ChipFind - документация

Электронный компонент: TK711XX

Скачать:  PDF   ZIP
July 2000 TOKO, Inc.
Page 1
TK711xx
VIN
VOUT
THERMAL
PROTECTION
GND
BANDGAP
REFERENCE
APPLICATIONS
s
Battery Powered Systems
s
Portable Consumer Equipment
s
Cordless Telephones
s
Personal Communications Equipment
s
Radio Control Systems
s
Toys
s
Low Voltage Systems
FEATURES
s
Low Dropout Voltage
s
Low Quiescent Current
s
Very Stable Output
s
Short Circuit Protected
s
Thermal Overload Protected
s
Standard TO-92 Package
TK711xx
BLOCK DIAGRAM
PIN 1. OUTPUT
2. GROUND
3. INPUT
1
2
3
DESCRIPTION
The TK711xx is a low dropout, linear regulator housed in
a standard TO-92 package, rated at 500 mW. An internal
PNP transistor is used to achieve a low dropout voltage of
100 mV (typ.) at 30 mA load current. The TK711xx has a
low quiescent current of 130
A (typ.) at no load. The low
quiescent current and dropout voltage make this part ideal
for battery powered applications.
ORDERING INFORMATION
TAPE/REEL CODE
NT: Tape Left
Tape/Reel Code
TK711
VoltageCode
VOLTAGE CODE
20 = 2.0 V
35 = 3.5 V
25 = 2.5 V
40 = 4.0 V
30 = 3.0 V
45 = 4.5 V
33 = 3.3 V
50 = 5.0 V
150
LOW DROPOUT REGULATOR
NOT RECOMMENDED
FOR NEW DESIGNS
Page 2
July 2000 TOKO, Inc.
TK711xx
TK71120 ELECTRICAL CHARACTERISTICS
Test Conditions: V
IN
= 3 V, T
A
= 25
C, unless otherwise specified.
Note 1: Power dissipation is 500 mW when mounted. Derate at 4 mW/
C for operation above 25
C.
ABSOLUTE MAXIMUM RATINGS
Input Voltage ............................................................ 15 V
Power Dissipation (Note 1) ................................ 500 mW
Operating Voltage Range ............................... 1.4 to 14 V
Junction Temperature ........................................... 150
C
Storage Temperature Range ................... -55 to +150
C
Operating Temperature Range ................... -20 to +75
C
Lead Soldering Temperature (10 s) ...................... 235
C
L
O
B
M
Y
S
R
E
T
E
M
A
R
A
P
S
N
O
I
T
I
D
N
O
C
T
S
E
T
N
I
M
P
Y
T
X
A
M
S
T
I
N
U
I
Q
t
n
e
r
r
u
C
t
n
e
c
s
e
i
u
Q
V
N
I
I
,
V
0
.
3
=
T
U
O
A
m
0
=
0
3
1
0
0
3
A
V
N
I
I
,
V
9
.
1
=
T
U
O
A
m
0
=
4
.
1
0
.
3
A
m
V
T
U
O
e
g
a
t
l
o
V
t
u
p
t
u
O
d
e
t
a
l
u
g
e
R
V
N
I
I
,
V
0
.
3
=
T
U
O
A
m
0
1
=
9
.
1
0
.
2
1
.
2
V
V
P
O
R
D
e
g
a
t
l
o
V
t
u
o
p
o
r
D
I
T
U
O
A
m
0
3
=
0
0
1
0
0
2
V
m
I
T
U
O
t
n
e
r
r
u
C
t
u
p
t
u
O
0
0
1
0
6
1
A
m
I
D
N
G
t
n
e
r
r
u
C
d
n
u
o
r
G
V
N
I
I
,
V
0
.
3
=
T
U
O
A
m
0
3
=
5
.
1
5
.
3
A
m
g
e
R
e
n
i
L
n
o
i
t
a
l
u
g
e
R
e
n
i
L
V
N
I
V
0
.
3
1
o
t
0
.
3
=
0
1
0
3
V
m
g
e
R
e
n
i
L
n
o
i
t
a
l
u
g
e
R
d
a
o
L
I
T
U
O
A
m
0
6
o
t
1
=
0
2
0
4
V
m
R
R
n
o
i
t
c
e
j
e
R
e
l
p
p
i
R
C
L
I
,
z
H
0
0
4
=
f
,
F
3
.
3
=
T
U
O
A
m
0
1
=
3
6
B
d
V
T
U
O
/
T
e
r
u
t
a
r
e
p
m
e
T
t
n
e
i
c
i
f
f
e
o
C
5
1
.
0
C
/
V
m
July 2000 TOKO, Inc.
Page 3
TK711xx
TK71125 ELECTRICAL CHARACTERISTICS
Test Conditions: V
IN
= 3.5 V, T
A
= 25
C, unless otherwise specified.
L
O
B
M
Y
S
R
E
T
E
M
A
R
A
P
S
N
O
I
T
I
D
N
O
C
T
S
E
T
N
I
M
P
Y
T
X
A
M
S
T
I
N
U
I
Q
t
n
e
r
r
u
C
t
n
e
c
s
e
i
u
Q
V
N
I
I
,
V
5
.
3
=
T
U
O
A
m
0
=
0
3
1
0
0
3
A
V
N
I
I
,
V
0
.
2
=
T
U
O
A
m
0
=
4
.
1
0
.
3
A
m
V
T
U
O
e
g
a
t
l
o
V
t
u
p
t
u
O
d
e
t
a
l
u
g
e
R
V
N
I
I
,
V
5
.
3
=
T
U
O
A
m
0
1
=
4
.
2
5
.
2
6
.
2
V
V
P
O
R
D
e
g
a
t
l
o
V
t
u
o
p
o
r
D
I
T
U
O
A
m
0
3
=
0
0
1
0
0
2
V
m
I
T
U
O
t
n
e
r
r
u
C
t
u
p
t
u
O
0
0
1
0
6
1
A
m
I
D
N
G
t
n
e
r
r
u
C
d
n
u
o
r
G
V
N
I
I
,
V
5
.
3
=
T
U
O
A
m
0
3
=
5
.
1
5
.
3
A
m
g
e
R
e
n
i
L
n
o
i
t
a
l
u
g
e
R
e
n
i
L
V
N
I
V
5
.
3
1
o
t
5
.
3
=
0
1
0
3
V
m
g
e
R
e
n
i
L
n
o
i
t
a
l
u
g
e
R
d
a
o
L
I
T
U
O
A
m
0
6
o
t
1
=
0
2
0
4
V
m
R
R
n
o
i
t
c
e
j
e
R
e
l
p
p
i
R
C
L
I
,
z
H
0
0
4
=
f
,
F
3
.
3
=
T
U
O
A
m
0
1
=
3
6
B
d
V
T
U
O
/
T
e
r
u
t
a
r
e
p
m
e
T
t
n
e
i
c
i
f
f
e
o
C
5
1
.
0
C
/
V
m
L
O
B
M
Y
S
R
E
T
E
M
A
R
A
P
S
N
O
I
T
I
D
N
O
C
T
S
E
T
N
I
M
P
Y
T
X
A
M
S
T
I
N
U
I
Q
t
n
e
r
r
u
C
t
n
e
c
s
e
i
u
Q
V
N
I
I
,
V
0
.
4
=
T
U
O
A
m
0
=
0
3
1
0
0
3
A
V
N
I
I
,
V
5
.
2
=
T
U
O
A
m
0
=
4
.
1
0
.
3
A
m
V
T
U
O
e
g
a
t
l
o
V
t
u
p
t
u
O
d
e
t
a
l
u
g
e
R
V
N
I
I
,
V
0
.
4
=
T
U
O
A
m
0
1
=
9
.
2
0
.
3
1
.
3
V
V
P
O
R
D
e
g
a
t
l
o
V
t
u
o
p
o
r
D
I
T
U
O
A
m
0
3
=
0
0
1
0
0
2
V
m
I
T
U
O
t
n
e
r
r
u
C
t
u
p
t
u
O
0
0
1
0
6
1
A
m
I
D
N
G
t
n
e
r
r
u
C
d
n
u
o
r
G
V
N
I
I
,
V
0
.
4
=
T
U
O
A
m
0
3
=
5
.
1
5
.
3
A
m
g
e
R
e
n
i
L
n
o
i
t
a
l
u
g
e
R
e
n
i
L
V
N
I
V
0
.
4
1
o
t
0
.
4
=
0
1
0
3
V
m
g
e
R
e
n
i
L
n
o
i
t
a
l
u
g
e
R
d
a
o
L
I
T
U
O
A
m
0
6
o
t
1
=
0
2
0
4
V
m
R
R
n
o
i
t
c
e
j
e
R
e
l
p
p
i
R
C
L
I
,
z
H
0
0
4
=
f
,
F
3
.
3
=
T
U
O
A
m
0
1
=
3
6
B
d
V
T
U
O
/
T
e
r
u
t
a
r
e
p
m
e
T
t
n
e
i
c
i
f
f
e
o
C
8
1
.
0
C
/
V
m
TK71130 ELECTRICAL CHARACTERISTICS
Test Conditions: V
IN
= 4.0 V, T
A
= 25
C, unless otherwise specified.
Page 4
July 2000 TOKO, Inc.
TK711xx
TK71133 ELECTRICAL CHARACTERISTICS
Test Conditions: V
IN
= 3.9 V, T
A
= 25
C, unless otherwise specified.
L
O
B
M
Y
S
R
E
T
E
M
A
R
A
P
S
N
O
I
T
I
D
N
O
C
T
S
E
T
N
I
M
P
Y
T
X
A
M
S
T
I
N
U
I
Q
t
n
e
r
r
u
C
t
n
e
c
s
e
i
u
Q
V
N
I
I
,
V
9
.
3
=
T
U
O
A
m
0
=
0
3
1
0
0
3
A
V
N
I
I
,
V
8
.
2
=
T
U
O
A
m
0
=
4
.
1
0
.
3
A
m
V
T
U
O
e
g
a
t
l
o
V
t
u
p
t
u
O
d
e
t
a
l
u
g
e
R
V
N
I
I
,
V
9
.
3
=
T
U
O
A
m
0
1
=
2
.
3
3
.
3
4
.
3
V
V
P
O
R
D
e
g
a
t
l
o
V
t
u
o
p
o
r
D
I
T
U
O
A
m
0
3
=
0
0
1
0
0
2
V
m
I
T
U
O
t
n
e
r
r
u
C
t
u
p
t
u
O
0
0
1
0
6
1
A
m
I
D
N
G
t
n
e
r
r
u
C
d
n
u
o
r
G
V
N
I
I
,
V
9
.
3
=
T
U
O
A
m
0
3
=
5
.
1
5
.
3
A
m
g
e
R
e
n
i
L
n
o
i
t
a
l
u
g
e
R
e
n
i
L
V
N
I
V
9
.
3
1
o
t
9
.
3
=
0
1
0
3
V
m
g
e
R
e
n
i
L
n
o
i
t
a
l
u
g
e
R
d
a
o
L
I
T
U
O
A
m
0
6
o
t
1
=
0
2
0
4
V
m
R
R
n
o
i
t
c
e
j
e
R
e
l
p
p
i
R
C
L
I
,
z
H
0
0
4
=
f
,
F
3
.
3
=
T
U
O
A
m
0
1
=
3
6
B
d
V
T
U
O
/
T
e
r
u
t
a
r
e
p
m
e
T
t
n
e
i
c
i
f
f
e
o
C
8
1
.
0
C
/
V
m
L
O
B
M
Y
S
R
E
T
E
M
A
R
A
P
S
N
O
I
T
I
D
N
O
C
T
S
E
T
N
I
M
P
Y
T
X
A
M
S
T
I
N
U
I
Q
t
n
e
r
r
u
C
t
n
e
c
s
e
i
u
Q
V
N
I
I
,
V
1
.
4
=
T
U
O
A
m
0
=
0
3
1
0
0
3
A
V
N
I
I
,
V
0
.
3
=
T
U
O
A
m
0
=
4
.
1
0
.
3
A
m
V
T
U
O
e
g
a
t
l
o
V
t
u
p
t
u
O
d
e
t
a
l
u
g
e
R
V
N
I
I
,
V
1
.
4
=
T
U
O
A
m
0
1
=
9
3
.
3
0
5
.
3
1
6
.
3
V
V
P
O
R
D
e
g
a
t
l
o
V
t
u
o
p
o
r
D
I
T
U
O
A
m
0
3
=
0
0
1
0
0
2
V
m
I
T
U
O
t
n
e
r
r
u
C
t
u
p
t
u
O
0
0
1
0
6
1
A
m
I
D
N
G
t
n
e
r
r
u
C
d
n
u
o
r
G
V
N
I
I
,
V
1
.
4
=
T
U
O
A
m
0
3
=
5
.
1
5
.
3
A
m
g
e
R
e
n
i
L
n
o
i
t
a
l
u
g
e
R
e
n
i
L
V
N
I
V
0
.
4
1
o
t
1
.
4
=
0
1
0
3
V
m
g
e
R
e
n
i
L
n
o
i
t
a
l
u
g
e
R
d
a
o
L
I
T
U
O
A
m
0
6
o
t
1
=
0
2
0
4
V
m
R
R
n
o
i
t
c
e
j
e
R
e
l
p
p
i
R
C
L
I
,
z
H
0
0
4
=
f
,
F
3
.
3
=
T
U
O
A
m
0
1
=
3
6
B
d
V
T
U
O
/
T
e
r
u
t
a
r
e
p
m
e
T
t
n
e
i
c
i
f
f
e
o
C
2
.
0
C
/
V
m
TK71135 ELECTRICAL CHARACTERISTICS
Test Conditions: V
IN
= 4.1 V, T
A
= 25
C, unless otherwise specified.
July 2000 TOKO, Inc.
Page 5
TK711xx
TK71140 ELECTRICAL CHARACTERISTICS
Test Conditions: V
IN
= 4.6 V, T
A
= 25
C, unless otherwise specified.
L
O
B
M
Y
S
R
E
T
E
M
A
R
A
P
S
N
O
I
T
I
D
N
O
C
T
S
E
T
N
I
M
P
Y
T
X
A
M
S
T
I
N
U
I
Q
t
n
e
r
r
u
C
t
n
e
c
s
e
i
u
Q
V
N
I
I
,
V
6
.
4
=
T
U
O
A
m
0
=
0
3
1
0
0
3
A
V
N
I
I
,
V
5
.
3
=
T
U
O
A
m
0
=
4
.
1
0
.
3
A
m
V
T
U
O
e
g
a
t
l
o
V
t
u
p
t
u
O
d
e
t
a
l
u
g
e
R
V
N
I
I
,
V
6
.
4
=
T
U
O
A
m
0
1
=
8
8
.
3
0
0
.
4
2
1
.
4
V
V
P
O
R
D
e
g
a
t
l
o
V
t
u
o
p
o
r
D
I
T
U
O
A
m
0
3
=
0
0
1
0
0
2
V
m
I
T
U
O
t
n
e
r
r
u
C
t
u
p
t
u
O
0
0
1
0
6
1
A
m
I
D
N
G
t
n
e
r
r
u
C
d
n
u
o
r
G
V
N
I
I
,
V
6
.
4
=
T
U
O
A
m
0
3
=
5
.
1
5
.
3
A
m
g
e
R
e
n
i
L
n
o
i
t
a
l
u
g
e
R
e
n
i
L
V
N
I
V
0
.
4
1
o
t
6
.
4
=
0
1
0
3
V
m
g
e
R
e
n
i
L
n
o
i
t
a
l
u
g
e
R
d
a
o
L
I
T
U
O
A
m
0
6
o
t
1
=
0
2
0
4
V
m
R
R
n
o
i
t
c
e
j
e
R
e
l
p
p
i
R
C
L
I
,
z
H
0
0
4
=
f
,
F
3
.
3
=
T
U
O
A
m
0
1
=
3
6
B
d
V
T
U
O
/
T
e
r
u
t
a
r
e
p
m
e
T
t
n
e
i
c
i
f
f
e
o
C
2
.
0
C
/
V
m
L
O
B
M
Y
S
R
E
T
E
M
A
R
A
P
S
N
O
I
T
I
D
N
O
C
T
S
E
T
N
I
M
P
Y
T
X
A
M
S
T
I
N
U
I
Q
t
n
e
r
r
u
C
t
n
e
c
s
e
i
u
Q
V
N
I
I
,
V
1
.
5
=
T
U
O
A
m
0
=
0
3
1
0
0
3
A
V
N
I
I
,
V
0
.
4
=
T
U
O
A
m
0
=
4
.
1
0
.
3
A
m
V
T
U
O
e
g
a
t
l
o
V
t
u
p
t
u
O
d
e
t
a
l
u
g
e
R
V
N
I
I
,
V
1
.
5
=
T
U
O
A
m
0
1
=
6
3
.
4
0
5
.
4
4
6
.
4
V
V
P
O
R
D
e
g
a
t
l
o
V
t
u
o
p
o
r
D
I
T
U
O
A
m
0
3
=
0
0
1
0
0
2
V
m
I
T
U
O
t
n
e
r
r
u
C
t
u
p
t
u
O
0
0
1
0
6
1
A
m
I
D
N
G
t
n
e
r
r
u
C
d
n
u
o
r
G
V
N
I
I
,
V
1
.
5
=
T
U
O
A
m
0
3
=
5
.
1
5
.
3
A
m
g
e
R
e
n
i
L
n
o
i
t
a
l
u
g
e
R
e
n
i
L
V
N
I
V
0
.
4
1
o
t
1
.
5
=
0
1
0
3
V
m
g
e
R
e
n
i
L
n
o
i
t
a
l
u
g
e
R
d
a
o
L
I
T
U
O
A
m
0
6
o
t
1
=
0
2
0
4
V
m
R
R
n
o
i
t
c
e
j
e
R
e
l
p
p
i
R
C
L
I
,
z
H
0
0
4
=
f
,
F
3
.
3
=
T
U
O
A
m
0
1
=
3
6
B
d
V
T
U
O
/
T
e
r
u
t
a
r
e
p
m
e
T
t
n
e
i
c
i
f
f
e
o
C
5
2
.
0
C
/
V
m
TK71145 ELECTRICAL CHARACTERISTICS
Test Conditions: V
IN
= 5.1 V, T
A
= 25
C, unless otherwise specified.
Page 6
July 2000 TOKO, Inc.
TK711xx
L
O
B
M
Y
S
R
E
T
E
M
A
R
A
P
S
N
O
I
T
I
D
N
O
C
T
S
E
T
N
I
M
P
Y
T
X
A
M
S
T
I
N
U
I
Q
t
n
e
r
r
u
C
t
n
e
c
s
e
i
u
Q
V
N
I
I
,
V
6
.
5
=
T
U
O
A
m
0
=
0
3
1
0
0
3
A
V
N
I
I
,
V
0
.
4
=
T
U
O
A
m
0
=
4
.
1
0
.
3
A
m
V
T
U
O
e
g
a
t
l
o
V
t
u
p
t
u
O
d
e
t
a
l
u
g
e
R
V
N
I
I
,
V
6
.
5
=
T
U
O
A
m
0
1
=
5
8
.
4
0
0
.
5
5
1
.
5
V
V
P
O
R
D
e
g
a
t
l
o
V
t
u
o
p
o
r
D
I
T
U
O
A
m
0
3
=
0
0
1
0
0
2
V
m
I
T
U
O
t
n
e
r
r
u
C
t
u
p
t
u
O
0
0
1
0
6
1
A
m
I
D
N
G
t
n
e
r
r
u
C
d
n
u
o
r
G
V
N
I
I
,
V
6
.
5
=
T
U
O
A
m
0
3
=
5
.
1
5
.
3
A
m
g
e
R
e
n
i
L
n
o
i
t
a
l
u
g
e
R
e
n
i
L
V
N
I
V
0
.
4
1
o
t
6
.
5
=
0
1
0
3
V
m
g
e
R
e
n
i
L
n
o
i
t
a
l
u
g
e
R
d
a
o
L
I
T
U
O
A
m
0
6
o
t
1
=
0
2
0
4
V
m
R
R
n
o
i
t
c
e
j
e
R
e
l
p
p
i
R
C
L
I
,
z
H
0
0
4
=
f
,
F
3
.
3
=
T
U
O
A
m
0
1
=
3
6
B
d
V
T
U
O
/
T
e
r
u
t
a
r
e
p
m
e
T
t
n
e
i
c
i
f
f
e
o
C
5
2
.
0
C
/
V
m
TK71150 ELECTRICAL CHARACTERISTICS
Test Conditions: V
IN
= 5.6 V, T
A
= 25
C, unless otherwise specified.
Gen Note: Parameters with min. or max. values are 100% tested at T
A
= 25
C.
July 2000 TOKO, Inc.
Page 7
TK711xx
TEST CIRCUIT
VIN
VOUT
VOUT
IOUT
3.3 F
+
+
0.1 F
GND
IN
VIN
V
OUT
(mV)
50
OUTPUT VOLTAGE
VS.
INPUT VOLTAGE
VIN (V)
0 10 20
-50
30
10
-10
-30
I GND

(
m
A)
5
GROUND CURRENT
VS.
AMBIENT TEMPERATURE
TA (
C)
-50 0 50 100
0
4
3
2
1
IOUT = 60 mA
IOUT = 30 mA
V
DROP
(mV)
500
DROPOUT VOLTAGE
VS.
AMBIENT TEMPERATURE
TA (
C)
-50 0 50 100
0
400
300
200
100
IOUT = 60 mA
IOUT = 30 mA
NOISE

(dB)
-50
NOISE SPECTRUM
FREQUENCY (kHz)
0 500 1000
-100
-150
IOUT = 30 mA
INSTRUMENT NOISE FLOOR
CL = 3.3 F
RR (dB)
0
RIPPLE REJECTION
VS.
FREQUENCY
FREQUENCY (Hz)
100 1 k 10 k 100 k
-50
-100
CL = 1 F
CL = 10 F
V
OUT
LINE TRANSIENT RESPONSE
V
IN
V
OUT
(20 mV / DIV)
VOUT(TYP) + 2 V
TIME (50 s / DIV)
VOUT(TYP) + 1 V
TYPICAL PERFORMANCE CHARACTERISTICS
T
A
= 25
C, unless otherwise specified.
Page 8
July 2000 TOKO, Inc.
TK711xx
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)
T
A
= 25
C, unless otherwise specified.
TK71120
V
OUT
LOAD TRANSIENT RESPONSE
I OUT
V
OUT
(400 mV / DIV)
IOUT = 30 mA
0 mA
CL = 3.3 F
CL = 1.0 F
TIME (50 s / DIV)
I GND

(
m
A)
10
GROUND CURRENT
VS.
OUTPUT CURRENT
IOUT (mA)
0 50 100
0
8
6
4
2
V
OUT

(50
m
V

/

DIV)
OUTPUT VOLTAGE
VS.
INPUT VOLTAGE
VIN (100 mV / DIV)
IOUT = 0 mA
30 mA
60 mA
VIN = VOUT
VOUT(TYP) + 1 V
V
OUT
(V)
2.05
OUTPUT VOLTAGE
VS.
OUTPUT CURRENT
IOUT (mA)
0 50 100
1.95
2.00
I Q
(mA)
2
QUIESCENT CURRENT
VS.
INPUT VOLTAGE
VIN (V)
0 5 10
0
1
IOUT = 0 mA
I OUT
(mA)
150
OUTPUT CURRENT
VS.
AMBIENT TEMPERATURE
TA (
C)
-50 0 50 100
50
100
V
DROP
(mV)
500
DROPOUT VOLTAGE
VS.
OUTPUT CURRENT
IOUT (mA)
0 50 100
0
200
400
300
100
V
OUT
(V)
5
SHORT CIRCUIT PROTECTION
IOUT (mA)
0 100 200
0
2
4
3
1
V
OUT
(V)
2.05
OUTPUT VOLTAGE
VS.
AMBIENT TEMPERATURE
TA (
C)
-50 0 50 100
1.95
2.00
July 2000 TOKO, Inc.
Page 9
TK711xx
V
OUT
(V)
2.55
OUTPUT VOLTAGE
VS.
OUTPUT CURRENT
IOUT (mA)
0 50 100
2.45
2.50
I Q
(mA)
2
QUIESCENT CURRENT
VS.
INPUT VOLTAGE
VIN (V)
0 5 10
0
1
IOUT = 0 mA
I OUT
(mA)
150
OUTPUT CURRENT
VS.
AMBIENT TEMPERATURE
TA (
C)
-50 0 50 100
50
100
V
DROP
(mV)
500
DROPOUT VOLTAGE
VS.
OUTPUT CURRENT
IOUT (mA)
0 50 100
0
200
400
300
100
V
OUT
(V)
5
SHORT CIRCUIT PROTECTION
IOUT (mA)
0 100 200
0
2
4
3
1
V
OUT
(V)
2.55
OUTPUT VOLTAGE
VS.
AMBIENT TEMPERATURE
TA (
C)
-50 0 50 100
2.45
2.50
V
OUT
(V)
3.05
OUTPUT VOLTAGE
VS.
OUTPUT CURRENT
IOUT (mA)
0 50 100
2.95
3.00
I Q
(mA)
2
QUIESCENT CURRENT
VS.
INPUT VOLTAGE
VIN (V)
0 5 10
0
1
IOUT = 0 mA
I OUT
(mA)
150
OUTPUT CURRENT
VS.
AMBIENT TEMPERATURE
TA (
C)
-50 0 50 100
50
100
TK71125
TK71130
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)
T
A
= 25
C, unless otherwise specified.
Page 10
July 2000 TOKO, Inc.
TK711xx
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)
T
A
= 25
C, unless otherwise specified.
V
DROP
(mV)
500
DROPOUT VOLTAGE
VS.
OUTPUT CURRENT
IOUT (mA)
0 50 100
0
200
400
300
100
V
OUT
(V)
5
SHORT CIRCUIT PROTECTION
IOUT (mA)
0 100 200
0
2
4
3
1
V
OUT
(V)
3.05
OUTPUT VOLTAGE
VS.
AMBIENT TEMPERATURE
TA (
C)
-50 0 50 100
2.95
3.00
V
OUT
(V)
3.35
OUTPUT VOLTAGE
VS.
OUTPUT CURRENT
IOUT (mA)
0 50 100
3.25
3.30
I Q
(mA)
2
QUIESCENT CURRENT
VS.
INPUT VOLTAGE
VIN (V)
0 5 10
0
1
IOUT = 0 mA
I OUT
(mA)
150
OUTPUT CURRENT
VS.
AMBIENT TEMPERATURE
TA (
C)
-50 0 50 100
50
100
V
DROP
(mV)
500
DROPOUT VOLTAGE
VS.
OUTPUT CURRENT
IOUT (mA)
0 50 100
0
200
400
300
100
V
OUT
(V)
5
SHORT CIRCUIT PROTECTION
IOUT (mA)
0 100 200
0
2
4
3
1
V
OUT
(V)
3.35
OUTPUT VOLTAGE
VS.
AMBIENT TEMPERATURE
TA (
C)
-50 0 50 100
3.25
3.30
TK71130 (CONT.)
TK71133
July 2000 TOKO, Inc.
Page 11
TK711xx
V
OUT
(V)
3.55
OUTPUT VOLTAGE
VS.
OUTPUT CURRENT
IOUT (mA)
0 50 100
3.45
3.50
I Q
(mA)
2
QUIESCENT CURRENT
VS.
INPUT VOLTAGE
VIN (V)
0 5 10
0
1
IOUT = 0 mA
I OUT
(mA)
150
OUTPUT CURRENT
VS.
AMBIENT TEMPERATURE
TA (
C)
-50 0 50 100
50
100
V
DROP
(mV)
500
DROPOUT VOLTAGE
VS.
OUTPUT CURRENT
IOUT (mA)
0 50 100
0
200
400
300
100
V
OUT
(V)
5
SHORT CIRCUIT PROTECTION
IOUT (mA)
0 100 200
0
2
4
3
1
V
OUT
(V)
3.55
OUTPUT VOLTAGE
VS.
AMBIENT TEMPERATURE
TA (
C)
-50 0 50 100
3.45
3.50
V
OUT
(V)
4.05
OUTPUT VOLTAGE
VS.
OUTPUT CURRENT
IOUT (mA)
0 50 100
3.95
4.00
I Q
(mA)
2
QUIESCENT CURRENT
VS.
INPUT VOLTAGE
VIN (V)
0 5 10
0
1
IOUT = 0 mA
I OUT
(mA)
150
OUTPUT CURRENT
VS.
AMBIENT TEMPERATURE
TA (
C)
-50 0 50 100
50
100
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)
T
A
= 25
C, unless otherwise specified.
TK71135
TK71140
Page 12
July 2000 TOKO, Inc.
TK711xx
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)
T
A
= 25
C, unless otherwise specified.
V
DROP
(mV)
500
DROPOUT VOLTAGE
VS.
OUTPUT CURRENT
IOUT (mA)
0 50 100
0
200
400
300
100
V
OUT
(V)
5
SHORT CIRCUIT PROTECTION
IOUT (mA)
0 100 200
0
2
4
3
1
V
OUT
(V)
4.05
OUTPUT VOLTAGE
VS.
AMBIENT TEMPERATURE
TA (
C)
-50 0 50 100
3.95
4.00
V
OUT
(V)
4.55
OUTPUT VOLTAGE
VS.
OUTPUT CURRENT
IOUT (mA)
0 50 100
4.45
4.50
I Q
(mA)
2
QUIESCENT CURRENT
VS.
INPUT VOLTAGE
VIN (V)
0 5 10
0
1
IOUT = 0 mA
I OUT
(mA)
150
OUTPUT CURRENT
VS.
AMBIENT TEMPERATURE
TA (
C)
-50 0 50 100
50
100
V
DROP
(mV)
500
DROPOUT VOLTAGE
VS.
OUTPUT CURRENT
IOUT (mA)
0 50 100
0
200
400
300
100
V
OUT
(V)
5
SHORT CIRCUIT PROTECTION
IOUT (mA)
0 100 200
0
2
4
3
1
V
OUT
(V)
4.55
OUTPUT VOLTAGE
VS.
AMBIENT TEMPERATURE
TA (
C)
-50 0 50 100
4.45
4.50
TK71140 (CONT.)
TK71145
July 2000 TOKO, Inc.
Page 13
TK711xx
V
OUT
(V)
5.05
OUTPUT VOLTAGE
VS.
OUTPUT CURRENT
IOUT (mA)
0 50 100
4.95
5.00
I Q
(mA)
2
QUIESCENT CURRENT
VS.
INPUT VOLTAGE
VIN (V)
0 5 10
0
1
IOUT = 0 mA
I OUT
(mA)
150
OUTPUT CURRENT
VS.
AMBIENT TEMPERATURE
TA (
C)
-50 0 50 100
50
100
V
DROP
(mV)
500
DROPOUT VOLTAGE
VS.
OUTPUT CURRENT
IOUT (mA)
0 50 100
0
200
400
300
100
V
OUT
(V)
5
SHORT CIRCUIT PROTECTION
IOUT (mA)
0 100 200
0
2
4
3
1
V
OUT
(V)
5.05
OUTPUT VOLTAGE
VS.
AMBIENT TEMPERATURE
TA (
C)
-50 0 50 100
4.95
5.00
TK71150
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)
T
A
= 25
C, unless otherwise specified.
Page 14
July 2000 TOKO, Inc.
TK711xx
DEFINITION AND EXPLANATION OF TECHNICAL TERMS
LINE REGULATION (LINE REG)
Line regulation is the ability of the regulator to maintain a
constant output voltage as the input voltage changes.
LOAD REGULATION (LOAD REG)
Load regulation is the ability of the regulator to maintain a
constant output voltage as the load current changes. It is
a pulsed measurement to minimize temperature effects.
The load regulation is specified an output current step
condition of 1 mA to 60 mA.
QUIESCENT CURRENT (I
Q
)
The quiescent current is the current which flows through
the ground terminal under no load conditions (I
OUT
= 0 mA).
GROUND CURRENT (I
GND
)
Ground current is the current which flows through the
ground pin(s). It is defined as I
IN
- I
OUT
, excluding I
CONT
.
DROPOUT VOLTAGE (V
DROP
)
This is a measure of how well the regulator performs as the
input voltage decreases. The smaller the number, the
further the input voltage can decrease before regulation
problems occur. Nominal output voltage is first measured
when V
IN
= V
OUT
+ 1 at a chosen load current. When the
output voltage has dropped 100 mV from the nominal, V
IN
- V
O
is the dropout voltage. This voltage is affected by load
current and junction temperature.
OUTPUT NOISE VOLTAGE
This is the effective AC voltage that occurs on the output
voltage under the condition where the input noise is low
and with a given load, filter capacitor, and frequency
range.
THERMAL PROTECTION
This is an internal feature which turns the regulator off
when the junction temperature rises above 150
C. After
the regulator turns off, the temperature drops and the
regulator output turns back on. Under certain conditions,
the output waveform may appear to be an oscillation as the
output turns off and on and back again in succession.
PACKAGE POWER DISSIPATION (P
D
)
This is the power dissipation level at which the thermal
sensor is activated. The IC contains an internal thermal
sensor which monitors the junction temperature. When the
junction temperature exceeds the monitor threshold of
150
C, the IC is shut down. The junction temperature
rises as the difference between the input power (V
IN
x I
IN
)
and the output power (V
OUT
x I
OUT
) increases. The rate of
temperature rise is greatly affected by the mounting pad
configuration on the PCB, the board material, and the
ambient temperature. When the IC mounting has good
thermal conductivity, the junction temperature will be low
even if the power dissipation is great. When mounted on
the mounting pad, the power dissipation of the TO-92 is
increased to 500 mW. For operation at ambient
temperatures over 25
C, the power dissipation of the TO-
92 device should be derated at 4.0 mW/
C. To determine
the power dissipation for shutdown when mounted, attach
the device on the actual PCB and deliberately increase the
output current (or raise the input voltage) until the thermal
protection circuit is activated. Calculate the power
dissipation of the device by subtracting the output power
from the input power. These measurements should allow
for the ambient temperature of the PCB. The value obtained
from P
D
/(150
C - T
A
) is the derating factor. The PCB
mounting pad should provide maximum thermal
conductivity in order to maintain low device temperatures.
As a general rule, the lower the temperature, the better the
reliability of the device. The thermal resistance when
mounted is expressed as follows:
T
j
= 0
jA
x P
D
+ T
A
For Toko ICs, the internal limit for junction temperature is
150
C. If the ambient temperature (T
A
) is 25
C, then:
150
C = 0
jA
x P
D
+ 25
C
0
jA
= 125
C / P
D
P
D
is the value when the thermal sensor is activated. A
simple way to determine P
D
is to calculate V
IN
x I
IN
when
the output side is shorted. Input current gradually falls as
temperature rises. You should use the value when thermal
equilibrium is reached.
July 2000 TOKO, Inc.
Page 15
TK711xx
TERMS AND DEFINITIONS (CONT.)
The range of usable currents can also be found from the
graph below.
Procedure:
1) Find P
D
2) P
D1
is taken to be P
D
x (~ 0.8 - 0.9)
3) Plot P
D1
against 25
C
4) Connect P
D1
to the point corresponding to the 150
C
with a straight line.
5) In design, take a vertical line from the maximum
operating temperature (e.g., 75
C) to the derating
curve.
6) Read off the value of P
D
against the point at which the
vertical line intersects the derating curve. This is taken
as the maximum power dissipation, D
PD
.
The maximum operating current is:
I
OUT
= (D
PD
/ (V
IN(MAX)
-
V
OUT
)
INPUT/OUTPUT DECOUPLING CAPACITOR
CONSIDERATIONS
Voltage regulators require input and output decoupling
capacitors. The required value of these capacitors vary
with application. Capacitors made by different
manufacturers can have different characteristics,
particularly with regard to high frequencies and Equivalent
Series Resistance (ESR) over temperature. The type of
capacitor is also important. For example, a 4.7
F aluminum
electrolytic may be required for a certain application. If a
tantalum capacitor is used, a lower value of 2.2
F would
be adequate. It is important to consider the temperature
characteristics of the decoupling capacitors. While Toko
regulators are designed to operate as low as -40
C, many
capacitors will not operate properly at this temperature.
The capacitance of aluminum electrolytic capacitors may
decrease to 0 at low temperatures. This may cause
oscillation on the output of the regulator since some
capacitance is required to guarantee stability. Thus, it is
important to consider the characteristics of the capacitor
over temperature when selecting decoupling capacitors.
The ESR is another important parameter. The ESR will
increase with temperature but low ESR capacitors are
often larger and more costly. In general, tantalum capacitors
offer lower ESR than aluminum electrolytic, but new low
ESR aluminum electrolytic capacitors are now available
from several manufacturers. Usually a bench test is
sufficient to determine the minimum capacitance required
for a particular application. After taking thermal
characteristics and tolerance into account, the minimum
capacitance value should be approximately two times this
value. The recommended minimum capacitance for the
TK711xxN is 2.1
F for a tantalum capacitor or 3.3
F for
an aluminum electrolytic. Please note that linear regulators
with a low dropout voltage have high internal loop gains
which require care in guarding against oscillation caused
by insufficient decoupling capacitance. The use of high
quality decoupling capacitors suited for your application
will guarantee proper operation of the circuit. Pay attention
to temperature characteristics of the capacitor, especially
the increase of ESR and decrease of capacitance in low
temperatures. Oscillation, reduction of ripple rejection and
increased noise may occur in some cases if the proper
capacitor is not used. An output capacitor more than 1.0
F
is required to maintain stability. The standard test condition
is 3.3
F (T
A
= 25
C).
PD
DPD
25
50
75
150
(mW)
TA (
C)
3
6
5
4
0
50
100
TA (
C)
P
D
(mW)
150
0
600
1000
200
400
800
MOUNTED
TO-92 POWER DISSIPATION CURVE
APPLICATION INFORMATION
Page 16
July 2000 TOKO, Inc.
TK711xx
Marking Information
Marking
TK71120
120
TK71125
125
TK71130
130
TK71133
133
TK71135
135
TK71140
140
TK71145
145
TK71150
150
(1.4)
0.45
1.27
1.27
0.45
e
e
13.5
4.8
5.0
R2.4
M
0.25
3.8
1
2
3
Dimensions are shown in millimeters
Tolerance: x.x =
0.2 mm (unless otherwise specified)
+ 0.5
+0.15
-0.05
+0.15
-0.05
Marking
Lot Number
TO-92
PACKAGE OUTLINE
Printed in the USA
1999 Toko, Inc.
All Rights Reserved
TOKO AMERICA REGIONAL OFFICES
Toko America, Inc. Headquarters
1250 Feehanville Drive, Mount Prospect, Illinois 60056
Tel: (847) 297-0070 Fax: (847) 699-7864
IC-160-TK711xx
0798O0.0K
Visit our Internet site at http://www.tokoam.com
The information furnished by TOKO, Inc. is believed to be accurate and reliable. However, TOKO reserves the right to make changes or improvements in the design, specification or manufacture of its
products without further notice. TOKO does not assume any liability arising from the application or use of any product or circuit described herein, nor for any infringements of patents or other rights of
third parties which may result from the use of its products. No license is granted by implication or otherwise under any patent or patent rights of TOKO, Inc.
Western Regional Office
Toko America, Inc.
2480 North First Street , Suite 260
San Jose, CA 95131
Tel: (408) 432-8281
Fax: (408) 943-9790
Midwest Regional Office
Toko America, Inc.
1250 Feehanville Drive
Mount Prospect, IL 60056
Tel: (847) 297-0070
Fax: (847) 699-7864
Eastern Regional Office
Toko America, Inc.
107 Mill Plain Road
Danbury, CT 06811
Tel: (203) 748-6871
Fax: (203) 797-1223
Semiconductor Technical Support
Toko Design Center
4755 Forge Road
Colorado Springs, CO 80907
Tel: (719) 528-2200
Fax: (719) 528-2375