volume transition to the newly commanded level. The
other two volume commands are received and queued to await the completion of the currently active soft volume
transaction. When the first soft volume transition completes, and assuming no further volume commands have been
received to replace the other two volume commands received, the next two volume commands are activated, and
soft volume transitions on both monaural channels takes place. The total time then, for a 48-kHz audio sample rate
and a transition selection of 2048 FS cycles is 2 x 42.67 ms or 85.34 ms. If, during the first soft volume transition, a
second volume command is received for this same monaural channel, the second soft volume transition period would
have soft volume transitions taking place on all three monaural channels. It is also noted that the soft volume transition
time is independent of the magnitude of the adjustment. All volume commands take 2048 or 4096 FS cycles,
regardless of the magnitude of the change.
In the I
2
C slave mode, the status of a commanded soft volume transition can be found by reading bit 0 of the 32-bit
data word retrieved at subaddress 0xFF. If this bit is set to logic 1, one or more monaural channels are actively
transitioning their volume setting. If a volume transition is taking place on one of the monaural channels in the
TAS3103, volume commands received for the other two monaural channels are not acted upon until the active volume
transition completes. When the active volume transition does complete, the latest volume commands received for
the three monaural channels during the previous soft volume transition time are serviced.
3-18
Microprocessor
2048 Sample
Transition
4096 Sample
Transition
Soft Volume
Gain Control
Soft Volume
volume_setting
VSCSubaddress 0xF1 = 1
VSCSubaddress 0xF1 = 0
I2C Slave Mode
I2C Master Mode
I2C
Volume
Commands
GPIO
Volume
Commands
f (Volume)
Programmable
Biquad Filter
Channel-Processed
Audio
Loudness Compensation
Volume-Adjusted
Audio
Figure 3-15. Soft Volume and Loudness Compensation Block Diagram
Figure 3-15 is a more detailed block diagram of soft volume and loudness compensation, and includes the I
2
C
subaddress commands that control volume and loudness compensation. Volume control is accomplished using three
I
2
C subaddresses--volume control, mute/unmute control, and volume slew rate control.
Volume control in the TAS3103 applies a linear gain. The volume commands issued via I
2
C subaddresses 0xF2,
0xF3, and 0xF4 (monaural channels 1, 2, and 3 respectively) are signed 5.23 format numbers. These commands are
applied to mixers, whose other input port is the audio data stream. The mixer output is the product of the audio data
stream and the volume command. Examples of volume command settings are given below.
Volume Command = 0x3580B07 = 0011_0.101_1000_0000_1011_0000_0111 = 6.6878365
Volume Command = 0x01F0000 = 0000_0.001_1111_0000_0000_0000_0000_0000 = 0.2421875
Volume Command = 0xCD6EFFE = 1100_1.101_0110_1110_1111_1111_1110 = -6.3208010
The volume control range is 0 = -
to 2
-23
= -138.47 dB to 2
4
- 2
-23
= 24.08 dB. Volume control is achieved by means
of a 5.23 format gain coefficient that is applied to a linear mixer. The volume gain setting realized, for a given volume
gain coefficient, is
Gain = 20log (Volume_Gain_Coefficient)
3-19
There are several techniques of volume management for a linear volume control process.
Precise calculations involving logarithms can be employed.
A high-resolution gain table, with entries for every 0.5-dB step, can be employed.
A more coarse gain table (entries in 3 to 6-dB steps with linear interpolation between entries) can be
employed.
Or approximations involving very simple calculations can be employed.
As an example of using approximations, equations for increasing a linear 5.23 gain setting X by 0.5 dB that involve
only simple binary shift and add operations, and the accuracy of these equations, are given below.
20log
10
X + 0.5 dB
X + 2
-4
X gives 0.52657877-dB steps
20log
10
X + 0.5 dB
X + 2
-4
X - 2
-8
X gives 0.49458651-dB steps
20log
10
X + 0.5 dB
X + 2
-4
X - 2
-8
X + 2
-11
X gives 0.49859199-dB steps
20log
10
X + 0.5 dB
X[1 + 2
-4
- 2
-8
+ 2
-11
+ 2
-12
- 2
-13
+ 2
-14
- 2
-16
+ 2
-18
] gives
0.4999997332 dB-steps
Approximations can also be found for decreasing a linear 5.23 gain setting X by 0.5 dB that involve using only simple
binary shift and add operations, but the equations differ slightly from those used to increase the gain in 0.5-dB steps.
The approximations to decrease the volume by 0.5 dB, and the accuracy of these approximations, are given below.
20log
10
X - 0.5 dB
X - 2
-4
X gives -0.56057447 dB-steps
20log
10
X - 0.5 dB
X - 2
-4
X + 2
-7
X gives -0.48849199-dB steps
20log
10
X - 0.5 dB
X - 2
-4
X + 2
-7
X - 2
-10
X gives -0.49746965-dB steps
20log
10
X - 0.5 dB
X[1 - 2
-4
+ 2
-7
- 2
-10
- 2
-12
- 2
-15
- 2
-21
] gives -0.5000006792 dB-steps
Repeated use of a set of the above approximations results in an accumulation of the errors in the approximations.
For example, if an application started at 0-dB volume, and repeatedly used the approximations to increase and
decrease the volume, the exact reference point of 0 dB would be lost. If an application does require the maintenance
of accurate reference points, it is necessary for the application to establish a set of exact gain reference settings and
command these exact settings in place of a computed gain setting whenever the current gain setting and the next
computed gain setting straddle an exact gain setting.
Table 3-4 lists the I
2
C coefficient settings to adjust volume from 24 dB to -136 dB in 0.5-dB steps. For each volume
setting, the gain in dB is presented in one column, the same gain in a floating point number float
+
10
Gain
dB
20
is
presented in the adjacent column, and the same gain formatted in the 32-bit hexadecimal gain coefficient format
required to enter the value into the TAS3103 via the I
2
C bus is presented in a third column.
3-20
Table 3-4. Volume Adjustment Gain Coefficients
GAIN (dB)
GAIN (FLOAT)
GAIN (COEFFICIENT)
GAIN (dB)
GAIN (FLOAT)
GAIN (COEFFICIENT)
24
15.84893192
07ECA9CD
2
1.25892541
00A12477
23.5
14.96235656
077B2E7F
1.5
1.18850223
009820D7
23
14.12537545
07100C4D
1
1.12201845
008F9E4C
22.5
13.33521432
06AAE84D
0.5
1.05925373
008795A0
22
12.58925412
064B6CAD
0
1
00800000
21.5
11.88502227
05F14868
-0.5
0.94406088
0078D6FC
21
11.22018454
059C2F01
-1
0.89125094
00721482
20.5
10.59253725
054BD842
-1.5
0.84139514
006BB2D6
20
10
05000000
-2
0.79432823
0065AC8C
19.5
9.44060876
04B865DE
-2.5
0.74989421
005FFC88
19
8.91250938
0474CD1B
-3
0.70794578
005A9DF7
18.5
8.41395142
0434FC5C
-3.5
0.66834392
00558C4B
18
7.94328235
03F8BD79
-4
0.63095734
0050C335
17.5
7.49894209
03BFDD55
-4.5
0.59566214
004C3EA8
17
7.07945784
038A2BAC
-5
0.56234133
0047FACC
16.5
6.68343918
03577AEF
-5.5
0.53088444
0043F405
16
6.30957344
0327A01A
-6
0.50118723
004026E7
15.5
5.95662144
02FA7292
-6.5
0.47315126
003C9038
15
5.62341325
02CFCC01
-7
0.44668359
00392CED
14.5
5.30884444
02A78836
-7.5
0.42169650
0035FA26
14
5.01187234
02818508
-8
0.39810717
0032F52C
13.5
4.73151259
025DA234
-8.5
0.37583740
00301B70
13
4.46683592
023BC147
-9
0.35481339
002D6A86
12.5
4.21696503
021BC582
-9.5
0.33496544
002AE025
12
3.98107171
01FD93C1
-10
0.31622777
00287A26
11.5
3.75837404
01E11266
-10.5
0.29853826
00263680
11
3.54813389
01C62940
-11
0.28183829
00241346
10.5
3.34965439
01ACC179
-11.5
0.26607251
00220EA9
10
3.16227766
0194C583
-12
0.25118864
002026F3
9.5
2.98538262
017E2104
-12.5
0.23713737
001E5A84
9
2.81838293
0168C0C5
-13
0.22387211
001CA7D7
8.5
2.66072506
015492A3
-13.5
0.21134890
001B0D7B
8
2.51188643
0141857E
-14
0.19952623
00198A13
7.5
2.37137371
012F892C
-14.5
0.18836491
00181C57
7
2.23872114
011E8E6A
-15
0.17782794
0016C310
6.5
2.11348904
010E86CF
-15.5
0.16788040
00157D1A
6
1.99526231
00FF64C1
-16
0.15848932
00144960
5.5
1.88364909
00F11B69
-16.5
0.14962357
001326DD
5
1.77827941
00E39EA8
-17
0.14125375
0012149A
4.5
1.67880402
00D6E30C
-17.5
0.13335214
001111AE
4
1.58489319
00CADDC7
-18
0.12589254
00101D3F
3.5
1.49623566
00BF84A6
-18.5
0.11885022
000F367B
3
1.41253754
00B4CE07
-19
0.11220185
000E5CA1
2.5
1.33352143
00AAB0D4
-19.5
0.10592537
000D8EF6
3-21
Table 3-4. Volume Adjust Gain Coefficient (Continued)
GAIN (dB)
GAIN (FLOAT)
GAIN (COEFFICIENT)
GAIN (dB)
GAIN (FLOAT)
GAIN (COEFFICIENT)
-20
0.1
000CCCCC
-42
0.00794328
00010449
-20.5
0.09440609
000C157F
-42.5
0.00749894
0000F5B9
-21
0.08912509
000B6873
-43
0.00707946
0000E7FA
-21.5
0.08413951
000AC515
-43.5
0.00668344
0000DB00
-22
0.07943282
000A2ADA
-44
0.00630957
0000CEC0
-22.5
0.07498942
00099940
-44.5
0.00595662
0000C32F
-23
0.07079458
00090FCB
-45
0.00562341
0000B844
-23.5
0.06683439
00088E07
-45.5
0.00530884
0000ADF5
-24
0.06309573
00081385
-46
0.00501187
0000A43A
-24.5
0.05956621
00079FDD
-46.5
0.00473151
00009B0A
-25
0.05623413
000732AE
-47
0.00446684
0000925E
-25.5
0.05308844
0006CB9A
-47.5
0.00421697
00008A2E
-26
0.05011872
00066A4A
-48
0.00398107
00008273
-26.5
0.04731513
00060E6C
-48.5
0.00375837
00007B27
-27
0.04466836
0005B7B1
-49
0.00354813
00007443
-27.5
0.04216965
000565D0
-49.5
0.00334965
00006DC2
-28
0.03981072
00051884
-50
0.00316228
0000679F
-28.5
0.03758374
0004CF8B
-50.5
0.00298538
000061D3
-29
0.03548134
00048AA7
-51
0.00281838
00005C5A
-29.5
0.03349654
0004499D
-51.5
0.00266073
0000572F
-30
0.03162278
00040C37
-52
0.00251189
0000524F
-30.5
0.02985383
0003D240
-52.5
0.00237137
00004DB4
-31
0.02818383
00039B87
-53
0.00223872
0000495B
-31.5
0.02660725
000367DD
-53.5
0.00211349
00004541
-32
0.02511886
00033718
-54
0.00199526
00004161
-32.5
0.02371374
0003090D
-54.5
0.00188365
00003DB9
-33
0.02238721
0002DD95
-55
0.00177828
00003A45
-33.5
0.02113489
0002B48C
-55.5
0.00167880
00003702
-34
0.01995262
00028DCE
-56
0.00158489
000033EF
-34.5
0.01883649
0002693B
-56.5
0.00149624
00003107
-35
0.01778279
000246B4
-57
0.00141254
00002E49
-35.5
0.01678804
0002261C
-57.5
0.00133352
00002BB2
-36
0.01584893
00020756
-58
0.00125893
00002940
-36.5
0.01496236
0001EA49
-58.5
0.00118850
000026F1
-37
0.01412538
0001CEDC
-59
0.00112202
000024C4
-37.5
0.01333521
0001B4F7
-59.5
0.00105925
000022B5
-38
0.01258925
00019C86
-60
0.001
000020C4
-38.5
0.01188502
00018572
-60.5
0.00094406
00001EEF
-39
0.01122018
00016FA9
-61
0.00089125
00001D34
-39.5
0.01059254
00015B18
-61.5
0.00084140
00001B92
-40
0.01
000147AE
-62
0.00079433
00001A07
-40.5
0.00944061
00013559
-62.5
0.00074989
00001892
-41
0.00891251
0001240B
-63
0.00070795
00001732
-41.5
0.00841395
000113B5
-63.5
0.00066834
000015E6
3-22
Table 3-4. Volume Adjust Gain Coefficient (Continued)
GAIN (dB)
GAIN (FLOAT)
GAIN (COEFFICIENT)
GAIN (dB)
GAIN (FLOAT)
GAIN (COEFFICIENT)
-64
0.00063096
000014AC
-86
5.01188E-05
000001A4
-64.5
0.00059566
00001384
-86.5
4.73152E-05
0000018C
-65
0.00056234
0000126D
-87
4.46684E-05
00000176
-65.5
0.00053088
00001165
-87.5
4.21696E-05
00000161
-66
0.00050119
0000106C
-88
3.98108E-05
0000014D
-66.5
0.00047315
00000F81
-88.5
3.75838E-05
0000013B
-67
0.00044668
00000EA3
-89
3.54814E-05
00000129
-67.5
0.00042170
00000DD1
-89.5
3.34966E-05
00000118
-68
0.00039811
00000D0B
-90
3.16228E-05
00000109
-68.5
0.00037584
00000C50
-90.5
2.98538E-05
000000FA
-69
0.00035481
00000BA0
-91
2.81838E-05
000000EC
-69.5
0.00033497
00000AF9
-91.5
2.66072E-05
000000DF
-70
0.00031623
00000A5C
-101
8.91250E-06
0000004A
-70.5
0.00029854
000009C8
-101.5
8.41396E-06
00000046
-71
0.00028184
0000093C
-102
7.94328E-06
00000042
-71.5
0.00026607
000008B7
-102.5
7.49894E-06
0000003E
-72
0.00025119
0000083B
-103
7.07946E-06
0000003B
-72.5
0.00023714
000007C5
-103.5
6.68344E-06
00000038
-73
0.00022387
00000755
-104
6.30958E-06
00000034
-73.5
0.00021135
000006EC
-104.5
5.95662E-06
00000031
-74
0.00019953
00000689
-105
5.62342E-06
0000002F
-74.5
0.00018837
0000062C
-105.5
5.30884E-06
0000002C
-75
0.00017783
000005D3
-106
5.01188E-06
0000002A
-75.5
0.00016788
00000580
-106.5
4.73152E-06
00000027
-76
0.00015849
00000531
-107
4.46684E-06
00000025
-76.5
0.00014962
000004E7
-107.5
4.21696E-06
00000023
-77
0.00014125
000004A0
-108
3.98108E-06
00000021
-77.5
0.00013335
0000045E
-108.5
3.75838E-06
0000001F
-78
0.00012589
00000420
-109
3.54814E-06
0000001D
-78.5
0.00011885
000003E4
-109.5
3.34966E-06
0000001C
-79
0.00011220
000003AD
-110
3.16228E-06
0000001A
-79.5
0.00010593
00000378
-110.5
2.98538E-06
00000019
-80
0.0001
00000346
-111
2.81838E-06
00000017
-80.5
9.44060E-05
00000317
-111.5
2.66072E-06
00000016
-81
8.91250E-05
000002EB
-112
2.51188E-06
00000015
-81.5
8.41396E-05
000002C1
-112.5
2.37138E-06
00000013
-82
7.94328E-05
0000029A
-113
2.23872E-06
00000012
-82.5
7.49894E-05
00000275
-113.5
2.11348E-06
00000011
-83
7.07946E-05
00000251
-92
2.51188E-05
000000D2
-83.5
6.68344E-05
00000230
-92.5
2.37138E-05
000000C6
-84
6.30958E-05
00000211
-93
2.23872E-05
000000BB
-84.5
5.95662E-05
000001F3
-93.5
2.11348E-05
000000B1
-85
5.62342E-05
000001D7
-94
1.99526E-05
000000A7
-85.5
5.30884E-05
000001BD
-94.5
1.88365E-05
0000009E
3-23
Table 3-4. Volume Adjust Gain Coefficient (Continued)
GAIN (dB)
GAIN (FLOAT)
GAIN (COEFFICIENT)
GAIN (dB)
GAIN (GLOAT)
GAIN (COEFFICIENT)
-95
1.77828E-05
00000095
-122.5
7.49894E-07
00000006
-95.5
1.67880E-05
0000008C
-123
7.07946E-07
00000005
-96
1.58489E-05
00000084
-123.5
6.68344E-07
00000005
-96.5
1.49624E-06
0000007D
-124
6.30958E-07
00000005
-97
1.41254E-05
00000076
-124.5
5.95662E-07
00000004
-97.5
1.33352E-05
0000006F
-125
5.62342E-07
00000004
-98
1.25893E-05
00000069
-125.5
5.30884E-07
00000004
-98.5
1.18850E-05
00000063
-126
5.01188E-07
00000004
-99
1.12202E-05
0000005E
-126.5
4.73152E-07
00000003
-99.5
1.05925E-05
00000058
-127
4.46684E-07
00000003
-100
0.00001
00000053
-127.5
4.21696E-07
00000003
-100.5
9.44060E-06
0000004F
-128
3.98108E-07
00000003
-114
1.99526E-06
00000010
-128.5
3.75838E-07
00000003
-114.5
1.88365E-06
0000000F
-129
3.54814E-07
00000002
-115
1.77828E-06
0000000E
-129.5
3.34966E-07
00000002
-115.5
1.67880E-06
0000000E
-130
3.16228E-07
00000002
-116
1.58489E-06
0000000D
-130.5
2.98538E-07
00000002
-116.5
1.49624E-06
0000000C
-131
2.81838E-07
00000002
-117
1.41254E-06
0000000B
-131.5
2.66072E-07
00000002
-117.5
1.33352E-06
0000000B
-132
2.51188E-07
00000002
-118
1.25893E-06
0000000A
-132.5
2.37138E-07
00000001
-118.5
1.18850E-06
00000009
-133
2.23872E-07
00000001
-119
1.12202E-06
00000009
-133.5
2.11348E-07
00000001
-119.5
1.05925E-06
00000008
-134
1.99526E-07
00000001
-120
0.000001
00000008
-134.5
1.88365E-07
00000001
-120.5
9.44080E-07
00000007
-135
1.77828E-07
00000001
-121
8.91250E-07
00000007
-135.5
1.67880E-07
00000001
-121.5
8.41396E-07
00000007
-136
1.58489E-07
00000001
-122
7.94328E-07
00000006
3.6.1.1 Soft Volume Adjustment Range Limitations
When the 2048 sample transition time is selected for the S-curve volume transition, the full -
to 24-dB adjustment
range is available. All possible values but one in the signed 28-bit (5.23 format) volume level command range are
valid volume level selections. The one exception is the maximum negative volume level command 0x08000000. This
value is illegal and, if used, could result in erratic behavior that requires a reset to the part to correct.
When the 4096 sample transition time is selected, the upper two bits of the 28-bit volume command cannot be used.
This means that the valid volume level command range is reduced to a maximum positive value of 0x1FFFFFF
(12 dB) and a maximum negative value of 0x0E000000 (also 12 dB, but with a 180
phase inversion of the audio
signal). Values above these maximum levels could result in erratic behavior that requires a reset to the part to correct.
Although the volume boost for the 4096 sample transition time is limited to 12 dB, volume boost can be realized
elsewhere in the processing signal flow, such as in the input crossbar mixers, the biquad filters in the three monaural
channels, or the biquad filters in the effects block.
3.6.1.2 Soft Volume Transitions and Concurrent I
2
C Read Transactions
I
2
C read transactions at subaddresses 0x01 through 0xD1 are not allowed during volume level transitions, as read
activity during volume level transitions could result in erroneous data being output. If it is required to read subaddress
3-24
data that falls in the subaddress range 0x01 through 0xD1 after issuing an I
2
C command to change the volume level
on one of the three monaural channels, the busy bit at subaddress 0xFF must be monitored to determine when the
volume activity has ceased and it is safe to resume I
2
C read activity at subaddresses 0x01 through 0xD1. A value
of 0 in the least significant bit of the byte output upon reading subaddress 0xFF signifies that all volume transition
activity has completed.
3.6.2
Loudness Compensation
Loudness compensation employs a single, coefficient-programmable, biquad filter and a function block
f(volume_setting), whose output is only a function of the volume control setting. The biquad filter input is the channel
processed audio data stream that also feeds the volume gain-control mixer. The biquad output feeds a gain control
mixer whose other input is the volume control setting after processing by the function block f(volume setting).
Loudness compensation then allows a given spectral segment of the audio data stream (as determined by the biquad
filter coefficients) to be given a delta adjustment in volume as determined by the programmable function block
f(volume_setting).
The output of the function block f(volume_setting) can be expressed in terms of the programmable I
2
C coefficients
as:
f(volume_setting) = [(volume_setting)
LG
x2
LO
xG] +O
where:
LG = logarithmic gain = 5.23 format number
LO = logarithmic offset = 25.23 format number
G = gain = 5.23 format number
O = offset = 25.23 format number
If LG = 0.5, LO = 0.0, G = 1.0, and O = 0.0, f(volume setting) becomes
f(volume_setting) =
volume_setting
The output of the soft volume/loudness compensation block for the above case would be:
audio
Out
= [audio
In
volume_setting] + [audio
In
F(s)
Biquad
volume_setting ]
If a given monaural channel is set up as in the above example, a true mute is not obtained when a mute command
is issued for the monaural channel. A mute command results in a volume control setting of 0.0. LG and LO operate
in logarithmic space, and the logarithm of 0.0 is -
. Therefore (volume_setting)
-
and 2
-
should both be of value
0. However, the function block f(volume_setting) approximates logarithmic arithmetic, and a consequence of the
mathematical approximations used is that the function block can output a non-zero value for an input volume setting
of 0.0. For f(volume_setting) =
volume_setting, a volume_setting value of 0.0 results in the function block outputting
a gain coefficient that cuts the output of the biquad filter by approximately 90 dB. If true muting is required, it can be
achieved by setting G = 0.0 after the volume control setting has softly transitioned to 0.0.
3-25
S
Slave
Addr
Ack
Sub-Addr
Ack
xxxxxxxx
xxxxxxxx
xxxxxx
l
s
b
a
1
b
0
b
1
b
2
a
1
a
2
28
28
28
28
28
z
-1
z
-1
z
-1
z
-1
All biquad gain coef
ficients 5.23 numbers.
48
Loudness Compensation
48
48
AUDIO OUT
AUDIO IN
28
48
a
2
b
0
b
1
b
2
O
G
CH 1 = 0xA3
CH 2 = 0xA8
CH 3 = 0xAD
LO Is
A
25.23 Format Number
CH 1 = 0xA4
CH 2 = 0xA9
CH 3 = 0xAE
G Is
A
5.23 Format Number
CH 1 = 0xA5
CH 2 = 0xAA
CH 3 = 0xAF
O Is
A
25.23 Format Number
S
Slave Addr
Ack
Sub-Addr
Ack
00000000
Ack
00000000
Ack
Ack
xxxxxxxx
Ack
LO
MSBs
xxxxxxx
m
s
b
xxxxxxxx
xxxxxxxx
xxxxxxx
l
s
b
Ack
LO LSBs
xxxxxxxx
2
LO
CH 1 = 0xA2
CH 2 = 0xA7
CH 3 = 0xAC
LG Is
A
5.23 Format Number
LOUDNESS
BiQuad Coef
ficients
CH 1 = 0xA6
CH 2 = 0xAB
CH 3 = 0xB0
LG
( )
LG
Commanded 5.23
V
olume Command
S
Slave
Addr
Sub-Addr
xxxxxxxx
xxxxxxxx
xxxxxxxx
VCS
xxxxxxx
v
c
s
0xF1
Original
V
olume
Commanded
V
olume
VCS
= 0
t
t
r
ans
it
ion
= 2048/FS
VCS = 1
t
t
r
ans
it
ion
= 4096/FS
SOFT VOLUME
t
t
r
ans
it
ion
I
2
C Master Mode
I
2
C Slave Mode
V
olume Commands
- GPIO
T
erminals
GPIO0 - V
olume Up - CH1 / CH2
GPIO1 - V
olume Down - CH1 / CH2
GPIO2 - V
olume Up - CH3
GPIO3 - V
olume Down - CH1 / CH2
S
Slave
Addr
Ack
Sub-Addr
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxx
CCC
HHH
321
Mute / Unmute Command
0xF0
CH 1 = 0xF2
CH 2 = 0xF3
CH 3 = 0xF4
Mute Command = 1 => 0x0000000 V
olume Control
V
olume
Command
V
olume Command
(5.23 Precision)
Note: Negative V
olume Commands Result In
Audio Polarity Inversion
= x16 Boost
MA
X
= 1/2
23
Cut
MA
X
(LSB)
= Zero Output For 0x0000000 V
olume Control
V
olume
Commands
I
2
C Bus
Ack
Ack
Ack
S
Slave
Addr
Ack
Sub-Addr
Ack
Ack
Ack
Ack
Ack
G
xxxxxxxx
xxxxxxx
l
s
b
xxxxxxxx
m
s
b
xxx
0000
m
s
b
xxx
0000
S
Slave Addr
Ack
Sub-Addr
Ack
00000000
Ack
00000000
Ack
Ack
xxxxxxxx
Ack
0 MSBs
xxxxxxx
m
s
b
xxxxxxxx
xxxxxxxx
xxxxxxx
l
s
b
Ack
0 LSBs
xxxxxxxx
Ack
Ack
Ack
Ack
Ack
Ack
Ack
xxxxxxxx
xxxxxxxx
xxxxxx
l
s
b
m
s
b
xxx
0000
Ack
Ack
Ack
Ack
xxxxxxxx
xxxxxxxx
xxxxxx
l
s
b
m
s
b
xxx
0000
Ack
Ack
Ack
Ack
xxxxxxxx
xxxxxxxx
xxxxxx
l
s
b
m
s
b
xxx
0000
Ack
Ack
Ack
Ack
xxxxxxxx
xxxxxxxx
xxxxxx
l
s
b
m
s
b
xxx
0000
Ack
Ack
Ack
Ack
S
Slave
Addr
Ack
Sub-Addr
Ack
xxxxxxxx
xxxxxxxx
xxxxxx
l
s
b
m
s
b
xxx
0000
Ack
Ack
Ack
Ack
Ack
Ack
Ack
Ack
Ack
Ack
Ack
Ack
Ack
Ack
Ack
S
Slave Addr
Ack
Sub-Addr
Ack
Ack
Ack
Ack
Ack
xxxxxxxx
xxxxxxx
l
s
b
xxxxxxxx
m
s
b
xxx
0000
Figure 3-16.
Detailed Block Diagram--Soft V
olume and Loudness Compensation
3-26
If G is set to 0.0 and O is set to 0.0, loudness compensation is disabled. If G is set to 0.0 and O is set to 1.0, the
biquad-filtered audio is directly added to the volume level adjusted audio. Typically, LG and LO are used to derive
the desired loudness compensation function, G is used to turn loudness compensation on and off, and O is used to
enable and disable the biquad filter output when automatic volume tracking is turned off.
3.6.3
Time Alignment and Reverb Delay Processing
The TAS3103 provides delay line facilities at two locations in the TAS3103--in the 3D effects block (reverb delay),
and at the output mix block (delay). There are three reverb delay blocks, one for each monaural channel, and these
delay elements are typically used in implementing sound spatiality, a single mix reverberation, and other sound
effects. There are also three delay blocks, again one for each monaural channel, and these delay elements are
typically used for temporal channel alignment. The delay line facilities are implemented using a single 4K (4096) x
16-bit RAM resource. Each delay element implemented provides a one-sample delay (1/FS). The size of each delay
line can be programmed via the I
2
C bus, or set by the EEPROM download in the I
2
C master mode. The only restriction
is that the total delay line resources programmed cannot exceed the capacity of the 4K x 16-bit memory bank.
Figure 3-17 illustrates how delay line structures are established within the 4K RAM memory. As seen in Figure 3-17,
each delay line immediately begins where the previously implemented delay line leaves off. The actual placement
of the pointers is computed by the resident microprocessor; the user need only enter the delay value required.
However, the following four points must be kept in mind in programming the lengths of the delay lines.
1.
Each delay line of length L requires L+1 memory sample spaces
2.
Reverb delay lines require three memory words (48 bits) to implement a single delay element as the reverb
delay line operates in the 48-bit word structure of the digital audio processor (DAP).
3.
Delay lines require two memory words (32 bits) to implement a single delay element as the delay lines
operate on the mixer outputs after 32-bit truncation has been applied,
4.
There are five words of reserved memory space that must be preserved.
In Figure 3-17, the terms P
CHx
refer to delay line size assignments for the delay lines. The terms P
Rx
see the delay
line size assignments for the reverb delay lines. For the example shown in Figure 3-17, the delay for channel 3 is
set to 0 and the reverberation delay for channel 2 is set to 0. From these zero-valued settings, it is seen that a delay
of 0 requires the use of one delay element. For the case of a delay of 0, the write transaction into the single delay
element takes place before the read from the single delay element, thereby achieving a net delay of 0.
In making the delay line length assignments, the only restriction is that the 4K memory resource not be exceeded.
Figure 3-18 illustrates the computations required to determine the maximum delay line length obtainable for five
cases:
1.
One reverb delay line
2.
One delay line
3.
Three equal length reverb delay lines but no delay lines
4.
Three equal length delay lines but no reverb delay lines
5.
Three equal length delay lines and three equal length reverb delay lines.
3-27
Delay
Channel 1
Delay
Channel 2
Delay Channel 3 (PCH3 = 0)
Reserved
Reverb
Channel 1
Reserved
Reverb
Channel 2 (PR2 = 0)
Reverb
Channel 3
2(PCH1 + PCH2 + 4) + 3(PR1 + PR3 + 3)
Start
2(PCH1 + PCH2 + 4) + 3(PR1 + PR3 + 4) - 1
Stop
0
Start
2(PCH1 + 1) - 1
Stop
Delay Memory Allocation - CH1
(CH 1 Delay Assignment = PCH1)
2(PCH1 + 1)
Start
2(PCH1 + PCH2 + 2) - 1
Stop
Delay Memory Allocation - CH2
(CH 2 Delay Assignment = PCH2)
2(PCH1 + PCH2 + 2)
Start
2(PCH1 + PCH2 + 2) + 1
Stop
Delay Memory Allocation - CH3
(CH 3 Delay Assignment = PCH3 = 0)
2(PCH1 + PCH2 + 3)
Start
2(PCH1 + PCH2 + 3) + 1
Stop
Delay Memory Allocation - Reserved
(Reserved Delay Assignment = 0)
2(PCH1 + PCH2 + 4)
Start
Stop
Reverb Delay Memory Allocation - CH1
(CH 1 Reverb Delay Assignment = PR1)
Start
Stop
2(PCH1 + PCH2 + 4) + 3(PR1 + 1) - 1
2(PCH1 + PCH2 + 4) + 3(PR1 + 1)
2(PCH1 + PCH2 + 4) + 3(PR1 + 1) + 2
Reverb Delay Memory Allocation - CH2
(CH 2 Reverb Delay Assignment = PR2 = 0)
Reverb Delay Memory Allocation - Reserved
(Reserved Reverb Delay Assignment = 0)
Start
Stop
Reverb Delay Memory Allocation - CH3
(CH 3 Reverb Delay Assignment = PR3)
2(PCH1 + PCH2 + 4) + 3(PR1 + PR3 + 3) - 1
2(PCH1 + PCH2 + 4) + 3(PR1 + 2)
Figure 3-17. Delay Line Memory Implementation
3-28
P
Reverb_max_CH2
+
[(4096
*
5
*
2
*
2
*
2
*
3
*
3)
B
3]
*
1
+
1358
2
3
1358
CASE 1: Maximum Length - One Reverb Delay Line
CH3
CH2
CH1
CH3
CH1
P
Delay_max_CH3
+
[(4096
*
5
*
2
*
2
*
3
*
3
*
3)
B
2]
*
1
+
2038
CASE 2: Maximum Length - One Delay Line
P
Reverb_max_CH1, CH2, CH3
+
|{[(4096
*
5
*
2
*
2
*
2)
B
3]
+
1361
2
3
1361}
B
3|
+
453
2
3
*
1
+
452
2
3
452
CASE 3: Maximum Length - Three Equal Length Reverb Delay Lines
P
Delay_max_CH1, CH2, CH3
+
|{[(4096
*
5
*
3
*
3
*
3)
B
2]
+
2041}
B
3|
*
1
+
679
1
3
679
CASE 4: Maximum Length - Three Equal Length Delay Lines
P
Delay Reverb_max_CH1, CH2, CH3
+
(4096
*
5)
+
4091
+
3[2(D
)
1)]
)
3[3(R
)
1)] Where D and R
+
No. delay and reverb elements Channel
CASE 5: Maximum Length - Three Equal Length Delay Lines and Three Equal Length Reverb Delay Lines
Reserved
CH3
Reverb
CH2
CH1
CH2
CH1
Delay
L length
requires L + 1
delay elements
Reserved
Reverb
Delay
L length
requires L + 1
delay elements
Reserved
CH3
Delay
CH2
CH1
L length
requires L + 1
delay elements
Reserved
CH3
Reverb
CH2
CH1
L length
requires L + 1
delay elements
Reserved
No. 16-bit words
per delay element
3 Channels
L length
requires L + 1
delay elements
R takes
3
2
the memory D does, so there should be three D elements for every two R elements.
Therefore, D
+
3
2
R
4091
+
3[2(
3
2
R
)
1)]
)
3[3(R
)
1)]
R
+
226
4
9
226
D
+
3
2
R
D
+
339
Figure 3-18. Maximum Delay Line Lengths
3-29
Commands to reconfigure the reverb delay and delay lines should not be issued as standalone commands. When
new delay assignments are issued, the content of the 4K memory resource used to implement the delay lines is not
flushed. It takes a finite time for the memory to refill with samples in correspondence with its new assignments, and
until this time has elapsed, audio samples can be output on the wrong channel. For this reason, it is recommended
that all delay line assignment commands be preceded by a mute command, and followed by an unmute command.
CAUTION: There are no error flags issued if the delay line assignments exceed the
capacity of the 4K memory resource, but undefined and erratic behavior results if the
delay line capacity is exceeded.
3.7
Dynamic Range Control (DRC)
The DRC provides both compression and expansion capabilities over three separate and definable regions of audio
signal levels. Programmable threshold levels set the boundaries of the three regions. Within each of the three regions
a distinct compression or expansion transfer function can be established and the slope of each transfer function is
determined by programmable parameters. The offset (boost or cut) at the two boundaries defining the three regions
can also be set by programmable offset coefficients. The DRC implements the composite transfer function by
computing a 5.23 format gain coefficient from each sample output from the rms estimator. This gain coefficient is then
applied to a mixer element, whose other input is the audio data stream. The mixer output is the DRC-adjusted audio
data.
There are two distinct DRC blocks in the TAS3103. One DRC services two monaural channels--CH1 and CH2. This
DRC computes rms estimates of the audio data streams on both CH1 and CH2. The two estimates are then compared
on a sample-by-sample basis, and the larger of the two is used to compute the compression/expansion gain
coefficient. The gain coefficient is then applied to both CH1 and CH2 audio. The other DRC services only monaural
channel CH3. This DRC also computes an rms estimate of the signal level on CH3, and this estimate is used to
compute the compression/expansion gain coefficient applied to CH3 audio.
Figure 3-19 shows the positioning of the DRC block in the TAS3103 processing flow. As seen, the DRC input can
come from either before or after soft volume control and loudness processing, or can be a weighted combination of
both. The mixers feeding the DRC control the selection of which audio data stream or combination thereof, is input
into the DRC. The mixers also provide a means of gaining or attenuating the signal level into the DRC. If the DRC
setup is referenced to the 0-dB level at the TAS3103 input, the coefficient values for these mixers must be taken into
account. Discussions and examples that follow further explore the role the mixers play in setting up the transfer
function of the DRC.
Channel
BiQuad
Filter Bank
DRC-Derived
Gain Coefficient
From
Effects
Block
Base
and
Treble
Base and Treble
Bypass
Soft
Volume
Loudness
DRC Bypass
DRC
DRC
Input Mixer
DRC
Input Mixer
CH 1/2 DRC Only
Figure 3-19. DRC Positioning in TAS3103 Processing Flow
3-30
Figure 3-20 illustrates a typical DRC transfer function.
k2
T2
k1
k0
T1
O1
O2
DRC Input Level
DRC - Compensated Output
1:1 Transfer Function
Implemented Transfer Fucntion
Region
0
Region
1
Region
2
Figure 3-20. Dynamic Range Compression (DRC) Transfer Function Structure
The three regions shown in Figure 3-20 are defined by three sets of programmable coefficients:
Thresholds T1 and T2--define region boundaries.
Offsets O1 and O2--define the DRC gain coefficient settings at thresholds T1 and T2 respectively.
Slopes k0, k1, and k2--define whether compression or expansion is to be performed within a given region.
The magnitudes of the slopes define the degree of compression or expansion to be performed.
The three sets of parameters are all defined in logarithmic space and adhere to the following rules:
The maximum input sample into the DRC is referenced at 0 dB. All values below this maximum value then
have negative values in logarithmic (dB) space.
The samples input into the DRC are 32-bit words and consist of the upper 32 bits of the 48-bit word format
used by the digital audio processor (DAP). The 48-bit DAP word is derived from the 32-bit serial data
received at the serial audio receive port by adding 8 bits of headroom above the 32-bit word and 8 bits of
computational precision below the 32-bit word. If the audio processing steps between the SAP input and
the DRC input result in no accumulative boost or cut, the DRC would operate on the 8 bits of headroom and
the 24 MSBs of the audio sample. Under these conditions, a 0-dB (maximum value) audio sample
(0x7FFFFFFF) is seen at the DRC input as a 48-dB sample (8 bits x -6.02 dB/bit = -48 dB).
Thresholds T1 and T2 define, in dB, the boundaries of the three regions of the DRC, as referenced to the
rms value of the data into the DRC. Zero valued threshold settings reference the maximum valued rms input
into the DRC and negative valued thresholds reference all other rms input levels. Positive valued thresholds
have no physical meaning and are not allowed. In addition, zero valued threshold settings are not allowed.
Although the DRC input is limited to 32-bit words, the DRC itself operates using the 48-bit word format of the DAP.
The 32-bit samples input into the DRC are placed in the upper 32 bits of this 48-bit word space. This means that the
threshold settings must be programmed as 48-bit (25.23 format) numbers.
CAUTION: Zero valued and positive valued threshold settings are not
allowed and cause unpredictable behavior if used.
Offsets O1 and O2 define, in dB, the attenuation (cut) or gain (boost) applied by the DRC-derived gain
coefficient at the threshold points T1 and T2 respectively. Positive offsets are defined as cuts, and thus boost
or gain selections are negative numbers. Offsets must be programmed as 48-bit (25.23 format) numbers.
Slopes k0, k1, and k2 define whether compression or expansion is to be performed within a given region,
and the degree of compression or expansion to be applied. Slopes are programmed as 28-bit (5.23 format)
numbers.
3-31
3.7.1
DRC Implementation
Figure 3-21 shows the three elements comprising the DRC: (1) an rms estimator, (2) a compression/expansion
coefficient computation engine, and (3) an attack/decay controller.
RMS estimator--This DRC element derives an estimate of the rms value of the audio data stream into the
DRC. For the DRC block shared by CH1 and CH2, two estimates are computed - an estimate of the CH1
audio data stream into the DRC, and an estimate of the CH2 audio data stream into the DRC. The outputs
of the two estimators are then compared, sample-by-sample, and the larger valued sample is forwarded
to the compression/expansion coefficient computation engine.
Two programmable parameters, ae and (1 ae), set the effective time window over which the rms estimate
is made. For the DRC block shared by CH1 and CH2, the programmable parameters apply to both rms
estimators. The time window over which the rms estimation is computed can be determined by:
t
window
+
1
F
S
n(1
*
ae)
Compression/expansion coefficient computation--This DRC element converts the output of the rms
estimator to a logarithmic number, determines the region that the input resides, and then computes and
outputs the appropriate coefficient to the attack/decay element. Seven programmable parameters--T1, T2,
O1, O2, k0, k1, and k2--define the three compression/expansion regions implemented by this element.
Attack/decay control--This DRC element controls the transition time of changes in the coefficient computed
in the compression/expansion coefficient computation element. Four programmable parameters define the
operation of this element. Parameters ad and 1 - ad set the decay or release time constant to be used for
volume boost (expansion). Parameters aa and 1 - aa set the attack time constant to be used for volume
cuts. The transition time constants can be determined by:
ta
+
1
F
S
n(1
*
aa)
t
d
+
1
F
S
n(1
*
ad)
3-32
S
Slave
Addr
Ack
Sub-Addr
00000000
O1-MSBits
xxxxxxx
m
s
b
xxxxxxxx
Ack
Ack
00000000
Ack
Ack
Ack
xxxxxxxx
O1-LSBits
xxxxxxxx
xxxxxxx
l
s
b
Ack
xxxxxxxx
Ack
Ack
Ack
00000000
O2-MSBits
xxxxxxx
m
s
b
xxxxxxxx
Ack
00000000
Ack
Ack
Ack
xxxxxxxx
O2-LSBits
xxxxxxxx
xxxxxxx
l
s
b
Ack
xxxxxxxx
Ack
Ack
Ack
CH1/CH2
= 0xB4
CH3 = 0xB9
S
Slave
Addr
Ack
Sub-Addr
00000000
T1-MSBits
xxxxxxx
m
s
b
xxxxxxxx
Ack
Ack
00000000
Ack
Ack
Ack
xxxxxxxx
T1-LSBits
xxxxxxxx
xxxxxxx
l
s
b
Ack
xxxxxxxx
Ack
Ack
Ack
00000000
T2-MSBits
xxxxxxx
m
s
b
xxxxxxxx
Ack
00000000
Ack
Ack
Ack
xxxxxxxx
T2-LSBits
xxxxxxxx
xxxxxxx
l
s
b
Ack
xxxxxxxx
Ack
Ack
Ack
CH1/CH2
= 0xB2
CH3 = 0xB7
S
Slave
Addr
Ack
Sub-Addr
K0
Ack
Ack
Ack
Ack
Ack
K1
xxxxxxxx
xxxxxxx
l
s
b
Ack
xxxxxxxx
Ack
Ack
Ack
K2
Ack
Ack
Ack
Ack
CH1/CH2
= 0xB3
CH3 = 0xB8
xxxxxxxx
xxxxxxx
l
s
b
xxxxxxxx
xxxxxxx
l
s
b
xxxxxxxx
xxxxxxxx
m
s
b
xxx
0000
m
s
b
xxx
0000
m
s
b
xxx
0000
S
Slave
Addr
Ack
Sub-Addr
aa
Ack
Ack
Ack
Ack
Ack
1-aa
xxxxxxxx
xxxxxxx
l
s
b
Ack
xxxxxxxx
Ack
Ack
Ack
ad
Ack
Ack
Ack
Ack
CH1/CH2
= 0xB5
CH3 = 0xBA
xxxxxxxx
xxxxxxx
l
s
b
xxxxxxxx
xxxxxxx
l
s
b
xxxxxxxx
xxxxxxxx
m
s
b
xxx
0000
m
s
b
xxx
0000
m
s
b
xxx
0000
1-ad
Ack
Ack
Ack
Ack
xxxxxxxx
xxxxxxx
l
s
b
xxxxxxxx
m
s
b
xxx
0000
S
Slave
Addr
Ack
Sub-Addr
00000000
ae
xxxxxxx
m
s
b
xxxxxxxx
Ack
Ack
00000000
Ack
Ack
Ack
xxxxxxxx
1-ae
xxxxxxxx
xxxxxxx
l
s
b
Ack
xxxxxxxx
Ack
Ack
Ack
CH1/CH2
= 0xB1
CH3 = 0xB6
Cut
Attack / Decay Control
V
olume
t
a
-1/[F
S
x ln(1-aa)]
t
d
-1/[F
S
x ln(1-ad)]
t
a
t
d
DRC-Derive
d
Gain Coef
fic
ien
28
5.23 Format
5.23 Format
5.23 Format
25.23
Format
25.23
Format
K2
T2
K1
K0
T1
{
O1
{
O2
Compression / Expansion
Coef
ficient Computation
NOTE: Compression / Expansion / Compression Displayed
t
Window
-1/[F
S
x ln(1-ae)] Where F
S
= Audio Sample Frequency
ae and (1-ae) Set T
i
me Window Over Which RMS V
alue is Computed
Applies to DRC Servicing CH1/CH2 Only
Comparator
RMS
V
oltage
Estimator
RMS
V
oltage
Estimator
5.23 Format
32
32
Audio Input
CH1 or CH3
Audio Input
CH2
Figure 3-21.
DRC Block Diagram
3-33
3.7.2
Compression/Expansion Coefficient Computation Engine Parameters
There are seven programmable parameters assigned to each DRC block: two threshold parameters - T1 and T2, two
offset parameters - O1 and O2, and three slope parameters - k0, k1, and k2. The threshold parameters establish the
three regions of the DRC transfer curve, the offsets anchor the transfer curve by establishing known gain settings
at the threshold levels, and the slope parameters define whether a given region is a compression or an expansion
region.
The audio input stream into the DRC must pass through DRC-dedicated programmable input mixers. These mixers
are provided to scale the 32-bit input into the DRC to account for the positioning of the audio data in the 48-bit DAP
word and the net gain or attenuation in signal level between the SAP input and the DRC. The selection of threshold
values must take the gain (attenuation) of these mixers into account. The DRC implementation examples that follow
illustrate the effect these mixers have on establishing the threshold settings.
T2 establishes the boundary between the high-volume region and the mid-volume region. T1 establishes the
boundary between the mid-volume region and the low-volume region. Both thresholds are set in logarithmic space,
and which region is active for any given rms estimator output sample is determined by the logarithmic value of the
sample.
Threshold T2 serves as the fulcrum or pivot point in the DRC transfer function. O2 defines the boost (> 0dB) or cut
(< 0 dB) implemented by the DRC-derived gain coefficient for an rms input level of T2. If O2 = 0 dB, the value of the
derived gain coefficient is 1.0 (0x00, 80, 00, 00 in 5.23 format). k2 is the slope of the DRC transfer function for rms
input levels above T2, and k1 is the slope of the DRC transfer function for rms input levels below T2 (and above T1).
The labeling of T2 as the fulcrum stems from the fact that there cannot be a discontinuity in the transfer function at
T2. The user can, however, set the DRC parameters to realize a discontinuity in the transfer function at the boundary
defined by T1. If no discontinuity is desired at T1, the value for the offset term O1 must obey the following equation.
O1
No Discontinuity
+
(T1
*
T2)
k1
)
O2
T1 and T2 are the threshold settings in dB, k1 is the slope for region 1, and O2 is the offset in dB at T2. If the user
chooses to select a value of O1 that does not obey the above equation, a discontinuity at T1 is realized.
Going down in volume from T2, the slope k1 remains in effect until the input level T1 is reached. If, at this input level,
the offset of the transfer function curve from the 1:1 transfer curve does not equal O1, there is a discontinuity at this
input level as the transfer function is snapped to the offset called for by O1. If no discontinuity is wanted, O1 and/or
k1 must be adjusted so that the value of the transfer curve at the input level T1 is offset from the 1:1 transfer curve
by the value O1. The examples that follow illustrate both continuous and discontinuous transfer curves at T1.
Going down in volume from T1, starting at the offset level O1, the slope k0 defines the compression/expansion activity
in the lower region of the DRC transfer curve.
3.7.2.1 Threshold Parameter Computation
For thresholds,
T
dB
= -6.0206T
INPUT
= -6.0206T
SUB_ADDRESS_ENTRY
If, for example, it is desired to set T1 = -64dB, then the subaddressaddress entry required to set T1 to -64 dB is:
T1
SUB_ADDRESS_ENTRY
+ *
64
*
6.0206
+
10.63
From Figure 3-21, it can be seen that T1 is entered as a 48-bit number in 25.23 format. Therefore:
T1 = 10.63 = 0_1010.1010_0001_0100_0111_1010_111
= 0x00000550A3D7 in 25.23 format
3-34
3.7.2.2 Offset Parameter Computation
The offsets set the boost or cut applied by the DRC-derived gain coefficient at the threshold point. An equivalent
statement is that offsets represent the departure of the actual transfer function from a 1:1 transfer at the threshold
point. Offsets are 25.23 formatted 48-bit logarithmic numbers. They are computed by the following equation.
O
INPUT
+
O
DESIRED
)
24.0824 dB
6.0206
Gains or boosts are represented as negative numbers; cuts or attenuation are represented as positive numbers. For
example, to achieve a boost of 21 dB at threshold T1, the I
2
C coefficient value entered for O1 must be:
O1
INPUT
+
21 dB
)
24.0824 dB
6.0206
+
0.51197555
+
0.1000_0011_0001_1101_0100
+
0x00000041886A in 25.23 format
More examples of offset computations are included in the following examples.
3.7.2.3 Slope Parameter Computation
In developing the equations used to determine the subaddress input value required to realize a given compression
or expansion within a given region of the DRC, the following convention is adopted.
DRC Transfer = Input Increase : Output Increase
If the DRC realizes an output increase of n dB for every dB increase in the rms value of the audio into the DRC, a
1:n expansion is being performed. If the DRC realizes a 1 dB increase in output level for every n dB increase in the
rms value of the audio into the DRC, a n:1 compression is being performed.
For 1:n expansion, the slope k can be found by:
k = n - 1
For n:1 compression, the slope k can be found by: k
+
1
n 1
In both expansion (1:n) and compression (n:1), n is implied to be greater than 1. Thus, for expansion:
k = n -1 means k > 0 for n > 1. Likewise, for compression, k
+
1
n 1 means -1 < k < 0 for n > 1. Thus, it appears that
k must always lie in the range k > -1.
The DRC imposes no such restriction and k can be programmed to values as negative as -15.999. To determine what
results when such values of k are entered, it is first helpful to note that the compression and expansion equations
for k are actually the same equation. For example, a 1:2 expansion is also a 0.5:1 compression.
0.5 Compression
k
+
1
0.5
1
+
1
1 : 2 Expansion
k
+
21
+
1
As can be seen, the same value for k is obtained either way. The ability to choose values of k less than -1 allows the
DRC to implement negative slope transfer curves within a given region. Negative slope transfer curves are usually
not associated with compression and expansion operations, but the definition of these operations can be expanded
to include negative slope transfer functions. For example, if k = -4
Compression Equation : k
+ *
4
+
1
n
*
1
n
+
1
3
*
0.3333 : 1 compression
Expansion Equation : k
+ *
4
+
n1
n
+
3
1 :
*
3 expansion
With k = -4, the output decreases 3 dB for every 1 dB increase in the rms value of the audio into the DRC. As the
input increases in volume, the output decreases in volume.
3-35
3.7.3
DRC Compression/Expansion Implementation Examples
The following four examples illustrate the steps that must be taken to calculate the DRC compression/expansion
coefficients for a specified DRC transfer function. The first example is an expansion/compression/expansion
implementation without discontinuities in the transfer function and represents a typical application. This first example
also illustrates one of the three modes of DRC saturation--32-bit dynamic range limitation saturation. The second
example is a compression/expansion/compression implementation. There is no discontinuity at T1 and 32-bit
dynamic range saturation occurs at low volume levels into the DRC. Example 2 also illustrates another form of DRC
saturation--maximum gain saturation. Example 3 illustrates the concept of infinite compression. Also, in Example 3,
32-bit dynamic range saturation occurs at low volume levels and the third form of DRC saturation is
illustrated--minimum gain saturation. Example 4 illustrates the ability of the DRC to realize a negative slope transfer
function. This example also illustrates two of the three forms of saturation--32-bit dynamic range saturation at low
volume levels and minimum gain saturation.
CAUTION:
The examples presented all exhibit some form of DRC saturation. This is not intended
to imply that all (or most) DRC transfer implementation exhibit some form of saturation.
Most practical implementations do not exhibit saturation. The examples are chosen to
explain by example the three types of saturation that can be encountered. But the
phenomenon of saturation can also be used to advantage in that it effectively provides
a means to implement more than three zones or regions of operation. If saturation is
intended, the
regions exhibiting the transfer characteristic set by k0, k1, and k2 provide
three regions and the regions exhibiting saturation provide the additional regions of
operation.
3.7.3.1 Example 1--Expansion/Compression/Expansion Transfer Function With 32-Bit
Dynamic Range Saturation
For this example, the following transfer characteristics are chosen.
Threshold point 2: T2 = -26 dB, O2 = 30 dB
Threshold point 1: T1 = -101 dB, O1 = -7.5 dB
Region 0 slope: k0 = 0.05
1:1.05 Expansion
Region 1 slope: k1 = -0.5
2:1 Compression
Region 2 slope: k2 = 0.1
1:1.1 Expansion
The thresholds T1 and T2 are typically referenced, by the user, to the 0-dB signal level into the TAS3103. But to
determine the equivalent threshold point at the DRC input, it is necessary to take into account the processing gain
(or loss) between the TAS3103 SAP input and the DRC. Assume, as an example, the processing gain structure shown
in Figure 3-22. Inputting the data below the 8-bit headroom in the 48-bit DAP word and then routing only the upper
32 bits of the 48-bit word into the DRC, results in a 48-dB (8 bits x 6 dB/bit = 48 dB) attenuation of the signal level
into the DRC. Channel processing gain and use of the dedicated mixer into the DRC can revise this apparent 48-dB
attenuation in signal level into the DRC. In Figure 3-22, the 2
4
mixer gain into the DRC, coupled with a net channel
gain of 0 dB, changes the net 48-dB attenuation of the signal level into the DRC to a net attenuation of 24 dB.
For slopes:
Region 0 = 1:1.05 Expansion
k0 = 1.05 - 1 = 0.05
= 00000.0000_1100_1100_1100_1100_110
= 0x0066666 in 5.23 format
Region 1 = 2:1 Compression
k1 = 1/2 - 1 = -0.5
= 11111.1000_0000_0000_0000_0000_000
= 0xFC00000 in 5.23 format
Region 2 = 1:1.1 Expansion
k2 = 1.1 - 1 = 0.1
= 00000.0001_1001_1001_1001_1001_100
= 0x00CCCCC in 5.23 format
3-36
SAP
Input
Port
Resolution
1
6
B
i
t
1
8
B
i
t
2
0
B
i
t
2
4
B
i
t
3
2
B
i
t
48-Bit
DAP
Word
40
39
0
8
7
Headroom
1
6
B
i
t
1
8
B
i
t
2
0
B
i
t
2
4
B
i
t
3
2
B
i
t
48-Bit
DAP
Word
47
44
43
0
8
7
16
DRC
Channel 1
Processing
Resolution
Headroom
24
Channel 2
Processing
0-dB Gain
0-dB Gain
24
47
Figure 3-22. DRC Input Word Structure for 0-dB Channel Processing Gain
The resulting DRC transfer function for the above parameters is shown in Figure 3-23. The threshold T2 is set at the
DRC rms input level of -50 dB, which corresponds to a -26-dB rms signal level at the SAP input. The
DRC-compensated output at T2 is cut 30 dB with respect to the 1:1 transfer function (O2 = 30 dB). The threshold T1
is set at the DRC rms input level of -125 dB, which corresponds to a -101-dB rms signal level at the SAP input. The
DRC-compensated output at T1 is boosted by 7.5 dB with respect to the 1:1 transfer function (O1 = -7.5 dB).
For thresholds, T
dB
= -6.0206T
INPUT
= -6.0206T
SUB_ADDRESS_ENTRY
.
Therefore,
T2 = -26 dB -24 dB = -50 dB
T2
INPUT
= -50/-6.0206 = 8.30482
= 01000.0100_1110_0000_1000_1010_111
= 0x000004270457 in 25.23 format
T1 = -101 dB -24 dB = -125 dB
T1
INPUT
= -125/-6.0206 = 20.76205
= 010100.1100_0011_0001_0101_1011_010
= 0x00000A618ADA in 25/23 format
For offsets, O
INPUT
+
1
6.0206
O
dB
)
24.0824 .
Therefore, O2
INPUT
+
1
6.0206
[30
)
24.0824]
+
8.982892
+
01000.1111_1011_1001_1110_1100_111
+
0x0000047DCF67 in 25.23 format
3-37
O1
INPUT
+
1
6.0206
[
*
7.5
)
24.0824]
+
2.754277
+
010.1100_0001_0001_1000_0100_110
+
0x000001608C26 in 25.23 format
For input levels above the T2 threshold, the transfer function exhibits a 1:1.1 expansion. For input levels below T2,
the transfer function exhibits a 2:1 compression. Also, by definition, it is seen that there is no discontinuity in the
transfer function at T2. When the 2:1 compression curve in region 1 intersects the T1 threshold level, the output level
is 7.5 dB above the 1:1 transfer, an offset value identical to O1. Thus, there is no discontinuity at T1. For input levels
below T1, the transfer function exhibits a 1:1.05 expansion.
DRC rms input levels below -192 dB fall below the 32-bit precision of the DRC input (32 bits x -6 dB/bit = -192 dB).
This means that for levels below -192 dB, the DRC sees a constant input level of 0, and thus the computed DRC gain
coefficient remains fixed at the value computed when the input was at -192 dB. The transfer function then has a 1:1
slope below the 192-dB input level and is offset from the 1:1 transfer curve by the offset present at the 192-dB input
level.
The change from a 1:1.05 expansion to a 1:1 transfer below -192 dB is the result of 32-bit dynamic range saturation
at the DRC input. This type of saturation always occurs at a DRC input level of -192 dB. However, the input level at
which this type of saturation occurs depends on the channel gain. For this example, the saturation occurs at an input
level of -168 dB (-192-dB DRC input + 48 dB 8-bit headroom 24-dB mixer gain into DRC).
3.7.3.2 Example 2--Compression/Expansion/Compression Transfer Function With Maximum Gain
Saturation and 32-Bit Dynamic Range Saturation
The transfer function parameters for this example are given in Table 3-5. In setting the threshold levels it is assumed
that the net processing gain between the SAP input and the DRC is 0 dB. This is the same as Example 1 except that
the gain of the mixer into the DRC is set to 1 instead of 2
4
. Because of the 8-bit headroom in the 48-bit DAP word,
the upper eight bits of the 32-bit DRC input word are zero, resulting in 0-dB signal levels at the SAP input being seen
as 48-dB signal levels at the DRC.
Figure 3-23 shows the DRC transfer function resulting from the parameters given in Table 3-5. At threshold level
T2 (-70 dB), O2 specifies a boost of 30 dB. But the signed 5.23 formatted gain coefficient only provides a 24-dB boost
capability (5 integer bits = Sxxxx
2
4
6 dB/octave = 24 dB). Internally, the DRC operates in 48-bit space and thus
computes a 30-dB boost. But the 5.23 formatted gain coefficient saturates or clips at 24 dB. The transfer curve thus
resides 24 dB above the 1:1 transfer curve at T2.
3-38
-220
-220
-210
-200
-190
-180
-170
-160
-150
-140
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
+10
+20
+30
T1
T2
O2 = 30 dB
k2 = 1 : 1.1
O1 = -7.5 dB
k1 = 2 : 1
k0 = 1 : 1.05
DRC INPUT (dB)
DRC - Compensated Output (dB)
k = 1:1
(32-Bit Dynamic Range Saturation)
1:1 Transfer Function
Implemented Transfer Function
Slope change points
-210
-170
-180
-190
-200
-140 -130 -120 -110 -100 -90
-160 -150
-80
-70
-60
-50
-40
-30
-20
-10
0
Figure 3-23. DRC Transfer Curve--Example 1
3-39
The transfer curve remains a constant 24 dB above the 1:1 transfer curve for input levels above and below T2 until
the computed DRC gain coefficient falls within the dynamic range of a 5.23 format number. For input levels above
T2, k2 implements a 5:1 compression, At an input level 7.5 dB above T2 (-62.5 dB), the DRC transfer curve has risen
7.5/5 = 1.5 dB. The boost at this point is 30 dB - (7.5 dB - 1.5 dB) = 24 dB. The DRC has come out of gain saturation.
For input levels above -62.5 dB, the transfer curve exhibits 5:1compression.
Table 3-5. DRC Example 2 Parameters
DRC
PARAMETER
REQUIRED (SPECIFIED) VALUE
(NET GAINSAP Input-DRC = 0 dB)
I2C COEFFICIENT VALUE
T2
-22 dBInput
-70 dBDRC
-70/-6.0206= 11.626748
= 0x000005D0394825.23 Format
T1
-102 dBInput
-150 dBDRC
-150/-6.0206 = 24.91446
= 0x00000C750D0925.23 Format
O2
-30 dB
(-30 + 24.0824)/6.0206 = -0.982892
= 0xFFFFFF82309825.23 Format
O1
50 dB
(50 + 24.0824)/6.0206 = 12.304820
= 0x00000627045825.23 Format
k2
5:1 Compression
(1/5) - 1 = -0.8 = 0xF99999A5.23 Format
k1
1:2 Expansion
2 - 1 = 1 = 0x08000005.23 Format
k0
2:1 Compression
(1/2) - 1 = -0.5 = 0xFC000005.23 Format
For input levels below T2, k1 implements a 1:2 expansion. With a 1:2 expansion in effect, the transfer curve has
dropped 12 dB at an input level 6 dB below T2. The boost at this level is 30 dB - (12 dB - 6 dB) = 24 dB. The DRC
gain coefficient has again come out of saturation. For input levels below -76 dB and above -150 dB, the transfer curve
exhibits a 1:2 expansion.
At T1 (-150 dB), the transfer curve is 50 dB below the 1:1 transfer curve. Since O1 = 50 dB, there is no discontinuity
in the transfer function. For inputs below -150 dB, k0 implements a 2:1 compression. The change from a 2:1
compression to a 1:1 transfer at -192 dB is due to 32-bit dynamic range saturation at the DRC input.
3.7.3.3 Example 3--1:1 Transfer/Infinite Compression With Minimum Gain Saturation, 32-Bit
Dynamic Range Saturation, and Equal Threshold Settings (T1=T2)
The DRC transfer function parameters for this example are given in Table 3-6. In addition to illustrating minimum gain
saturation, this example also illustrates the operation of the DRC when T1 and T2 are set equal.
3-40
O2 = - 30 dB
- 40
- 50
- 60
-70
- 80
- 90
- 100
- 110
- 120
- 130
- 140
- 150
- 160
- 170
- 180
- 190
- 200
- 210
- 220
O1 = 50 dB
k2 = 5:1
k1 = 1 : 2
- 230
- 240
- 250
- 260
- 270
- 280
- 290
k0 = 2 : 1
k = 1:1
(Gain Saturation)
k = 1:1
(32-Bit Dynamic
Range Saturation)
- 192 dB
- 62.5 dB
- 76 dB
-290
T1
DRC INPUT (dB)
DRC - Compensated Output (dB)
Ideal Transfer Function (Unlimited Resolution)
Implemented Transfer Function
Slope change points
1:1 Transfer Function
-280 -270 -260 -250 -240 -230 -220 -210
-140
-150
-160
-170
-180
-190
-200
-130 -120 -110 -100 -90 -80 -70 -60 -50
T2
-24 dB
-24 dB
Figure 3-24. DRC Transfer Curve--Example 2
3-41
When T1 and T2 are set equal, the following questions arise:
If O1
O2, what roles do O1 and O2 have?
Which slope parameter, k0 or k1, has control of the transfer function for input levels below the common
threshold point?
Does k2 control the transfer function for inputs above the common threshold point?
This example addresses and answers those questions.
Table 3-6. DRC Example 3 Parameters
DRC
PARAMETER
REQUIRED (SPECIFIED) VALUE
(NET GAINSAP Input-DRC = 0 dB)
I2C COEFFICIENT VALUE
T1 and T2
-148.7 dBInput
-172.7 dBDRC
-172.7/-6.0206 = 28.684849
= 0x00000E57A91F25.23 Format
O2
-20 dB
(-20 + 24.0824)/6.0206 = 0.678072
= 0x00000056CB0F25.23 Format
O1
10 dB
(10 + 24.0824)/6.0206 = 5.660964
= 0x000002D49A7825.23 Format
k2
:1 Compression
(1/
) - 1 = -1 = 0xF8000005.23 Format
k1
1:1 Transfer
(1/1) - 1 = 0 = 0x00000005.23 Format
k0
2:1 Compression
(1/2) - 1 = -0.5 = 0xFC000005.23 Format
For this example it is assumed that a net processing gain of 2
4
(24 dB) is realized from the SAP input and the DRC
(which is identical to the net processing gain assumed for Example 1). The 2
4
gain results in reducing the 8-bit
headroom in the 48-bit DAP word to a headroom of four bits. The 32-bit data into the DRC then resides in bits 27:0,
which means that the data level into the DRC is down 24 dB with respect to the input level at the SAP. Data input into
the TAS3103 (SAP) at a level of -148.7 dB is seen as a -148.7 dB - 24 dB = -172.7-dB signal at the DRC. T1 and
T2 must be set to -172.7 dB to realize a common threshold point at an incoming signal level of -148.7 dB.
Figure 3-25 shows the transfer function resulting from entering the I
2
C coefficient values given in Table 3-6. At the
T1/T2 threshold, a discontinuity of 30 dB is observed. For inputs above the threshold, the transfer curve is horizontal
(infinite compression), and the horizontal line starts 20 dB above the 1:1 transfer curve at the threshold point. Thus,
for cases when T1 = T2, O2 governs the offset with regard to the starting point of the transfer curve above the common
threshold point and k2 determines the slope of the transfer curve. For inputs below the common threshold point, the
transfer curve exhibits a 2:1 compression and starts 10 dB below the 1:1 transfer curve. Thus, O1 sets the offset at
the threshold point for the transfer curve at and below the common threshold point and k0 determines the slope of
this curve. Slope parameter k1 plays no role when T1 = T2. The value of 0 (1:1 transfer) used in this example for k1
could be changed to any value and the resulting transfer function would not be altered. The change from a 2:1
compression to a 1:1 transfer at -192 dB is due to 32-bit dynamic range saturation at the DRC input.
3-42
-220
-220
-210
-200
-190
-180
-170
-160
-150
-140
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
T1/T2
DRC INPUT (dB)
DRC - Compensated Output (dB)
1:1 Transfer Function
Implemented Transfer Function
Slope change points
-210
-170
-180
-190
-200
-140 -130 -120 -110 -100 -90
-160 -150
-80
-70
-60
-50
-40
-30
-20
-10
0
k0 = 2:1
30 dB
-14.7 dB
O1 = 10 dB
O2 = -20 dB
-192 dB
k2 =
:1
k = 1:1
(32-Bit Dynamic
Range Saturation)
k = 1:1
(Minimum Gain Saturation)
Figure 3-25. DRC Transfer Curve--Example 3
3-43
The horizontal slope of the transfer curve above the common threshold point does not remain horizontal indefinitely.
At a point 158 dB above the common threshold point (-14.7-dB DRC input level), the transfer function has gone from
a boost of 20 dB to a cut of 138 dB. A cut of 138 dB is the maximum cut possible for a 5.23 format gain coefficient
(2
-23
23 octaves
6 dB/octave = 138 dB). Thus, at a DRC input level of -14.7 dB, minimum gain saturation has
been reached. For inputs above this saturation point, the DRC-derived gain coefficient remains constant at the
minimum gain value (2
-23
), and the transfer function exhibits a 1:1 transfer slope.
3.7.3.4 Example 4--Expansion/Cut/Expansion With Gain Saturation and 32-Bit Dynamic Range
Saturation
The three previous examples restricted the slope factor k to lie in the range k
-1. This example illustrates the transfer
characteristic obtained using a value of k less than -1. For this example it is assumed that the net processing gain
into the DRC is 0 dB. This means that the 8-bit headroom in the 48-bit DAP processing word structure does not contain
data. Since the DRC receives the upper 32 bits of this 48-bit word, data at the DRC is down 48 dB (8 bits x 6 dB/ bit
= 48 dB) with respect to the signal level at the SAP input (TAS3103 input). The transfer function parameters for this
example are given in Table 3-7. Figure 3-26 shows the transfer function resulting from entering the I
2
C coefficient
values given in Table 3-7.
At the threshold point T2 (-70 dB), the transfer function is 100 dB below the 1:1 transfer slope (O2 = 100 dB). For
input levels above T2, the transfer function exhibits a 1:1.4 expansion. For input levels below T2, the transfer function
exhibits a negative slope; for every dB the input decreases, the output increases by 1 dB. At an input level 62 dB below
T2 (-132 dB), the transfer curve has risen 62 dB, for a net boost of 124 dB. The transfer curve at this input level is
24 dB above the 1:1 transfer curve. This boost value puts the DRC-derived gain coefficient into gain saturation. For
input levels below -132 dB, the gain coefficient remains constant at maximum gain and the transfer function exhibits
a 1:1 transfer slope, parallel to the 1:1 transfer curve but 24 dB above it.
At T1 (-150 dB), the transfer curve snaps back to the 1:1 transfer curve since O1 = 0 dB. The DRC gain coefficient
is no longer in gain saturation and for inputs below -150 dB, the transfer function exhibits a 1:1.5 expansion. The
change from a 1:1.5 expansion to a 1:1 transfer below -192 dB is the result of 32-bit dynamic range saturation.
3-44
-220
-220
-210
-200
-190
-180
-170
-160
-150
-140
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
+10
+20
+30
T1
T2
DRC INPUT (dB)
DRC - Compensated Output (dB)
1:1 Transfer Function
Implemented Transfer Function
Slope change points
-210
-170
-180
-190
-200
-140 -130 -120 -110 -100 -90
-160 -150
-80
-70
-60
-50
-40
-30
-20
-10
0
k2 = 1:1.4
k = 1:1
(32-Bit Dynamic
Range Saturation)
k0 = 1:1.5
k = 1:1
Gain Saturation)
k1 = 1:-1
-132 dB
-192 dB
O2 = 100 dB
O1 = 0 dB
Figure 3-26. DRC Transfer Curve--Example 4
3-45
Table 3-7. DRC Example 4 Parameters
DRC
PARAMETER
REQUIRED (SPECIFIED) VALUE
(NET GAINSAP Input-DRC = 0 dB)
I2C COEFFICIENT VALUE
T2
-22 dBInput
-70 dBDRC
-70/-6.0206= 11.626748
= 0x000005D0394825.23 Format
T1
-102 dBInput
-150 dBDRC
-150/-6.0206 = 24.91446
= 0x00000C750D0925.23 Format
O2
100 dB
(100 + 24.0824)/6.0206 = 20.609640
= 0x00000A4E08B025.23 Format
O1
0 dB
(0 + 24.0824)/6.0206
= 4.000000
= 0x00000200000025.23 Format
k2
1:1.4 Expansion
1.4 - 1 = 0.4 = 0X03333335.23 Format
k1
1:-1 Transfer
(1/-1) - 1 = -1 -1 = -2 = 0XF0000005.23 Format
k0
1:1.5 Expansion
1.5 - 1 = 0.5 = 0x04000005.23 Format
3.8
Spectrum Analyzer/VU Meter
The TAS3103 contains an I
2
C bus programmable function block that can serve as either a spectrum analyzer or a
volume unit (VU) meter. Figure 3-26 shows the structure of this function block and lists the I
2
C subaddress of the
parameters that control it.
The block consists of 10 biquad filters, each followed by an rms estimator and a logarithmic converter. Two nodes
provide input to the block, with each node servicing five of the 10 biquad filters. Audio from input node s can either
come exclusively from channel 1, channel 2, channel 3, or from a gain-weighted combination of these channels. Audio
from input node t can also come exclusively from either channel 1, channel 2, or channel 3, or from a gain-weighted
combination of these channels. The spectrum analyzer then can be used to divide the audio frequency band into ten
frequency bins to examine the spectrum of the audio data stream on channel 1, channel 2, channel 3, or any
combination of these channels. The spectrum analyzer can also be used to divide the audio frequency band into five
frequency bins to examine the spectral content of two of the channels independently.
The VU meter is a special case of the spectrum analyzer that uses only the outputs from biquad 5 and biquad 6.
Typically, for the VU meter, one channel would be routed to biquad 5 (node s) and a different channel would be routed
to biquad 6 (node t). Each biquad filter would be assigned a band pass transfer function that encompasses most of
the audio band, or the filter could be configured as a pass-through device to see the full spectral band. The two outputs
then would be a measure of the energy on the two channels. Other options for the VU meter are also available. For
example, by properly setting the coefficients on biquad 5 and biquad 6, the concurrent measurement of bass and
treble volume levels on a single channel could be made.
Mixer and summation elements preceding the two input nodes s and t provide a means of adjusting the spectrum
analyzer and VU meter outputs relative to the incoming audio data stream. The spectrum analyzer and VU meter
outputs are unsigned 5.3 format base 2 logarithmic numbers. The integer part of the number designates the most
significant bit (in the 48-bit digital audio processor - DAP - word) occupied by the magnitude of the rms estimate of
the biquad filter output. A value of 31 means the magnitude of the rms estimate occupies bit 47 of the 48-bit DAP word
(bit 48 is the sign bit, and using the absolute value of the biquad filter output in determining the rms estimate makes
this bit always 0 in value). A value of 30 means the magnitude of the rms estimate occupies bit 46 and this pattern
continues with a value of 1 signifying the magnitude of the rms estimate occupies bit 17. A value of 0 signifies that
the magnitude of the rms estimate is below bit 17. The fractional digits in the 5.3 formatted number are simply the
three bits below the most significant data bit. If the rms estimate lies below bit 16 of the 48-bit DAP word, the spectrum
analyzer/VU meter output is 0.0. Figure 3-27 gives examples of logarithmic outputs for different 48-bit rms estimate
values.
3-46
BiQuad 1
BiQuad 2
BiQuad 3
BiQuad 4
BiQuad 5
BiQuad 6
BiQuad 7
BiQuad 9
BiQuad 10
Node
t
RMS V
oltage
Estimator
Sub-Address Decoder
Spectrum
Analyzer / VU Meter
BiQuad 8
RMS V
oltage
Estimator
RMS V
oltage
Estimator
RMS V
oltage
Estimator
RMS V
oltage
Estimator
RMS V
oltage
Estimator
RMS V
oltage
Estimator
RMS V
oltage
Estimator
RMS V
oltage
Estimator
RMS V
oltage
Estimator
I2
C Bus
Log
Log
Log
Log
Log
Log
Log
Log
Log
Log
S
Slave
Addr
Ack
Sub-Addr
Ack
xxxxxxxx
xxxxxxxx
xxxxxx
l
s
b
m
s
b
xxx
0000
Ack
Ack
Ack
Ack
S
Slave Addr
Ack
Sub-Addr
Ack
xxxxxxxx
xxxxxxxx
xxxxxx
l
s
b
m
s
b
xxx
0000
Ack
Ack
Ack
Ack
Mixer Gain Coef
ficient
Sub-Address Format
BiQuad Filter Coef
ficients Sub-Address Format
xxxxxxxx
xxxxxxxx
xxxxxx
l
s
b
m
s
b
xxx
0000
Ack
Ack
Ack
Ack
a
1
a
2
xxxxxxxx
xxxxxxxx
xxxxxx
l
s
b
m
s
b
xxx
0000
Ack
Ack
Ack
Ack
b
0
xxxxxxxx
xxxxxxxx
xxxxxx
l
s
b
m
s
b
xxx
0000
Ack
Ack
Ack
Ack
b
1
xxxxxxxx
xxxxxxxx
xxxxxx
l
s
b
m
s
b
xxx
0000
Ack
Ack
Ack
Ack
b
2
Sub-Addresses 0xBC (BiQuad 1) - 0xC5 (BiQuad 10)
G
Mi
x:
o
to
r
Sub-Address
0x84
G
Mi
x:
o
to
s
Sub-Address
0x85
G
Mi
x:
p
to
r
Sub-Address
0x86
G
Mi
x:
p
to
t
Sub-Address
0x87
G
Mi
x:
q
to
r
Sub-Address
0x88
G
Mi
x:
r
to
s
&
t
Sub-Address 0x89
s
Node
t
G
Mi
x:
o
to
s
G
Mi
x:
r
to
s
&
t
G
Mi
x:
o
to
r
Node o
Channel 1
Node r
G
Mi
x:
p
to
t
G
Mi
x:
p
to
r
Node p
Channel 2
G
Mi
x:
q
to
r
Node q
Channel 3
S
Slave
Addr
Ack
Sub-Addr
Ack
xxxxx.xxx
Ack
Spectrum Analyzer Outputs Sub-Address Format
BiQuad 1
Sub-Address
0xFD
xxxxx.xxx
Ack
BiQuad 2
xxxxx.xxx
Ack
BiQuad 3
xxxxx.xxx
Ack
BiQuad 4
xxxxx.xxx
Ack
BiQuad 5
xxxxx.xxx
Ack
BiQuad 6
xxxxx.xxx
Ack
BiQuad 7
xxxxx.xxx
Ack
BiQuad 8
xxxxx.xxx
Ack
BiQuad 9
xxxxx.xxx
Ack
BiQuad 10
S
Slave Addr
Ack
Sub-Addr
Ack
xxxxx.xxx
Ack
VU
Meter Outputs
Sub-Address Format
VU
Meter
Output 1
(BiQuad 5)
Sub-Address
0xFE
xxxxx.xxx
Ack
VU
Meter
Output 1
(BiQuad 6)
S
Slave Addr
Ack
Sub-Addr
Ack
xxxxxxxx
xxxxxxxx
xxxxxx
l
s
b
m
s
b
xxx
0000
Ack
Ack
Ack
Ack
RMS
V
oltage Estimator Coef
ficients
Sub-Address Format
xxxxxxxx
xxxxxxxx
xxxxxx
l
s
b
m
s
b
xxx
0000
Ack
Ack
Ack
Ack
asa
1-asa
Sub-Address 0xBB
t Window
-1/[F
S
x ln(1-asa)] Where F
S
= Audio Sample Frequency
asa
and
(1-asa)
Set
T
ime Window Over Which RMS V
alue Is Computed
Figure 3-27.
Spectrum
Analyzer/VU Meter Block Diagram
3-47
0 1 1 0 0 1 0
48
31
1 1 1 1 1 . 1 0 0
48-Bit RMS Estimate
Spectrum Analyzer
and
VU Meter Output
0 0 0 0 1 1 0 1 0 1
48
28
1 1 1 0 0 . 1 0 1
0 0 0
48
1
0 0 0 0 1 . 0 1 0
0 1 0 1 0 1 1 0
0 0 0
48
0
0 0 0 0 0 . 1 1 0
0 0 1 1 1 0 1 0
0 0 0
48
0 0 0 0 0 . 0 0 0
0 0 0 1 1 0 1 0 1
18
18
18
0
0
0
0
0
Figure 3-28. Logarithmic Number Conversions--Spectrum Analyzer/VU Meter
The time window over which the rms estimate is conducted is programmable via the I
2
C bus (sub-address 0xBB).
The time window for a given set of coefficients is approximately
t
Window
[ *
1
F
S
n(1
*
asa)
Where F
S
is the audio sample rate and asa is a 5.23 format number. The variable asa (and 1 asa) must be kept
within the range of greater than zero and less than one. The time constant programmed applies to all 10 rms estimate
blocks.
CAUTION: The spectrum analyzer and VU meter functions are only accessible in the I
2
C
slave mode.
3.9
Dither
The TAS3103 provides a dither block for adding triangular or quadratic (sum of two uncorrelated triangular
distributions) distributed noise to the processed audio data stream prior to routing to the output serial audio port
(SAP). Each of the three monaural channels in the TAS3103 has its own dedicated dither data stream that is
statistically independent from the dither data streams used by the other two monaural channels. The statistical
distribution of the dither data stream, triangular or quadratic, is selectable, but the selection made applies to the dither
data streams for all three monaural channels. Each monaural channel is also assigned a mixer for adjusting the level
at which the dither data stream is inserted into the audio data stream.
Figure 3-28 is a detailed block diagram of the dither block. Five sub-addresses are used to fully configure the dither
blocks and the associated channel mixers. In the I
2
C master mode, these dither parameters are set by the EEPROM
content and cannot be subsequently changed.
3-48
3.9.1
Dither Seeds
The dither circuit consists of two linear feedback shift registers--LFSR1 and LFSR2. The dither seed sub-address
(0xC7) consists of a byte-wide seed for LFSR1 (bits 7:0) and a byte-wide seed for LFSR2 (bits 15:8). The seeds serve
to define the starting point of each LFSR sequence, but not the feedback structure itself. Each linear feedback shift
register (LFSR) is a 26-bit structure that runs off the digital audio processor (DAP) clock. For a maximum DAP clock
frequency of 135.168 MHz [12.288 MHz (MCLKI) x 11 (PLL multiplier)], the 26-bit LFSR has a cycle time of 496.5 ms
(2
26
/135.168 MHz). LFSR1 and LFSR2 use the same feedback structure but different taps for outputting. As long as
the seeds for the two LFSRs are not
13 counts apart (in which case the two different sets of output taps would
correlate), any set of seed values for LFSR1 and LFSR2 is suitable.
When two or more TAS3103s are powered by the same supply, a concern as to whether or not there is correlation
between the dither data streams on different chips arises. At power turn on, a TAS3103 does not begin the dither
process until reset is deactivated. If the TAS3103s are reset by the internal power good signals from the internal
regulators, the chip-to-chip variance of the logic voltage threshold point at which the power good signal is deactivated
assures, with a high probability, that the dither data streams between chips are uncorrelated. However, when an
external logic-driven reset is applied to the TAS3103s, the probability of correlation between the dither data streams
on different chips after the rest is removed significantly increases. For this reason, the dither seeds have been made
programmable via the I
2
C bus.
3-49
Dither Block
S
Slave Addr
Ack Sub-Addr
Distribution 1 Mix
Ack
Ack
Ack
Ack
Ack
xxxxxxxx
xxxxxxx
l
s
b
xxxxxxxx
m
s
b
xxx
0000
Distribution 2 Mix
Ack
Ack
Ack
Ack
xxxxxxxx
xxxxxxx
l
s
b
xxxxxxxx
m
s
b
xxx
0000
LFSR1 Mix and LFSR2 Mix Are 5.23 Format Coefficients
S
Slave Addr
Ack Sub-Addr
Dither Seed
Ack
Ack
Ack
Ack
Ack
xxxxxx
l
s
b
00000000
00000000
m
s
b
xxxxxx
l
s
b
m
s
b
0xC6
0xC7
Condensed
LFSR2
Seed
Condensed
LFSR1
Seed
Linear Feedback Shift Register Block
Dither 1
Dither 2
Dither 3
LFSR1
LFSR2
Seed Build Logic
L
- W 0 +W
0.25
0.5
p
Output
Sampler
St1
St2
St3
St4
St5
St6
NOTE: W = 16.0 => 0x000008000000 in 25.23 Format
O
G
I
C
S
Slave Addr
Ack Sub-Addr Ack
Ack
Ack
Ack
Ack
xxxxxxxx
xxxxxxx
l
s
b
xxxxxxxx
m
s
b
xxx
0000
0x81
S
Slave Addr
Ack Sub-Addr Ack
Ack
Ack
Ack
Ack
xxxxxxxx
xxxxxxx
l
s
b
xxxxxxxx
m
s
b
xxx
0000
0x80
S
Slave Addr
Ack Sub-Addr Ack
Ack
Ack
Ack
Ack
xxxxxxxx
xxxxxxx
l
s
b
xxxxxxxx
m
s
b
xxx
0000
0x7F
Figure 3-29. Dither Data Block Diagram
3-50
When updating multiple TAS3103s with dither seeds, timing should be taken into account. The recommended seed
update process is to load all TAS3103s with their seed values in less time then the minimum LFSR cycle time of 496.5
ms, and use the same set of seeds for all TAS3103s. Each TAS3103 immediately begins running, starting at the state
set by the new seed, upon receiving the new seed. The sequential delivery, in time, of the seeds to the multiple
TAS3103s assures the TAS3103s do not all start with their new seeds at the same time, and the completion of the
process in less than 496.5 ms assures that previously programmed TAS3103s are not repeating the cycle at the same
time another TAS3103 is being programmed with the same seed set--causing correlation between the dither data
streams of the two TAS3103s.
CAUTION: The state of the digital audio processor may prevent the loading of a new I
2
C
--commanded dither seed value. Anytime a new seed is loaded into the TAS3103 via an
I
2
C write transaction to address 0xC7, it must be followed by an I
2
C read transaction to
address 0xC7 to verify that the new seed value was accepted. If the new seed was not
accepted, the write-read sequence must be repeated.
3.9.2
Dither Mix Options
In Figure 3-28 it is seen that the two LFSRs are logically combined to produce a triangular probability distribution.
This distribution is then sampled at six different points in time, by the DAP processing clock, to create six statistically
independent data streams. Sampling the LSFR outputs at different points in time within an audio sample period
(1/LRCLK) assures the six dither data streams are uncorrelated. The six uncorrelated dither data streams are then
routed through mixers. Each pair of mixer outputs is then applied to a summation block. It is noted in Figure 3-28
that each of the three mixers pairs has the same set of coefficients (set by I
2
C sub-address 0xC6). If the coefficients
for both mixers are set to 1.0, a quadratic distribution is obtained. If either coefficient is set to 0.0, a triangular
distribution is obtained. If both coefficients are set to 0.0, dither is disabled.
3.9.3
Dither Gain Mixers
Figure 3-28 shows the peak magnitude of the triangular distribution to be
16 in the 48-bit DAP word (25.23 format).
The peak magnitude of the quadratic dither data is twice this, or
32. Figure 3-30 shows the position of this peak
magnitude value in reference to the DAP 48-bit data word. Table 3-8 lists the mixer gains required to position the
dither data stream at the LSB of the output data word for different data sample word sizes.
Table 3-8. Mixer Gain Setting for LSB Dither Data Insertion
DISTRIBUTION
MIXER GAIN COEFFICIENT
DISTRIBUTION
32-BIT SAMPLE
24-BIT SAMPLE
20-BIT SAMPLE
18-BIT SAMPLE
16-BIT SAMPLE
Triangular
2-19
2-11
2-7
2-5
2-3
Quadratic
2-20
2-12
2-8
2-6
2-4
3-51
0.0625
0.25
0.375
-2W
Output
0.25
0.5
Output
-W
Triangular Distribution
Quadratic Distribution
16
Bit
Sample
32
Bit
Sample
24
Bit
Sample
20
Bit
Sample
18
Bit
Sample
8-Bit
Headroom
47
40
39
28
27
24
22
20
16
8
0
8-Bit
Resolution
Band
16-Bit
Output SAP
Word Size
32-Bit
Output SAP
Word Size
48-Bit DAP
Data Word
0
W
-W
0
W
2W
Figure 3-30. Dither Data Magnitude (Gain = 1.0)
3.9.4
Dither Statistics
Figure 3-31 presents plots of the autocorrelation and channel-to-channel correlation properties of the dither data
stream when configured as triangular distributed noise. Figure 3-31(a) is the circular autocorrelation of 16K samples
of dither data collected from the TAS3103. The audio signal level was set to zero, and the dither data stream was
inserted at the LSB of the output word. The autocorrelation contains a single line of value 8000, at the point of
correlation, and random noise terms of approximately
150 counts in value. The value 8000 agrees with the selection
of the triangular distribution--50% of the 16K dither output samples are of value
1. Figure 3-31(b) is the circular
correlation of 16K samples of dither data from CH1 and 16K samples of dither data from CH2. There are no points
of correlation in this plot, verifying that the two data streams are uncorrelated. The random noise terms are again
approximately
150 counts in value
3-52
(a) Auto-Correlation Plot - CH1
(b) Correlation Plot - CH2 and CH3
Figure 3-31. Triangular Dither Statistics
Figure 3-32 presents plots of the autocorrelation and channel-to-channel correlation properties of the dither data
stream when configured as quadratic distributed noise. Figure 3-32(a) is the circular autocorrelation of 16K samples
of dither data collected from the TAS3103. The audio signal level was set to zero and the dither data stream was
inserted at the LSB+1 level of the output word. The autocorrelation contains a single line of value 16,000 at the point
of correlation and random noise terms of approximately
300 counts in value. The value 16,000 agrees with the
3-53
selection of the quadratic distribution--50% of the 16K dither output samples are of value
1 (0.5 x 1
2
x 16,000 = 8000)
and 12.5% of the 16K dither output samples are
2 (0.125 x 2
2
x 16,000= 8000). Figure 3-32(b) is the circular
correlation of 16K samples of dither data from CH2 and 16K samples of dither data from CH3. There are no points
of correlation is this plot, verifying that the two data streams are uncorrelated. The random noise terms are
approximately
300 counts in value, as the dither data pattern was inserted at the LSB+1 bit of the output word instead
of the LSB bit, as was the case for triangular dither.
(a) Auto-Correlation Plot - CH1
(b) Correlation Plot - CH2 and CH3
Figure 3-32. Triangular Dither Statistics
3-54
3.10 Output Crossbar Mixers
The TAS3103 has three serial output ports--SDOUT1, SDOUT2 and SDOUT3. Each serial output port is assigned
two processing nodes within the TAS3103. One of the two nodes sources the left stereo data sample and the other
node sources the right stereo data sample. Figure 3-33 shows the assignment of these internal nodes to the serial
output ports. Two cases are shown in Figure 3-33--discrete mode and TDM mode. The discrete mode connections
are straightforward, but the TDM connections are considerably more involved in order to support the different
one-chip and two-chip TDM modes (see the Input and Output Serial Port (SAP) section for more discussion on the
TDM modes).
The purpose of the output crossbar is to give each of the three monaural channels in the TAS3103 access to any of
the six internal processing nodes (U, V, W, X, Y, and Z) that supply data to the three serial output ports. This flexibility
in the routing of the monaural channel outputs to the serial output ports, coupled with the flexibility in the routing of
the serial input ports to the monaural channels, fully decouples the input data from the output data. A given process
flow and output data topology can be obtained from any ordering of data into the TAS3103.
Figure 3-34 shows the output crossbar mixer topology. Each monaural channel feeds six mixers. The six mixers, in
turn, feed the six output nodes U, V, W, X, Y, and Z. A given monaural channel can thus be connected to either the
left or right side of SDOUT1, SDOUT2 and SDOUT3.
The mixers, although capable of performing boost (gain) and cut (attenuation) on the outgoing audio, are typically
used to facilitate on / off switching (a 5.23 format coefficient value of 0x0800000 turns the mixer on and a coefficient
value of 0x0000000 turns the mixer off). The audio data streams at the input to these mixers include dither, and any
boost or cut in the audio at this point affects the dither levels as well.
Node r in Figure 3-34 provides a means of outputting a post-processed sum of the audio on channel 1 and channel
2. This capability could be used to generate a center audio component from L and R components being processed
on channels 1 and 2. This would allow channel 3 to be a sub-woofer channel. Node r could also be used to create
a subwoofer channel, assuming an active subwoofer with filtering capability is receiving the subwoofer output. This
option would then free channel 3 for center channel processing.
3-55
Internal
Processing
Nodes
L
R
U
V
L
R
Time
LRCLK
SDOUT1
L
R
W
X
L
R
Time
LRCLK
SDOUT2
L
R
Y
Z
L
R
Time
LRCLK
SDOUT3
SDOUT1
U
V
W
X
Y
Z
Node U
Nodes U & V
Nodes V & W
Nodes V, W & X
Nodes V, W, X & Y
Nodes V, W, Y & Z
Nodes W, X, Y & Z
Node X
(a) Discrete Mode - For I2S Format, Polarity of
LRCLK Opposite That Shown
(b) TDM Mode
Internal
Processing
Nodes
Internal
Processing
Nodes
Internal
Processing
Nodes
Figure 3-33. Processing Node to Serial Output Port Topology
3-56
Monaural CH 1
Monaural CH 2
Monaural CH 3
U
V
W
X
Y
Z
z to U =>
0x8F
z to V =>
0x8E
z to W =>
0x8D
z to X =>
0x8C
z to Y =>
0x8B
z to Z =>
0x8A
y to U =>
0x95
y to V =>
0x94
y to W =>
0x93
y to X =>
0x92
y to Y =>
0x91
y to Z =>
0x90
x to U =>
0x9B
x to V =>
0x9A
x to W =>
0x99
x to X =>
0x98
x to Y =>
0x97
x to Z =>
0x96
0x84
0x86
Delay
z
Delay
r to U =>
0xA1
r to V =>
0xA0
r to W =>
0x9F
r to X =>
0x9E
r to Y =>
0x9D
r to Z =>
0x9C
o
y
p
x
Delay
q
Dither
Dither
Dither
0x82
0x83
r
S Slave Addr Ack Sub-Addr Ack
xxxxxxxx
xxxxxxxx
xxxxxx
l
s
b
m
s
b
xxx
0000
Ack
Ack
Ack
Ack
Mixer Gain Coefficient
Sub-Address Format
S Slave Addr Ack Sub-Addr Ack
xxxxxxxx
xxxxxxxx
xxxxxx
l
s
b
m
s
b
xxx
0000
Ack
Ack
Ack
Ack
Mixer Gain Coefficient
Sub-Address Format
S Slave Addr Ack Sub-Addr Ack
xxxxxxxx
xxxxxxxx
xxxxxx
l
s
b
m
s
b
xxx
0000
Ack
Ack
Ack
Ack
Mixer Gain Coefficient
Sub-Address Format
S Slave Addr Ack Sub-Addr Ack
xxxxxxxx
xxxxxxxx
xxxxxx
l
s
b
m
s
b
xxx
0000
Ack
Ack
Ack
Ack
Mixer Gain Coefficient
Sub-Address Format
Figure 3-34. Output Crossbar Mixer Topology
4-1
4 Electrical Specifications
4.1
Absolute Maximum Ratings Over Operating Temperature Ranges (unless
otherwise noted)
Supply voltage range:
VDDS
-0.5 to 3.8 V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A_VDDS
-0.5 to 3.8 V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage range, V
I
: 3.3-V LVCMOS
-0.5 V to VDDS + 0.5 V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.8-V LVCMOS
-0.5 V to AVDD
(1)
+ 0.5 V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output voltage range, V
O
: 3.3-V LVCMOS
-0.5 V to VDDS + 0.5 V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.8-V LVCMOS
-0.5 V to DVDD
(2)
+ 0.5 V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.8-V LVCMOS
-0.5 V to AVDD
(3)
+ 0.5 V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input clamp current, I
IK
(V
I
< 0 or V
I
> DVDD)
20 mA
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output clamp current, I
OK
(V
O
< 0 or V
O
> DVDD)
20 mA
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating free-air temperature
0
C to 70
C
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range, T
stg
-65
C to 150
C
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds
260
C
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES:
1. AVDD is a 1.8-V supply derived from a regulator in the TAS3103 chip. Pin XTALI is the only TAS3103 input that is referenced to this
1.8 V logic supply. The absolute maximum rating listed is for reference; only a crystal should be connected to XTALI.
2. DVDD is a 1.8-V supply derived from regulators internal to the TAS3103 chip. DVDD is routed to pin 29 (DVDD_BYPASS_CAP)
to provide access to external filter capacitors, but should not be used to source power to external devices.
3. Pin XTALO is the only TAS3103 output that is derived from the internal 1.8 V logic supply AVDD. The absolute maximum rating listed
is for reference; only a crystal should be connected to XTALO. AVDD is also routed to pin 6 (AVDD_BYPASS_CAP) to provide access
to external filter capacitors, but should not be used to source power to external devices.
DISSIPATION RATING TABLE (High-k Board, 105
C Junction)
PACKAGE
TA
25
C
POWER RATING
OPERATING FACTOR
ABOVE TA = 25
C
TA = 70
C
POWER RATING
DBT
1.094 W
13.68 mW/
C
0.478 mW
4.2
Recommended Operating Conditions
MIN
NOM
MAX
UNITS
Digital supply voltage, VDDS
3
3.3
3.6
V
Analog supply voltage, A_VDDS
3
3.3
3.6
V
High-level input voltage, VIH
3.3-V LVCMOS
0.7 VDDS
VDDS
V
High-level input voltage, VIH
1.8-V LVCMOS (XTALI)
0.7 AVDD
AVDD
V
Low-level input voltage, VIL
3.3-V LVCMOS
0
0.3 VDDS
V
Low-level input voltage, VIL
1.8-V LVCMOS (XTALI)
0
0.3 AVDD
V
Input voltage, VI
3.3-V LVCMOS
0
VDDS
V
Input voltage, VI
1.8-V LVCMOS (XTALI)
0
AVDD
V
Output voltage, VO
3.3-V LVCMOS
0.8 VDDS
VDDS
V
Output voltage, VO
1.8-V LVCMOS (XTALO)
0.8 AVDD
AVDD
V
Operating ambient air temperature range, TA
0
70
C
Operating junction temperature range, TJ
0
105
C
4-2
4.3
Electrical Characteristics Over Recommended Operating Conditions (unless
otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNITS
V
OH
High-level output voltage
3.3-V LVCMOS
I
OH
= -4 mA
0.8 VDDS
V
V
OH
High-level output voltage
1.8-V LVCMOS (XTALO)
I
OH
= -0.55 mA
0.8 AVDD
V
V
OL
Low-level output voltage
3.3-V LVCMOS
I
OL
= 4 mA
0.22 VDDS
V
V
OL
Low-level output voltage
1.8-V LVCMOS (XTALO)
I
OL
= 0.75 mA
0.22 AVDD
V
I
OZ
High-impedance output
current
3.3-V LVCMOS
20
A
I
IL
Low-level input current
(4)
3.3-V LVCMOS
V
I
= V
IL
20
A
I
IL
Low-level input current
(4)
1.8-V LVCMOS (XTALI)
V
I
= V
IL
20
A
I
IH
High-level input current
(5)
3.3-V LVCMOS
V
I
= V
IH
20
A
I
IH
High-level input current
(5)
1.8-V LVCMOS (XTALI)
V
I
= V
IH
20
A
DSP clock = 135 MHz,
LRCLK = 96 kHz
75
MCLKI / XTALI = 12.228 MHz
DSP clock = 67.5 MHz,
LRCLK = 48 kHz
44
mA
I
DVDD
Digital supply current
DSP clock = 33.75 MHz,
LRCLK = 24 kHz
25
I
DVDD
Digital supply current
LRCLK = 48 kHz,
MCLKI/XTALI = 12.288 MHz
3.5
Power down enabled
No LRCLK, SCLK.
MCLKI/XTALI = 12.288 MHz
2.2
mA
No LRCLK, SCLK,
or
MCLKI/XTALI
2
DSP clock = 135 MHz,
LRCLK = 96 kHz
2.9
MCLKI / XTALI = 12.228 MHz
DSP clock = 67.5 MHz,
LRCLK = 48 kHz
2.7
mA
I
A_DVDD
Analog supply current
DSP clock = 33.75 MHz,
LRCLK = 24 kHz
2.4
Power down enabled
LRCLK = 48 kHz,
MCLKI/XTALI = 12.288 MHz
1.5
mA
Power down enabled
No LRCLK, SCLK, or
MCLKI/XTALI
1.5
mA
NOTES:
4. Value given is for those input pins that connect to an internal pull-up resistor as well as an input buffer. For inputs that have a pull-down
resistor or no resistor, IIL is
1
A.
5. Value given is for those input pins that connect to an internal pull-down resistor as well as an input buffer. For inputs that have a pull-up
resistor or no resistor, IIH is
1
A.
4-3
4.4
TAS3100 Timing Characteristics
4.4.1
Master Clock Signals Over Recommended Operating Conditions (unless otherwise
noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNITS
f(XTALI)
Frequency, XTALI (1/tc(1))
2.8
20
MHz
f(MCLKI)
Frequency, MCLKI (1/tc(2))
2.8
25
MHz
tw(MCLKI)
Pulse duration, MCLKI high
See Note 6
HMCLKI - 25
HMCLKI
HMCLKI + 25
ns
MCLKI jitter
5
ns
f(MCLKO)
Frequency, MCLKO (1/tc(3))
2.8
25
MHz
tr(MCLKO)
Rise time, MCLKO
CL = 30 pF
9.5
ns
tf(MCLKO)
Fall time, MCLKO
CL = 30 pF
9.5
ns
tw(MCLKO)
Pulse duration, MCLKO high
See Note 9
HMCLKO
ns
MCLKI jitter
XTALI master clock source
80
ps
MCLKI jitter
MTALI master clock source
See Note 10
td(MI-MO)
Delay time, MCLKI
rising edge to
MCKLO = MCLKI
See Note 7
17
ns
td(MI-MO)
rising edge to
MCLKO rising edge
MCLKO < MCLKI
See Note 7 and Note 8
17
ns
NOTES:
6. HMCLKI = 1 /2MCLKI
7. Only applies when MCLKI is selected as master source clock.
8. Also applies to MCLKO falling edge when MCLKO = MCLKI/2 or MCLKI/4
9. HMCLKO = 1 / 2MCLKO. MCLKO has the same duty cycle as MCLKI when MCLKO = MCLKI. When MCLKO = 0.5 MCLKI or 0.25
MCLKI, the duty cycle of MCLKO is typically 50%.
10. When MCLKO is derived from MCLKI, MCLKO jitter = MCLKI jitter
XTALI
MCLKO
MCLKI
tw(MCLKI)
tf(MCLKO)
tc(1)
tc(2)
tc(3)
tw(MCLKO)
tr(MCLKO)
td(MI-MO)
Figure 4-1. Master Clock Signals Timing Waveforms
4-4
4.4.2
Control Signals Over Recommended Operating Conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNITS
tw1(L)
Pulse duration, RST low
10
ns
tpd1
Propagation delay, PWRDN high to power down state asserted
See Note 11
s
tpd2
Propagation delay, PWRDN low to power down state deasserted
See Note 12
s
NOTES: 11. The maximum worst case value for tpd1 is given by
t
pd1_worst_case
+
4096
)
GPIOFSCOUNT
LRCLK
)
80
Microprocessor_Clock
12. tpd2 is determined by the time it takes the internal digital PLL to reach a locked condition, which, in turn, is governed by the MCLKI/
XTALI frequency and the PLL output frequency. For a 135-MHz PLL output and an MCLKI value of 24.576 MHz, tpd2 is typically 25
s.
For an 11.264-MHz PLL output clock and a 1.024-MHz MCLKI/XTALI master clock, tpd2 is typically 360
s.
PWRDN
tw1(L)
tpd1
tpd2
RST
Figure 4-2. Control Signals Timing Waveforms
4-5
4.4.3
Serial Audio Port Slave Mode Signals Over Recommended Operating Conditions (unless
otherwise noted)
PARAMETER
TEST
CONDITIONS
MIN
TYP
MAX
UNITS
fLRCLK
Frequency, LRCLK (FS)
8
96
kHz
tw(SCLKIN)
Pulse duration, SCLKIN high
See Note 14
0.25 HSCLKIN
HSCLKIN
0.75 HSCLKIN
ns
fSCLKIN
Frequency, SCLKIN
See Note 13
32FS
25
MHz
tcyc
Cycle time, SCLKIN
See Note 13
40
1/32FS
ns
tpd1
Propagation delay, SCLKIN falling edge to
SDOUT
15.1
ns
tsu1
Setup time, LRCLK to SCLKIN rising edge
6.6
ns
th1
Hold time, LRCLK from SCLKIN rising edge
0
ns
tsu2
Setup time, SDIN to SCLKIN rising edge
1.15
ns
th2
Hold time, SDIN from SCLKIN rising edge
2.3
ns
tpd2
Propagation delay,
SCLKIN falling edge
SCLKOUT2 = SCLKIN
12.4
ns
tpd2
SCLKIN falling edge
to SCLKOUT2 falling
edge
SCLKOUT2 < SCLKIN
12.5
ns
NOTES: 13. Typical duty cycle is 50/50.
14. HSCLKIN = 1/2fSCLKIN
SCLKIN
LRCLK
(Input)
SDOUT1
SDOUT2
SDOUT3
SDIN1
SDIN2
SDIN3
SCLKOUT2
th1
tsu1
tpd1
tpd2
tsu2
th2
tcyc
tw(SCLKIN)
SDIN4
Figure 4-3. Serial Audio Port Slave Mode Timing Waveforms
4-6
4.4.4
Serial Audio Port Master Mode Signals Over Recommended Operating Conditions
(unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNITS
f(LRCLK)
Frequency LRCLK
8
96
kHz
tr(LRCLK)
Rise time, LRCLK
CL = 30 pF
11.4
ns
tf(LRCLK)
Fall time, LRCLK
CL = 30 pF
11.2
ns
f(SCLKOUT)
Frequency (1/tcyc), SCLKOUT1/SCLKOUT2
See Note 13
32FS
25
MHz
tr(SCLKOUT)
Rise time, SCLKOUT1/SCLKOUT2
CL = 30 pF
9.5
ns
tf(SCLKOUT)
Fall time, SCLKOUT1/SCLKOUT2
CL = 30 pF
9.8
ns
tpd1(SCLKOUT1) Propagation delay, SCLKOUT1 falling edge to LRCLK edge
4.1
ns
tpd1(SCLKOUT2) Propagation delay, SCLKOUT2 falling edge to LRCLK edge
4.3
ns
tpd2
Propagation delay, SCLKOUT2 falling edge to SDOUT
3.4
ns
tsu
Setup time, SDIN to SCLKOUT1 rising edge
18.4
ns
th
Hold time, SDIN from SCLKOUT1 rising edge
23
ns
tsk
Skew time, SCLKOUT1 to SCLKOUT2
0.8
3
ns
NOTE 13: Typical duty cycle is 50/50.
LRCLK
(Output)
SDOUT1
SDOUT2
SDIN1
SDIN2
SDIN3
SCLKOUT1
SCLKOUT2
tr(SCLKOUT)
tf(SCLKOUT)
tf(SCLKOUT)
tsk
tr(SCLKOUT)
tpd1(SCLKOUT2)
tpd1(SCLKOUT1)
tf(LRCLK), tr(LRCLK)
tpd2
tsu
th
SDOUT3
SDIN4
Figure 4-4. TAS3100 Serial Audio Port Master Mode Timing Waveforms
4-7
4.4.5
I
2
C Slave Mode Interface Signals Over Recommended Operating Conditions (unless
otherwise noted)
PARAMETER
TEST
STANDARD MODE
FAST MODE
UNITS
PARAMETER
TEST
CONDITIONS
MIN
TYP
MAX
MIN
TYP
MAX
UNITS
fSCL
Frequency, SCL
0
100
0
400
kHz
tW(H)
Minimum pulse duration,
SCL high
See Note 15
0.43
0.12
s
tW(L)
Minimum pulse duration,
SCL low
See Note 15
1.3
0.9
s
tr
Rise time, SDAOutput
CL = 330 pF
48.3
48.3
ns
tf
Fall time, SDAOutput
CL = 330 pF
35.9
35.9
ns
tsu1
Setup time, SDAInput to SCL See Note 15
0
0
ns
th1
Hold
SCL to SDAInput
See Note 15
0
0
ns
th1
Hold
time
SCL to SDAOutput
See Note 16
Toversamp
2Toversamp
Toversamp
2Toversamp
s
tbuf
Minimum bus free time
between STOP and START
condition
See Note 15
0.82
0.38
s
tsu2
Minimum setup time, SCL to
START condition
See Note 15
0.7
0.4
s
th2
Minimum hold time, START
condition to SCL
See Note 15
1.5
0.05
s
tsu3
Minimum setup time, SCL to
STOP condition
See Note 15
0.9
0.4
s
NOTES: 15. The maximum and/or minimum values for the TAS3103 I2C port parameters meets those characteristics of the SDA and SCL bus
lines listed below, as specified in the I2C bus devices bus specification.
16. Toversamp is the period of the oversample clock provided to the I2C master salve controller. This clock is dependent on the
microprocessor clock setting and the value set for the variable N in subaddress 0xFB. See Figure 2-14.
SPECIFIED I2C BUS CHARACTERISTICS
PARAMETER
STANDARD MODE
FAST MODE
Pulse duration high, tw(H)
4
s MIN
0.6
s MIN
SCL
Pulse duration low, tw(L)
4.7
s MIN
1.3
s MIN
SCL
Frequency fSCL
100 kHz
400 kHz
SDAInput
Setup time tsu1, SDAInput to SCL
250 ns MIN
100 ns MIN
SDAInput
Hold Time th1, SCL to SDAInput
0 ns MIN
0 ns MIN
Bus free time between STOP and START condition tbuf
4.7
s MIN
1.3
s MIN
START/STOP conditions
Setup time tsu2, SCL to START condition
4.7
s MIN
0.6
s MIN
START/STOP conditions
Hold time th2, START condition to SCL
4
s MIN
0.6
s MIN
Setup time tsu3, SCL to STOP condition
4
s MIN
0.6
s MIN
4-8
SCL
SDA
tw(H)
tw(L)
tr
tf
tsu1
th1
Figure 4-5. I
2
C SCL and SDA Timing Waveforms
SCL
SDA
tsu2
th2
tsu3
t(buf)
Figure 4-6. I
2
C Start and Stop Conditions Timing Waveforms
A-1
Appendix A
A.1
I
2
C Subaddress T
able
SUBADDRESS
(0xSS)
REGISTER NAME
NUMBER OF
4-BYTE WORDS
CONTENTS
(u Indicates Unused Bits)
INITIALIZA
TION V
ALUE
0x00
Starting I
2
C check word
1
SCW(31:24), SCW(23:16), SCW(15:8), SCW(7:0)
0x81, 0x42, 0x24, 0x18
0x01
Mix A to a
1
u(31:28)A_a(27:24), A_a(23:16), A_a(15:8), A_a(7:0)
0x00, 0x80, 0x00, 0x00
0x02
Mix A to b
1
u(31:28)A_b(27:24), A_b(23:16), A_b(15:8), A_b(7:0)
0x00, 0x00, 0x00, 0x00
0x03
Mix A to c
1
u(31:28)A_c(27:24), A_c(23:16), A_c(15:8), A_c(7:0)
0x00, 0x00, 0x00, 0x00
0x04
Mix A to d
1
u(31:28)A_d(27:24), A_d(23:16), A_d(15:8), A_d(7:0)
0x00, 0x00, 0x00, 0x00
0x05
Mix A to e
1
u(31:28)A_e(27:24), A_e(23:16), A_e(15:8), A_e(7:0)
0x00, 0x00, 0x00, 0x00
0x06
Mix A to f
1
u(31:28)A_f(27:24), A_f(23:16), A_f(15:8), A_f(7:0)
0x00, 0x00, 0x00, 0x00
0x07
Mix B to a
1
u(31:28)B_a(27:24), B_a(23:16), B_a(15:8), B_a(7:0)
0x00, 0x00, 0x00, 0x00
0x08
Mix B to b
1
u(31:28)B_b(27:24), B_b(23:16), B_b(15:8), B_b(7:0)
0x00, 0x80, 0x00, 0x00
0x09
Mix B to c
1
u(31:28)B_c(27:24), B_c(23:16), B_c(15:8), B_c(7:0)
0x00, 0x00, 0x00, 0x00
0x0A
Mix B to d
1
u(31:28)B_d(27:24), B_d(23:16), B_d(15:8), B_d(7:0)
0x00, 0x00, 0x00, 0x00
0x0B
Mix B to e
1
u(31:28)B_e(27:24), B_e(23:16), B_e(15:8), B_e(7:0)
0x00, 0x00, 0x00, 0x00
0x0C
Mix B to f
1
u(31:28)B_f(27:24), B_f(23:16), B_f(15:8), B_f(7:0)
0x00, 0x00, 0x00, 0x00
0x0D
Mix C to a
1
u(31:28)C_a(27:24), C_a(23:16), C_a(15:8), C_a(7:0)
0x00, 0x00, 0x00, 0x00
0x0E
Mix C to b
1
u(31:28)C_b(27:24), C_b(23:16), C_b(15:8), C_b(7:0)
0x00, 0x00, 0x00, 0x00
0x0F
Mix C to c
1
u(31:28)C_c(27:24), C_c(23:16), C_c(15:8), C_c(7:0)
0x00, 0x00, 0x00, 0x00
0x10
Mix C to d
1
u(31:28)C_d(27:24), C_d(23:16), C_d(15:8), C_d(7:0)
0x00, 0x00, 0x00, 0x00
0x1
1
Mix C to e
1
u(31:28)C_e(27:24), C_e(23:16), C_e(15:8), C_e(7:0)
0x00, 0x00, 0x00, 0x00
0x12
Mix C to f
1
u(31:28)C_f(27:24), C_f(23:16), C_f(15:8), C_f(7:0)
0x00, 0x40, 0x00, 0x00
0x13
Mix D to a
1
u(31:28)D_a(27:24), D_a(23:16), D_a(15:8), D_a(7:0)
0x00, 0x00, 0x00, 0x00
0x14
Mix D to b
1
u(31:28)D_b(27:24), D_b(23:16), D_b(15:8), D_b(7:0)
0x00, 0x00, 0x00, 0x00
0x15
Mix D to c
1
u(31:28)D_c(27:24), D_c(23:16), D_c(15:8), D_c(7:0)
0x00, 0x00, 0x00, 0x00
0x16
Mix D to d
1
u(31:28)D_d(27:24), D_d(23:16), D_d(15:8), D_d(7:0)
0x00, 0x00, 0x00, 0x00
0x17
Mix D to e
1
u(31:28)D_e(27:24), D_e(23:16), D_e(15:8), D_e(7:0)
0x00, 0x00, 0x00, 0x00
0x18
Mix D to f
1
u(31:28)D_f(27:24), D_f(23:16), D_f(15:8), D_f(7:0)
0x00, 0x40, 0x00, 0x00
0x19
Mix E to a
1
u(31:28)E_a(27:24), E_a(23:16), E_a(15:8), E_a(7:0)
0x00, 0x00, 0x00, 0x00
0x1A
Mix E to b
1
u(31:28)E_b(27:24), E_b(23:16), E_b(15:8), E_b(7:0)
0x00, 0x00, 0x00, 0x00
0x1B
Mix E to c
1
u(31:28)E_c(27:24), E_c(23:16), E_c(15:8), E_c(7:0)
0x00, 0x00, 0x00, 0x00
0x1C
Mix E to d
1
u(31:28)E_d(27:24), E_d(23:16), E_d(15:8), E_d(7:0)
0x00, 0x00, 0x00, 0x00
0x1D
Mix E to e
1
u(31:28)E_e(27:24), E_e(23:16), E_e(15:8), E_e(7:0)
0x00, 0x00, 0x00, 0x00
0x1E
Mix E to f
1
u(31:28)E_f(27:24), E_f(23:16), E_f(15:8), E_f(7:0)
0x00, 0x00, 0x00, 0x00
0x1F
Mix F to a
1
u(31:28)F_a(27:24), F_a(23:16), F_a(15:8), F_a(7:0)
0x00, 0x00, 0x00, 0x00
A-2
SUBADDRESS
(0xSS)
INITIALIZA
TION V
ALUE
CONTENTS
(u Indicates Unused Bits)
NUMBER OF
4-BYTE WORDS
REGISTER NAME
0x20
Mix F to b
1
u(31:28)F_b(27:24), F_b(23:16), F_b(15:8), F_b(7:0)
0x00, 0x00, 0x00, 0x00
0x21
Mix F to c
1
u(31:28)F_c(27:24), F_c(23:16), F_c(15:8), F_c(7:0)
0x00, 0x00, 0x00, 0x00
0x22
Mix F to d
1
u(31:28)F_d(27:24), F_d(23:16), F_d(15:8), F_d(7:0)
0x00, 0x00, 0x00, 0x00
0x23
Mix F to e
1
u(31:28)F_e(27:24), F_e(23:16), F_e(15:8), F_e(7:0)
0x00, 0x00, 0x00, 0x00
0x24
Mix F to f
1
u(31:28)F_f(27:24), F_f(23:16), F_f(15:8), F_f(7:0)
0x00, 0x00, 0x00, 0x00
0x25
Mix a to c
1
u(31:28)a_c(27:24), a_c(23:16), a_c(15:8), a_c(7:0)
0x00, 0x00, 0x00, 0x00
0x26
Mix b to c
1
u(31:28)b_c(27:24), b_c(23:16), b_c(15:8), b_c(7:0)
0x00, 0x00, 0x00, 0x00
0x27
Mix a to g
1
u(31:28)a_g(27:24), a_g(23:16), a_g(15:8), a_g(7:0)
0x00, 0x00, 0x00, 0x00
0x28
Mix b to h
1
u(31:28)b_h(27:24), b_h(23:16), b_h(15:8), b_h(7:0)
0x00, 0x00, 0x00, 0x00
0x29
Mix a to d via BQ and Rev/D
1
u(31:28)a_d(27:24), a_d(23:16), a_d(15:8), a_d(7:0)
0x00, 0x80, 0x00, 0x00
0x2A
Mix a to e via BQ and Rev/D
1
u(31:28)a_e(27:24), a_e(23:16), a_e(15:8), a_e(7:0)
0x00, 0x00, 0x00, 0x00
0x2B
Mix b to d via BQ and Rev/D
1
u(31:28)b_d(27:24), b_d(23:16), b_d(15:8), b_d(7:0)
0x00, 0x00, 0x00, 0x00
0x2C
Mix b to e via BQ and Rev/D
1
u(31:28)b_e(27:24), b_e(23:16), b_e(15:8), b_e(7:0)
0x00, 0x80, 0x00, 0x00
0x2D
Mix g to d via BQ
1
u(31:28)g_d(27:24), g_d(23:16), g_d(15:8), g_d(7:0)
0x00, 0x00, 0x00, 0x00
0x2E
Mix g to e via BQ
1
u(31:28)g_e(27:24), g_e(23:16), g_e(15:8), g_e(7:0)
0x00, 0x00, 0x00, 0x00
0x2F
Mix h to d via BQ
1
u(31:28)h_d(27:24), h_d(23:16), h_d(15:8), h_d(7:0)
0x00, 0x00, 0x00, 0x00
0x30
Mix h to e via BQ
1
u(31:28)h_e(27:24), h_e(23:16), h_e(15:8), h_e(7:0)
0x00, 0x00, 0x00, 0x00
0x31
Mix c to d via BQ
1
u(31:28)c_d(27:24), c_d(23:16), c_d(15:8), c_d(7:0)
0x00, 0x00, 0x00, 0x00
0x32
Mix c to e via BQ
1
u(31:28)c_e(27:24), c_e(23:16), c_e(15:8), c_e(7:0)
0x00, 0x00, 0x00, 0x00
0x33
Mix f to g and h
1
u(31:28)f_gh(27:24), f_gh(23:16), f_gh(15:8), f_gh(7:0)
0x00, 0x00, 0x00, 0x00
0x34
a_de path, biquad 1
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x35
a_de path, biquad 2
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x36
a_de path, biquad 3
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
A-3
SUBADDRESS
(0xSS)
INITIALIZA
TION V
ALUE
CONTENTS
(u Indicates Unused Bits)
NUMBER OF
4-BYTE WORDS
REGISTER NAME
0x37
a_de path, biquad 4
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x38
b_de path, biquad 1
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x39
b_de path, biquad 2
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x3A
b_de path, biquad 3
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x3B
b_de path, biquad 4
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x3C
g_de path, biquad 1
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x3D
g_de path, biquad 2
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
A-4
SUBADDRESS
(0xSS)
INITIALIZA
TION V
ALUE
CONTENTS
(u Indicates Unused Bits)
NUMBER OF
4-BYTE WORDS
REGISTER NAME
0x3E
g_de path, biquad 3
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x3F
g_de path, biquad 4
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x40
h_de path, biquad 1
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x41
h_de path, biquad 2
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x42
h_de path, biquad 3
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x43
h_de path, biquad 4
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x44
c_de path, biquad 1
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
A-5
SUBADDRESS
(0xSS)
INITIALIZA
TION V
ALUE
CONTENTS
(u Indicates Unused Bits)
NUMBER OF
4-BYTE WORDS
REGISTER NAME
0x45
c_de path, biquad 2
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x46
c_de path, biquad 3
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x47
c_de path, biquad 4
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x48
f_CH3 path, biquad 1
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x49
f_CH3 path, biquad 2
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x4A
f_CH3 path, biquad 3
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x4B
f_CH3 path, biquad 4
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
A-6
SUBADDRESS
(0xSS)
INITIALIZA
TION V
ALUE
CONTENTS
(u Indicates Unused Bits)
NUMBER OF
4-BYTE WORDS
REGISTER NAME
0x4C
a_de path, Reverb Gain Rg0
2
u(31:28)Rg0(27:24), Rg0(23:16), Rg0(15:8), Rg0(7:0)
0x00, 0x80, 0x00, 0x00
a_de path, Reverb Gain Rg1
u(31:28)Rg1(27:24), Rg1(23:16), Rg1(15:8), Rg1(7:0)
0x00, 0x00, 0x00, 0x00
0x4D
b_de path, Reverb Gain Rg0
2
u(31:28)Rg0(27:24), Rg0(23:16), Rg0(15:8), Rg0(7:0)
0x00, 0x80, 0x00, 0x00
b_de path, Reverb Gain Rg1
u(31:28)Rg1(27:24), Rg1(23:16), Rg1(15:8), Rg1(7:0)
0x00, 0x00, 0x00, 0x00
0x4E
f_CH3 path,
Reverb Gain Rg0
2
u(31:28)Rg0(27:24),
Rg0(23:16),
Rg0(15:8), Rg0(7:0)
0x00, 0x80, 0x00, 0x00
f_CH3 path,
Reverb Gain Rg1
u(31:28)Rg1(27:24),
Rg1(23:16),
Rg1(15:8), Rg1(7:0)
0x00, 0x00, 0x00, 0x00
0x4F
CH1 biquad 1
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x50
CH1 biquad 2
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x51
CH1 biquad 3
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x52
CH1 biquad 4
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x53
CH1 biquad 5
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x54
CH1 biquad 6
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
A-7
SUBADDRESS
(0xSS)
INITIALIZA
TION V
ALUE
CONTENTS
(u Indicates Unused Bits)
NUMBER OF
4-BYTE WORDS
REGISTER NAME
0x55
CH1 biquad 7
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x56
CH1 biquad 8
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x57
CH1 biquad 9
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x58
CH1 biquad 10
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x59
CH1 biquad 1
1
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x5A
CH1 biquad 12
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x5B
CH2 biquad 1
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
A-8
SUBADDRESS
(0xSS)
INITIALIZA
TION V
ALUE
CONTENTS
(u Indicates Unused Bits)
NUMBER OF
4-BYTE WORDS
REGISTER NAME
0x5C
CH2 biquad 2
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x5D
CH2 biquad 3
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x5E
CH2 biquad 4
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x5F
CH2 biquad 5
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x60
CH2 biquad 6
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x61
CH2 biquad 7
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x62
CH2 biquad 8
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
A-9
SUBADDRESS
(0xSS)
INITIALIZA
TION V
ALUE
CONTENTS
(u Indicates Unused Bits)
NUMBER OF
4-BYTE WORDS
REGISTER NAME
0x63
CH2 biquad 9
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x64
CH2 biquad 10
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x65
CH2 biquad 1
1
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x66
CH2 biquad 12
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x67
CH3 biquad 1
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x68
CH3 biquad 2
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x69
CH3 biquad 3
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
A-10
SUBADDRESS
(0xSS)
INITIALIZA
TION V
ALUE
CONTENTS
(u Indicates Unused Bits)
NUMBER OF
4-BYTE WORDS
REGISTER NAME
0x6A
CH3 biquad 4
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x6B
CH3 biquad 5
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x6C
CH3 biquad 6
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x6D
CH3 biquad 7
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x6E
CH3 biquad 8
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x6F
CH3 biquad 9
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x70
CH3 biquad 10
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
A-11
SUBADDRESS
(0xSS)
INITIALIZA
TION V
ALUE
CONTENTS
(u Indicates Unused Bits)
NUMBER OF
4-BYTE WORDS
REGISTER NAME
0x71
CH3 biquad 1
1
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x72
CH3 biquad 12
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0x73
Bass and treble bypass 1
2
u(31:28)BTby1(27:24), BTby1(23:16), BTby1(15:8), BTby1(7:0)
0x00, 0x80, 0x00, 0x00
Bass and treble inline 1
u(31:28)BT1(27:24), BT1(23:16), BT1(15:8), BT1(7:0)
0x00, 0x00, 0x00, 0x00
0x74
Bass and treble bypass 2
2
u(31:28)BTby2(27:24), BTby2(23:16), BTby2(15:8), BTby2(7:0)
0x00, 0x80, 0x00, 0x00
Bass and treble inline 2
u(31:28)BT2(27:24), BT2(23:16), BT2(15:8), BT2(7:0)
0x00, 0x00, 0x00, 0x00
0x75
Bass and treble bypass 3
2
u(31:28)BTby3(27:24), BTby3(23:16), BTby3(15:8), BTby3(7:0)
0x00, 0x80, 0x00, 0x00
Bass and treble inline 3
u(31:28)BT3(27:24), BT3(23:16), BT3(15:8), BT3(7:0)
0x00, 0x00, 0x00, 0x00
0x76
Mix u to i
1
u(31:28)u_i(27:24), u_i(23:16), u_i(15:8), u_i(7:0)
0x00, 0x00, 0x00, 0x00
0x77
Mix v to k
1
u(31:28)v_k(27:24), v_k(23:16), v_k(15:8), v_k(7:0)
0x00, 0x00, 0x00, 0x00
0x78
Mix w to m
1
u(31:28)w_m(27:24), w_m(23:16), w_m(15:8), w_m(7:0)
0x00, 0x00, 0x00, 0x00
0x79
Mix j to i
1
u(31:28)j_i(27:24), j_i(23:16), j_i(15:8), j_i(7:0)
0x00, 0x00, 0x00, 0x00
0x7A
Mix l to k
1
u(31:28)l_k(27:24), l_k(23:16), l_k(15:8), l_k(7:0)
0x00, 0x00, 0x00, 0x00
0x7B
Mix n to m
1
u(31:28)n_m(27:24), n_m(23:16), n_m(15:8), n_m(7:0)
0x00, 0x00, 0x00, 0x00
0x7C
Mix j to o via DRC mult
2
u(31:28)j_o(27:24), j_o(23:16), j_o(15:8), j_o(7:0)
0x00, 0x00, 0x00, 0x00
DRC bypass 1
u(31:28)DRC
by
1
(27:24), DRC
by
1
(23:16), DRC
by
1
(15:8), DRC
by
1
(7:0)
0x00, 0x80, 0x00, 0x00
0x7D
Mix l to p via DRC mult
2
u(31:28)l_p(27:24), l_p(23:16), l_p(15:8), l_p(7:0)
0x00, 0x00, 0x00, 0x00
DRC bypass 2
u(31:28)DRC
by
2
(27:24), DRC
by
2
(23:16), DRC
by
2
(15:8), DRC
by
2
(7:0)
0x00, 0x80, 0x00, 0x00
0x7E
Mix n to q via DRC mult
2
u(31:28)n_q(27:24), n_q(23:16), n_q(15:8), n_q(7:0)
0x00, 0x00, 0x00, 0x00
DRC bypass 3
u(31:28)DRC
by
3
(27:24), DRC
by
3
(23:16), DRC
by
3
(15:8), DRC
by
3
(7:0)
0x00, 0x80, 0x00, 0x00
0x7F
Mix dither1 to o
1
u(31:28)Dth1_o(27:24), Dth1_o(23:16), Dth1_o(15:8), Dth1_o(7:0)
0x00, 0x00, 0x00, 0x00
0x80
Mix dither2 to p
1
u(31:28)Dth2_p(27:24), Dth2_p(23:16), Dth2_p(15:8), Dth2_p(7:0)
0x00, 0x00, 0x00, 0x00
0x81
Mix dither3 to q
1
u(31:28)Dth3_q(27:24), Dth3_q(23:16), Dth3_q(15:8), Dth3_q(7:0)
0x00, 0x00, 0x00, 0x00
0x82
Mix delay3 to o
1
u(31:28)Dth3_o(27:24), Dth3_o(23:16), Dth3_o(15:8), Dth3_o(7:0)
0x00, 0x00, 0x00, 0x00
0x83
Mix delay3 to p
1
u(31:28)Dth3_p(27:24), Dth3_p(23:16), Dth3_p(15:8), Dth3_p(7:0)
0x00, 0x00, 0x00, 0x00
0x84
Mix o to r
1
u(31:28)o_r(27:24), o_r(23:16), o_r(15:8), o_r(7:0)
0x00, 0x40, 0x00, 0x00
0x85
Mix o to s
1
u(31:28)o_s(27:24), o_s(23:16), o_s(15:8), o_s(7:0)
0x00, 0x00, 0x00, 0x00
0x86
Mix p to r
1
u(31:28)p_r(27:24), p_r(23:16), p_r(15:8), p_r(7:0)
0x00, 0x40, 0x00, 0x00
A-12
SUBADDRESS
(0xSS)
INITIALIZA
TION V
ALUE
CONTENTS
(u Indicates Unused Bits)
NUMBER OF
4-BYTE WORDS
REGISTER NAME
0x87
Mix p to t
1
u(31:28)p_t(27:24), p_t(23:16), p_t(15:8), p_t(7:0)
0x00, 0x00, 0x00, 0x00
0x88
Mix q to r
1
u(31:28)q_r(27:24), q_r(23:16), q_r(15:8), q_r(7:0)
0x00, 0x00, 0x00, 0x00
0x89
Mix r to s and t
1
u(31:28)r_st(27:24), r_st(23:16), r_st(15:8), r_st(7:0)
0x00, 0x80, 0x00, 0x00
0x8A
Mix z to Z
1
u(31:28)z_Z(27:24), z_Z(23:16), z_Z(15:8), z_Z(7:0)
0x00, 0x00, 0x00, 0x00
0x8B
Mix z to Y
1
u(31:28)z_Y(27:24), z_Y(23:16), z_Y(15:8), z_Y(7:0)
0x00, 0x00, 0x00, 0x00
0x8C
Mix z to X
1
u(31:28)z_X(27:24), z_X(23:16), z_X(15:8), z_X(7:0)
0x00, 0x00, 0x00, 0x00
0x8D
Mix z to W
1
u(31:28)z_W(27:24), z_W(23:16), z_W(15:8), z_W(7:0)
0x00, 0x00, 0x00, 0x00
0x8E
Mix z to V
1
u(31:28)z_V(27:24), z_V(23:16), z_V(15:8), z_V(7:0)
0x00, 0x00, 0x00, 0x00
0x8F
Mix z to U
1
u(31:28)z_U(27:24), z_U(23:16), z_U(15:8), z_U(7:0)
0x00, 0x80, 0x00, 0x00
0x90
Mix y to Z
1
u(31:28)y_Z(27:24), y_Z(23:16), y_Z(15:8), y_Z(7:0)
0x00, 0x00, 0x00, 0x00
0x91
Mix y to Y
1
u(31:28)y_Y(27:24), y_Y(23:16), y_Y(15:8), y_Y(7:0)
0x00, 0x00, 0x00, 0x00
0x92
Mix y to X
1
u(31:28)y_X(27:24), y_X(23:16), y_X(15:8), y_X(7:0)
0x00, 0x00, 0x00, 0x00
0x93
Mix y to W
1
u(31:28)y_W(27:24),y_W(23:16), y_W(15:8), y_W(7:0)
0x00, 0x00, 0x00, 0x00
0x94
Mix y to V
1
u(31:28)y_V(27:24), y_V(23:16), y_V(15:8), y_V(7:0)
0x00, 0x80, 0x00, 0x00
0x95
Mix y to U
1
u(31:28)y_U(27:24), y_U(23:16), y_U(15:8), y_U(7:0)
0x00, 0x00, 0x00, 0x00
0x96
Mix x to Z
1
u(31:28)x_Z(27:24), x_Z(23:16), x_Z(15:8), x_Z(7:0)
0x00, 0x00, 0x00, 0x00
0x97
Mix x to Y
1
u(31:28)x_Y(27:24), x_Y(23:16), x_Y(15:8), x_Y(7:0)
0x00, 0x00, 0x00, 0x00
0x98
Mix x to X
1
u(31:28)x_X(27:24), x_X(23:16), x_X(15:8), x_X(7:0)
0x00, 0x00, 0x00, 0x00
0x99
Mix x to W
1
u(31:28)x_W(27:24), x_W(23:16), x_W(15:8), x_W(7:0)
0x00, 0x80, 0x00, 0x00
0x9A
Mix x to V
1
u(31:28)x_V(27:24), x_V(23:16), x_V(15:8), x_V(7:0)
0x00, 0x00, 0x00, 0x00
0x9B
Mix x to U
1
u(31:28)x_U(27:24), x_U(23:16), x_U(15:8), x_U(7:0)
0x00, 0x00, 0x00, 0x00
0x9C
Mix r to Z
1
u(31:28)r_Z(27:24), r_Z(23:16), r_Z(15:8), r_Z(7:0)
0x00, 0x00, 0x00, 0x00
0x9D
Mix r to Y
1
u(31:28)r_Y(27:24), r_Y(23:16), r_Y(15:8), r_Y(7:0)
0x00, 0x00, 0x00, 0x00
0x9E
Mix r to X
1
u(31:28)r_X(27:24), r_X(23:16), r_X(15:8), r_X(7:0)
0x00, 0x80, 0x00, 0x00
0x9F
Mix r to W
1
u(31:28)r_W(27:24), r_W(23:16), r_W(15:8), r_W(7:0)
0x00, 0x00, 0x00, 0x00
0xA0
Mix r to V
1
u(31:28)r_V(27:24), r_V(23:16), r_V(15:8), r_V(7:0)
0x00, 0x00, 0x00, 0x00
0xA1
Mix r to U
1
u(31:28)r_U(27:24),
r_U(23:16), r_U(15:8), r_U(7:0)
0x00,
0x00, 0x00, 0x00
0xA2
CH1 loudness log
2
G
1
u(31:28)LG(27:24), LG(23:16), LG(15:8), LG(7:0)
0x00, 0x40, 0x00, 0x00
0xA3
CH1 loudness log
2
O
2
u(31:24), u(23:16), LO
47:40
(15:8), LO
39:32
(7:0)
0x00, 0x00, 0x00, 0x00
LO
31:24
(31:24), LO
23:16
(23:16), LO
15:8
(15:8), LO
7:0
(7:0)
0x00, 0x00, 0x00, 0x00
0xA4
CH1 loudness G
1
u(31:28)G(27:24), G(23:16), G(15:8), G(7:0)
0x00, 0x00, 0x00, 0x00
0xA5
CH1 loudness O
2
u(31:24), u(23:16), O
47:40
(15:8), O
39:32
(7:0)
0x00, 0x00, 0x00, 0x00
O
31:24
(31:24), O
23:16
(23:16), O
15:8
(15:8), O
7:0
(7:0)
0x00, 0x00, 0x00, 0x00
A-13
SUBADDRESS
(0xSS)
INITIALIZA
TION V
ALUE
CONTENTS
(u Indicates Unused Bits)
NUMBER OF
4-BYTE WORDS
REGISTER NAME
0xA6
CH1 loudness biquad
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0xA7
CH2 loudness log
2
G
1
u(31:28)LG(27:24), LG(23:16), LG(15:8), LG(7:0)
0x00, 0x40, 0x00, 0x00
0xA8
CH2 loudness log
2
O
2
u(31:24), u(23:16), LO
47:40
(15:8), LO
39:32
(7:0)
0x00, 0x00, 0x00, 0x00
LO
31:24
(31:24), LO
23:16
(23:16), LO
15:8
(15:8), LO
7:0
(7:0)
0x00, 0x00, 0x00, 0x00
0xA9
CH2 loudness G
1
u(31:28)G(27:24), G(23:16), G(15:8), G(7:0)
0x00, 0x00, 0x00, 0x00
0xAA
CH2 loudness O
2
u(31:24), u(23:16), O
47:40
(15:8), O
39:32
(7:0)
0x00, 0x00, 0x00, 0x00
O
31:24
(31:24), O
23:16
(23:16), O
15:8
(15:8), O
7:0
(7:0)
0x00, 0x00, 0x00, 0x00
0xAB
CH2 loudness biquad
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0xAC
CH3 loudness log
2
G
1
u(31:28)LG(27:24), LG(23:16), LG(15:8), LG(7:0)
0x00, 0x40, 0x00, 0x00
0xAD
CH3 loudness log
2
O
2
u(31:24), u(23:16), LO
47:40
(15:8), LO
39:32
(7:0)
0x00, 0x00, 0x00, 0x00
LO
31:24
(31:24), LO
23:16
(23:16), LO
15:8
(15:8), LO
7:0
(7:0)
0x00, 0x00, 0x00, 0x00
0xAE
CH3 loudness G
1
u(31:28)G(27:24), G(23:16), G(15:8), G(7:0)
0x00, 0x00, 0x00, 0x00
0xAF
CH3 loudness O
2
u(31:24), u(23:16), O
47:40
(15:8), O
39:32
(7:0)
0x00, 0x00, 0x00, 0x00
O
31:24
(31:24), O
23:16
(23:16), O
15:8
(15:8), O
7:0
(7:0)
0x00, 0x00, 0x00, 0x00
0xB0
CH3 loudness biquad
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0xB1
CH1/2 DRCE ae
2
u(31:28)ae(27:24), ae(23:16), ae(15:8), ae(7:0)
0x00, 0x80, 0x00, 0x00
CH1/2 DRCE 1-ae
u(31:28)1-ae(27:24), 1-ae(23:16), 1-ae(15:8), 1-ae(7:0)
0x00, 0x00, 0x00, 0x00
0xB2
CH1/2 DRCE T1
4
u(31:24), u(23:16), T1
47:40
(15:8), T1
39:32
(7:0)
0x00, 0x00, 0x00, 0x00
T1
31:24
(31:24), T1
23:16
(23:16), T1
15:8
(15:8), T1
7:0
(7:0)
0x00, 0x00, 0x00, 0x01
CH1/2 DRCE T2
u(31:24), u(23:16), T2
47:40
(15:8), T2
39:32
(7:0)
0x00, 0x00, 0x00, 0x00
T2
31:24
(31:24), T2
23:16
(23:16), T2
15:8
(15:8), T2
7:0
(7:0)
0x00, 0x00, 0x00, 0x01
0xB3
CH1/2 k0'
3
u(31:28)k0'(27:24), k0'(23:16), k0'(15:8), k0'(7:0)
0x00, 0x00, 0x00, 0x00
CH1/2 k1'
u(31:28)k1'(27:24), k1'(23:16), k1'(15:8), k1'(7:0)
0x00, 0x00, 0x00, 0x00
CH1/2 k2'
u(31:28)k2'(27:24), k2'(23:16), k2'(15:8), k2'(7:0)
0x00, 0x00, 0x00, 0x00
A-14
SUBADDRESS
(0xSS)
INITIALIZA
TION V
ALUE
CONTENTS
(u Indicates Unused Bits)
NUMBER OF
4-BYTE WORDS
REGISTER NAME
0xB4
CH1/2 DRCE O1
4
u(31:24), u(23:16), O1
47:40
(15:8), O1
39:32
(7:0)
0x00, 0x00, 0x00, 0x00
O1
31:24
(31:24), O1
23:16
(23:16), O1
15:8
(15:8), O1
7:0
(7:0)
0x01, 0xFF
, 0xFF
, 0xFF
CH1/2 DRCE O2
u(31:24), u(23:16), O2
47:40
(15:8), O2
39:32
(7:0)
0x00, 0x00, 0x00, 0x00
O2
31:24
(31:24), O2
23:16
(23:16), O2
15:8
(15:8), O2
7:0
(7:0)
0x01, 0xFF
, 0xFF
, 0xFF
0xB5
CH1/2 DRCE aa
4
u(31:28)aa(27:24), aa(23:16), aa(15:8), aa(7:0)
0x00, 0x80, 0x00, 0x00
CH1/2 DRCE 1-aa
u(31:28)1-aa(27:24), 1-aa(23:16), 1-aa(15:8), 1-aa(7:0)
0x00, 0x00, 0x00, 0x00
CH1/2 DRCE ad
u(31:28)ad(27:24), ad(23:16), ad(15:8), ad(7:0)
0x00, 0x80, 0x00, 0x00
CH1/2 DRCE 1-ad
u(31:28)1-ad(27:24), 1-ad(23:16), 1-ad(15:8), 1-ad(7:0)
0x00, 0x00, 0x00, 0x00
0xB6
CH3 DRCE ae
2
u(31:28)ae(27:24), ae(23:16), ae(15:8), ae(7:0)
0x00, 0x80, 0x00, 0x00
CH3 DRCE 1-ae
u(31:28)1-ae(27:24), 1-ae(23:16), 1-ae(15:8), 1-ae(7:0)
0x00, 0x00, 0x00, 0x00
0xB7
CH3 DRCE T1
4
u(31:24), u(23:16), T1
47:40
(15:8), T1
39:32
(7:0)
0x00, 0x00, 0x00, 0x00
T1
31:24
(31:24), T1
23:16
(23:16), T1
15:8
(15:8), T1
7:0
(7:0)
0x00, 0x00, 0x00, 0x01
CH3 DRCE T2
u(31:24), u(23:16), T2
47:40
(15:8), T2
39:32
(7:0)
0x00, 0x00, 0x00, 0x00
T2
31:24
(31:24), T2
23:16
(23:16), T2
15:8
(15:8), T2
7:0
(7:0)
0x00, 0x00, 0x00, 0x01
0xB8
CH3 k0'
3
u(31:28)k0'(27:24), k0'(23:16), k0'(15:8), k0'(7:0)
0x00, 0x00, 0x00, 0x00
CH3 k1'
u(31:28)k1'(27:24), k1'(23:16), k1'(15:8), k1'(7:0)
0x00, 0x00, 0x00, 0x00
CH3 k2'
u(31:28)k2'(27:24), k2'(23:16), k2'(15:8), k2'(7:0)
0x00, 0x00, 0x00, 0x00
0xB9
CH3 DRCE O1
4
u(31:24), u(23:16), O1
47:40
(15:8), O1
39:32
(7:0)
0x00, 0x00, 0x00, 0x00
O1
31:24
(31:24), O1
23:16
(23:16), O1
15:8
(15:8), O1
7:0
(7:0)
0x01, 0xFF
, 0xFF
, 0xFF
CH3 DRCE O2
u(31:24), u(23:16), O2
47:40
(15:8), O2
39:32
(7:0)
0x00, 0x00, 0x00, 0x00
O2
31:24
(31:24), O2
23:16
(23:16), O2
15:8
(15:8), O2
7:0
(7:0)
0x01, 0xFF
, 0xFF
, 0xFF
0xBA
CH3 DRCE aa
4
u(31:28)aa(27:24), aa(23:16), aa(15:8), aa(7:0)
0x00, 0x80, 0x00, 0x00
CH3 DRCE 1-aa
u(31:28)1-aa(27:24), 1-aa(23:16), 1-aa(15:8), 1-aa(7:0)
0x00, 0x00, 0x00, 0x00
CH3 DRCE ad
u(31:28)ad(27:24), ad(23:16), ad(15:8), ad(7:0)
0x00, 0x80, 0x00, 0x00
CH3 DRCE 1-ad
u(31:28)1-ad(27:24), 1-ad(23:16), 1-ad(15:8), 1-ad(7:0)
0x00, 0x00, 0x00, 0x00
0xBB
Spectrum analyzer asa
2
u(31:28)asa(27:24), asa(23:16), asa(15:8), asa(7:0)
0x00, 0x80, 0x00, 0x00
Spectrum analyzer 1-asa
u(31:28)1-asa(27:24), 1-asa(23:16), 1-asa(15:8), 1-asa(7:0)
0x00, 0x00, 0x00, 0x00
0xBC
Spectrum analyzer BQ1
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
A-15
SUBADDRESS
(0xSS)
INITIALIZA
TION V
ALUE
CONTENTS
(u Indicates Unused Bits)
NUMBER OF
4-BYTE WORDS
REGISTER NAME
0xBD
Spectrum analyzer BQ2
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0xBE
Spectrum analyzer BQ3
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0xBF
Spectrum analyzer BQ4
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0xC0
Spectrum analyzer BQ5
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0xC1
Spectrum analyzer BQ6
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0xC2
Spectrum analyzer BQ7
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0xC3
Spectrum analyzer BQ8
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
A-16
SUBADDRESS
(0xSS)
INITIALIZA
TION V
ALUE
CONTENTS
(u Indicates Unused Bits)
NUMBER OF
4-BYTE WORDS
REGISTER NAME
0xC4
Spectrum analyzer BQ9
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0xC5
Spectrum analyzer BQ10
5
u(31:28)a1(27:24), a1(23:16), a1(15:8), a1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)a2(27:24), a2(23:16), a2(15:8), a2(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b0(27:24), b0 (23:16), b0(15:8), b0(7:0)
0x00, 0x80, 0x00, 0x00
u(31:28)b1(27:24), b1(23:16), b1(15:8), b1(7:0)
0x00, 0x00, 0x00, 0x00
u(31:28)b2(27:24), b2(23:16), b2(15:8), b2(7:0)
0x00, 0x00, 0x00, 0x00
0xC6
Dither LFSR1 mix
2
u(31:28)LFSR1(27:24), LFSR1(23:16), LFSR1(15:8), LFSR1(7:0)
0x00, 0x80, 0x00, 0x00
Dither LFSR2 mix
u(31:28)LFSR2(27:24), LFSR2(23:16), LFSR2(15:8), LFSR2(7:0)
0x00, 0x80, 0x00, 0x00
0xC7
Dither seed
1
u(31:24), u(23:16), LFSR2_SEED(15:8), LFSR1_SEED(7:0)
0x00, 0x00, 0x22, 0x49
0xC8
Factory test
1
u(31:24), u(23:16), u(15:8), u(7:0)
N/A
0xC9
Factory test
2
u(31:24), u(23:16), u(15:8), u(7:0)
N/A
u(31:24), u(23:16), u(15:8), u(7:0)
N/A
0xCA
Mix G to g
1
u(31:28)G_g(27:24), G_g(23:16), G_g(15:8), G_g(7:0)
0x00, 0x00, 0x00, 0x00
0xCB
Mix G to f
1
u(31:28)G_f(27:24), G_f(23:16), G_f(15:8), G_f(7:0)
0x00, 0x00, 0x00, 0x00
0xCC
Mix G to Y
1
u(31:28)G_Y(27:24), G_Y(23:16), G_Y(15:8), G_Y(7:0)
0x00, 0x00, 0x00, 0x00
0xCD
Mix H to h
1
u(31:28)H_h(27:24), H_h(23:16), H_h(15:8), H_h(7:0)
0x00, 0x00, 0x00, 0x00
0xCE
Mix H to f
1
u(31:28)H_f(27:24), H_f(23:16), H_f(15:8), H_f(7:0)
0x00, 0x00, 0x00, 0x00
0xCF
Mix H to Z
1
u(31:28)H_Z(27:24), H_Z(23:16), H_Z(15:8), H_Z(7:0)
0x00, 0x00, 0x00, 0x00
0xD0
Mix d to aa
1
u(31:28)d_aa(27:24), d_aa(23:16), d_aa(15:8), d_aa(7:0)
0x00, 0x00, 0x00, 0x00
0xD1
Mix e to aa
1
u(31:28)e_aa(27:24), e_aa(23:16), e_aa(15:8), e_aa(7:0)
0x00, 0x00, 0x00, 0x00
0xD2
Reserved
1
u(31:24), u(23:16), u(15:8), u(7:0)
N/A
0xD3
Reserved
1
u(31:24), u(23:16), u(15:8), u(7:0)
N/A
0xD4
Reserved
1
u(31:24), u(23:16), u(15:8), u(7:0)
N/A
0xD5
Reserved
1
u(31:24), u(23:16), u(15:8), u(7:0)
N/A
0xD6
Reserved
1
u(31:24), u(23:16), u(15:8), u(7:0)
N/A
0xD7
Reserved
1
u(31:24), u(23:16), u(15:8), u(7:0)
N/A
0xD8
Reserved
1
u(31:24), u(23:16), u(15:8), u(7:0)
N/A
0xD9
Reserved
1
u(31:24), u(23:16), u(15:8), u(7:0)
N/A
0xDA
Reserved
1
u(31:24), u(23:16), u(15:8), u(7:0)
N/A
0xDB
Reserved
1
u(31:24), u(23:16), u(15:8), u(7:0)
N/A
0xDC
Reserved
1
u(31:24), u(23:16), u(15:8), u(7:0)
N/A
0xDD
Reserved
1
u(31:24), u(23:16), u(15:8), u(7:0)
N/A
A-17
SUBADDRESS
(0xSS)
INITIALIZA
TION V
ALUE
CONTENTS
(u Indicates Unused Bits)
NUMBER OF
4-BYTE WORDS
REGISTER NAME
0xDE
Reserved
1
u(31:24), u(23:16), u(15:8), u(7:0)
N/A
0xDF
Reserved
1
u(31:24), u(23:16), u(15:8), u(7:0)
N/A
0xE0
Reserved
1
u(31:24), u(23:16), u(15:8), u(7:0)
N/A
0xE1
Reserved
1
u(31:24), u(23:16), u(15:8), u(7:0)
N/A
0xE2
Reserved
1
u(31:24), u(23:16), u(15:8), u(7:0)
N/A
0xE3
Reserved
1
u(31:24), u(23:16), u(15:8), u(7:0)
N/A
0xE4
Reserved
1
u(31:24), u(23:16), u(15:8), u(7:0)
N/A
0xE5
Reserved
1
u(31:24), u(23:16), u(15:8), u(7:0)
N/A
0xE6
Reserved
1
u(31:24), u(23:16), u(15:8), u(7:0)
N/A
0xE7
Reserved
1
u(31:24), u(23:16), u(15:8), u(7:0)
N/A
0xE8
Reserved
1
u(31:24), u(23:16), u(15:8), u(7:0)
N/A
0xE9
Reserved
1
u(31:24), u(23:16), u(15:8), u(7:0)
N/A
0xEA
Reserved
1
u(31:24), u(23:16), u(15:8), u(7:0)
N/A
0xEB
W
atchdog timer enable
1
u(31:24), u(23:16), u(15:8), u(7:1)R1(0)
0x00, 0x00, 0x00, 0x01
0xEC
Factory test
1
u(31:24), u(23:16), u(15:8), u(7:0)
N/A
0xED
Factory test
2
u(31:24), u(23:16), u(15:8), u(7:0)
N/A
u(31:24), u(23:16), u(15:8), u(7:0)
N/A
0xEE
GPIO port I/O value
1
u(31:24), u(23:16), u(15:8), u(7:4)GPIO_in_out(3:0)
0x00, 0x00, 0x00, 0x0X
(1)
0xEF
GPIO parameters
1
u(31:24), u(23:20)GPIODIR(19:16), GPIOFSCOUNT(15:8),
GPIO_samp_int(7:0)
0x00, 0x0F
, 0x6E, 0x6D
0xF0
Master mute/unmute
1
(31:24), u(23:16), u(15:8), u(7:3)CH3M_U(2)CH2M_U(1)CH1M_U(0)
0x00, 0x00, 0x00, 0x00
0xF1
V
ol, T and B slew rates
1
u(31:24), u(23:16), u(15:9)VSC(8), TBLC(7:0)
0x00, 0x00, 0x00, 0x40
0xF2
CH1 volume (5.23 precision)
1
u(31:28)V
ol1(27:24), V
ol1(23:16), V
ol1(15:8), V
ol1(7:0)
0x00, 0x00, 0x00, 0x00
0xF3
CH2 volume (5.23 precision)
1
u(31:28)V
ol2(27:24), V
ol2(23:16), V
ol2(15:8), V
ol2(7:0)
0x00, 0x00, 0x00, 0x00
0xF4
CH3 volume (5.23 precision)
1
u(31:28)V
ol3(27:24), V
ol3(23:16), V
ol3(15:8), V
ol3(7:0)
0x00, 0x00, 0x00, 0x00
0xF5
Bass filter set (1-5)
1
u(31:24), u(23:19)CH3Bs(18:16), u(15:1
1) CH2Bs(10:8),
u(7:3)CH1Bs(2:0),
0x00, 0x03, 0x03, 0x03
0xF6
Bass filter index
1
u(31:24), CH3Bf(23:16), CH2Bf(15:8), CH1Bf(7:0)
0x00, 0x72, 0x72, 0x72
0xF7
T
reble filter set (1-5)
1
u(31:24), u(23:19)CH3T
s(18:16), u(15:1
1) CH2T
s(10:8), u(7:3)CH1T
s(2:0),
0x00, 0x03, 0x03, 0x03
0xF8
T
reble filter index
1
u(31:24), CH3Tf(23:16), CH2Tf(15:8), CH1Tf(7:0)
0x00, 0x72, 0x72, 0x72
0xF9
I2
S command word
1
MLRCLK(31:24), SCLK(23:16), DWFMT(15:8), IOM(7:0)
0x01, 0x01, 0x09, 0x1
1
0xF
A
Delay/reverb times-CH1
3
u(31:28)D1(27:24), D1(23:16), u(15:12)R1(1
1:8), R1(7:0)
0x00, 0x00, 0x00, 0x00
Delay/reverb times-CH2
u(31:28)D2(27:24), D2(23:16), u(15:12)R2(1
1:8), R2(7:0)
0x00, 0x00, 0x00, 0x00
Delay/reverb times-CH3
u(31:28)D3(27:24), D3(23:16), u(15:12)R3(1
1:8), R3(7:0)
0x00, 0x00, 0x00, 0x00
0xFB
I2
C M and N
1
u(31:24), u(23:16), u(15:8), u(7)M(6:3)N(2:0)
0x00, 0x00, 0x00, 0x41
0xFC
Ending I
2
C check word
1
ECW(31:24), ECW(23:16), ECW(15:8), ECW(7:0)
0x81, 0x42, 0x24, 0x18
A-18
SUBADDRESS
(0xSS)
INITIALIZA
TION V
ALUE
CONTENTS
(u Indicates Unused Bits)
NUMBER OF
4-BYTE WORDS
REGISTER NAME
0xFD
Spectrum analyzer output 1
2.5
SA1(7:0)
(Always data dependent)
Spectrum analyzer output 2
SA2(7:0)
(Always data dependent)
Spectrum analyzer output 3
SA3(7:0)
(Always data dependent)
Spectrum analyzer output 4
SA4(7:0)
(Always data dependent)
Spectrum analyzer output 5
SA5(7:0)
(Always data dependent)
Spectrum analyzer output 6
SA6(7:0)
(Always data dependent)
Spectrum analyzer output 7
SA7(7:0)
(Always data dependent)
Spectrum analyzer output 8
SA8(7:0)
(Always data dependent)
Spectrum analyzer output 9
SA9(7:0)
(Always data dependent)
Spectrum analyzer output 10
SA10(7:0)
(Always data dependent)
0xFE
VU meter output 1 (SA5)
0.5
SA5(7:0)
(Always data dependent)
VU meter output 2 (SA6)
SA6(7:0)
(Always data dependent)
0xFF
Flag register
0.25
u(7:1)V
olBusy(0)
N/A
NOTE
1:
GPIO ports are
initialized to be read ports. The initial input values read then are dependent on what is connected to th
e GPIO pins. If a given GPIO pin is left unconnected,
the
internal pullup results in a logic 1 being read.
A-19
A.2
T
AS3103
Firmware Block Diagram
A
B
C
D
E
F
a
b
c
d
e
f
g
h
Ch1
Ch2
Ch3
X
V
V
U
U
Z
Z
Y
Y
Dither 3
Dither 1
Dither 2
p
q
r
s
i
j
k
l
m
o
t
r
x
y
z
n
u
v
w
BTby1
BT1
BTby2
BT2
BTby3
BT3
DRCby1
DRCby2
DRCby3
W
W
G
H
aa
Delay1
Delay2
Delay3
32-Bit
Clip
32-48
xpndr
Sp
Analyzer
+ VU Meter
32-Bit
Clip
32-48
xpndr
Bass &
T
reble
Soft
Vo
l
Loud-
ness
Dynamic
Range
Control
12
Bq
Loud-
ness
Soft
Vo
l
Bass &
T
reble
12
Bq
Dynamic
Range
Control
32-48
xpndr
32-Bit
Clip
Soft
Vo
l
Loud-
ness
Bass &
T
reble
12
Bq
Rev
Del
4
BQ
Rev
Del
4
BQ
4
BQ
4
BQ
4
BQ
Rev
Del
4
BQ
A-20
B-1
Appendix B
Mechanical Information
DBT (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
30 PINS SHOWN
0,75
0,25
0,50
0,15 NOM
Gage Plane
50
12,60
38
9,80
11,10
44
12,40
9,60
10,90
4073252/E 02/02
4,30
4,50
0,27
0,17
16
15
30
A
1
6,60
24
DIM
A MAX
PINS **
6,40
A MIN
1,20 MAX
6,60
6,20
Seating Plane
0,10
0,50
M
0,08
0
- 8
5,10
20
4.90
0,15
0,05
7,90
30
7,70
7,90
28
7,70
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion.
D. Falls within JEDEC MO-153
B-2