TA1360AFG
2003-01-21
1
TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic
TA1360AFG
YCbCr/YPbPr Signal and Sync Processor for Digital TV, Progressive Scan TV and Double
Scan TV
The TA1360AFG integrates an analog component signal
(YCbCr/YPbPr) processor and sync processor in a 80-pin QFP
plastic package. The IC is ideal for digital TVs, progressive TVs,
and double scan TVs.
The luminance block and the color difference block incorporate
the high performance signal processing circuits. The sync
processor block supports 525I/60, 625I/50, 525P/60, 625P/50,
1125I/50, 1125I/60, 750P/60, (750P/50), PAL100 Hz, NTSC120 Hz,
and SVGA/60(VESA).
The TA1360AFG incorporates the I
2
C bus. The device can
control various functions via the bus line.
Features
Luminance Block
Black stretch circuit and DC restoration rate correction circuit
Dynamic correction circuit (gray scale correction)
SRT (LTI)
Y group delay correction (shoot balance correction)
High-bright color circuit
Color detail enhancer (CDE)
White pulse limiter (WPL)
VSM output
Color difference Block
Fresh color correction
Dynamic Y/C correction circuit
Color SRT (CTI)
Color circuit
Green stretch
Blue stretch
Text Block
OSD blending SW
ACB (only black level)
Two analog RGB inputs
Synchronization Block
Horizontal sync (15.75 k, 28.125 k, 31.5 k, 33.75 k, 37.9 k, 45 kHz)
Vertical sync (525I/P, 625I/P, 750P, 1125I/P, PAL 100 Hz/NTSC 120 Hz
2- and 3-level sync separator circuit
HD/VD input (positive and negative polarities)
Copy guard
Vertical blanking
Weight: 1.6 g (typ.)
TA1360AFG
2003-01-21
2
Block Diagram
DAC2
(ACB PLUSE)
H-FREQ SW2
AFC FILTER
H CURVE
CORRECTION
DE
F
/
D
A
C
V
CC
SW
HORIZONTAL
PHASE
I
2
CBUS
DECODER
H
FREQUENCY
SW
CLAMP
H DUTY
I
2
L
V
DD
I
2
L
GND
Y1
I
N
C
b1
/P
b1
IN
C
r1
/P
r1
IN
DE
F
/
D
A
C
GND
VP OUT
Y
HD
PbPr/YCbCr
YUV CONVERT
SW
H CURVE
CORRECTION
SYNC
SEPA
HD IN SW
V
INTEGRAL
VD IN SW
RGB OUT
H C/D
HVCO
H-AFC
FBP/BLK
H-RAMP
2
f
H
V C/D
V
FREQUENCY
SW
ACB
PULSE
HD
POLARITY
CLAMP
PULSE
EXT
V-BLK
H-BLK
V-BLK
V-CLP
DRIVE
CLAMP
BLK
SW
I
K
CUT OFF
RGB
BRIGHTNESS
CLAMP
RGB
CONTRAST
MIXER SW/
BLUE BACK
RGB
MATRIX
CLAMP
WP BLUE
HALF TONE
/C MUTE
COLOR
G-Y
MATRIX
RELATIVE
PHASE/
AMPLITUDE
H-BPP
V-BPP
UNI-COLOR
COLOR
CLAMP
PULSE
CP
SW
EXT
CP
CP/BPP
SYNC OUT
BPP
SW
EXT
BPP
GREEN
STRETCH
TINT
Y/C LEVEL
COMP
SW
IQ
UV
CONVERTER
UV
IQ
CONVERTER
FRESH
COLOR
CLAMP
Y2
I
N
C
b2
/P
b2
IN
C
r2
/P
r2
IN
BLACK
STRETCH
BLACK PEAK
DETECT
DARK
DET
BLACK LEVEL
CORECTION
DYNAMIC
DC REST
SHARPNESS
DELAY LINE
APL
DETECT
GROUP
DELAY
CORRECTION
SRT
WPL
CLAMP
UNI-
COLOR
SUB-
CONTRAST
WPS
HALF TONE
/Y MUTE
HI-BRIGHT
COLOR
Yout-
COLOR
PEAK
DETECT
SHARPNESS
CONTROL
Y DETAIL
CONTROL
CDE
BRIGHTNESS
ABCL
AMP
VSM
MUTE
VSM AMP
HPF
OSD
AMP
CLAMP
OSD
ACL SW
Y
M
SW
DARK AREA
DET FILTER
BPH FILTER
APL FILTER
ABCL IN
COLOR
LIMITER
ANALOG
OSD G IN
ANALOG
OSD R IN
VSM OUT
ANALOG
OSD B IN
Y
S
1
(ANALOG OSD)
Y
S
2
(ANALOG OSD)
I
K
I
N
AN
AL
O
G
R
I
N
R
S/
H
G
S
/
H
B
S/H
AN
AL
O
G
GI
N
AN
AL
O
G
B IN
Y
S
3
(A
NA
LOG
RGB
)
Y
M
/P-
MU
T
E
/
B
L
K
Y/C V
CC
RGB GND
Y/C GND
RGB V
CC
SCL
SDA
CP OUT
SCP IN
HVCO
H-OUT
FBP IN
VP OUT
SYNC IN
VD IN
HD IN
R OUT
G OUT
B OUT
CP2
CP2
CP1
DAC2
DAC1
CP2
OR
S/H
CP1
SW
45
38
31
27
68 67 66
63
61
60
65
75
10
16
28
30
34
23
47
37
49
41
42
44
40
39
35
53
50
52
12
13
14
19
21
80
1
77
18
58
78
74
71
70
8
4
6
7
24
25
26
2
79
+
+
+
+
Y
B-Y
G-Y
R-Y
Y
V
U
LIGHT
DET
64
DL/
COLOR SRT
VSM FILTER
57
BLUE
STRETCH
CP2
CP2
CP2
DAC1
(SYNC OUT)
H-FREQ SW1 55
LIGHT AREA
DET FILTER
TA1360AFG
2003-01-21
3
Pin Assignment
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Y
S
2
(ANALOG OSD)
NC
R S/H
NC
G S/H
B S/H
I
K
IN
NC
RGB GND
NC
R OUT
G OUT
B OUT
NC
RGB V
CC
NC
ANALOG OSD R IN
ANALOG OSD G IN
NC
ANALOG OSD B IN
NC
DAC2 (ACB PULSE)
ANALOG R IN
LIGHT AREA
DET FILTER
Y2 IN
NC
C
b2
/P
b2
IN
C
r2
/P
r2
IN
NC
COLOR LIMITER
VSM FILTER
NC
H-FREQ SW1
NC
SYNC IN
VD IN
NC
HD IN
SCP IN
NC
CP OUT
NC
DEF/DAC V
CC
AFC FILTER
NC
HVCO
H-FREQUENCY
SW2
Y1
I
N
NC
BPH
F
IL
TE
R
DA
RK
A
REA
DE
T
F
I
LT
E
R
NC
NC
APL
F
IL
TE
R
Y/C
V
CC
NC
VSM
O
U
T
ABC
L
IN
Y
M
/P-
MU
T
E
/
B
L
K
Y
S
1
(A
NA
LOG
O
S
D
)
FBP
IN
DE
F
/
D
A
C
GND
H-OUT
NC
VP
O
U
T
DA
C1
(
SYNC
OUT
)
NC
NC
I
2
L
V
DD
SC
L
NC
SD
A
I
2
L
GND
AN
AL
O
G
GI
N
Y
S
3
(ANALOG RGB)
A
N
A
L
OG
BI
N
H
COURV
E
CORRE
CT
I
O
N
Y/C
GND
C
r1
/P
r1
IN
C
b1
/P
b1
IN
TA1360AFG
TA1360AFG
2003-01-21
4
Pin Functions
Pin
No.
Pin Name
Function
Interface Circuit
Input Signal/Output Signal
1
80
Y
S
2
(analog OSD)
Y
S
1
(analog OSD)
Switches internal RGB and OSD
input signals.
The blend ratio of internal RGB
and OSD signals can be adjusted
according to applying voltage to
pins Y
S
1 and Y
S
2.
VSM output is muted when Y
S
1 or
Y
S
2 pin is set to High.
Y
S
2 Y
S
1
Blend ratio
Int RGB:
OSD RGB
L
L
10:0
H
L
7:3
L
H
5:5
H
H
0:10
0 to 0.5 V
: Internal
1.1 V to 1.7 V : VSM Mute
2.9 V to 9 V : OSD, VSM Mute
2
Y
S
3
(analog RGB)
Switches internal RGB and
external analog RGB input.
VSM output is muted when analog
RGB is selected.
0 to 0.5 V : Internal
1.5 V to 9 V : Analog RGB, VSM
Mute
3
NC
This pin is not used.
Connect to GND.
4
6
7
R S/H
G S/H
B S/H
S/H (sample-and-hold) pin.
In ACB Mode, connect 2.2-
F
capacitor. In CUT-OFF Mode,
connect 0.01-
F capacitor.
DC
5
NC
This pin is not used.
Connect to GND.
8
I
K
IN
Inputs feedback signal from CRT.
(BLK level should be 0 to 3 V.)
When ACB function is not used,
connect this pin to RGB V
CC
pin.
or RGB V
CC
9
NC
This pin is not used.
Connect to GND.
10
RGB GND
GND pin for text/RGB block
11
NC
This pin is not used.
Connect to GND.
1 Vp-p (typ.) R
G
B
0~3 V
16
8
10
1 k
16
10
4
6
7
500
1 k
5 k
3
pF
3
V
16
2
10
300
300
50
k
16
10
1
80
300
50
k
TA1360AFG
2003-01-21
5
Pin
No.
Pin Name
Function
Interface Circuit
Input Signal/Output Signal
12
13
14
R OUT
G OUT
B OUT
Outputs R/G/B signal.
Recommended output amplitude:
100 IRE
= 2.3 Vp-p
100 IRE: 2.3 Vp-p
Conditions:
UNI-COLOR
= max
SUB-CONT
= Cent
Y IN
= 0.7 Vp-p
15
NC
This pin is not used.
Connect to GND.
16
RGB V
CC
V
CC
pin for text/RGB block.
See "Maximum Ratings" about the
supply voltage.
17
NC
This pin is not used.
Connect to GND.
18
19
21
ANALOG OSD
R IN
ANALOG OSD
G IN
ANALOG OSD
B IN
Inputs analog OSD signal via
clamp capacitor.
100 IRE: 0.7 Vp-p (not including
sync)
20
22
NC
This pin is not used.
Connect to GND.
23
DAC2
(ACB pulse)
Outputs 1-bit DAC or pulse over
ACB period.
Open-collector output.
DC or ACB PULSE
24
25
26
ANALOG R IN
ANALOG G IN
ANALOG B IN
Inputs analog R/G/B signal via
clamp capacitor.
100 IRE: 0.7 Vp-p (not including
sync)
27
I
2
L GND
GND pin for I
2
L block
16
10
1 k
24
25
26
1 k
1 k
16
23
10
500
16
10
1 k
18
19
21
1 k
1 k
16
10
12
13
14
200
100
2.
5
m
A
TA1360AFG
2003-01-21
6
Pin
No.
Pin Name
Function
Interface Circuit
Input Signal/Output Signal
28
SDA
SDA pin for I
2
C BUS
29
NC
This pin is not used.
Connect to GND.
30
SCL
SCL pin for I
2
C BUS
31
I
2
L V
DD
V
DD
pin for I
2
L block. Connects 2
V (typ.).
Supply power via zener diode
through resistor from pin 45. (See
"Application Circuit")
32
33
NC
This pin is not used.
Connect to GND.
34
DAC1
(SYNC OUT)
Outputs 1-bit DAC or separated
SYNC.
Open-collector output.
DC or SYNC OUT
35
VP OUT
Outputs vertical pulse.
Applying current to this pin,
performs external blanking by
OR-ing with internal blanking.
Note: Changing H-position varies
VP output width. Use the
start phase only for VP
output.
VP output:
V-BLK input current: 780
A to 1 mA
36
NC
This pin is not used.
Connect to GND.
45
38
35
200
200
A
27
5 V
0 V
Start phase
45
38
34
500
27
45
30
5 k
38
SCL
2.
25
V
27
45
28
27
5 k
38
SDA
2.
25
V
50
ACK
TA1360AFG
2003-01-21
7
Pin
No.
Pin Name
Function
Interface Circuit
Input Signal/Output Signal
37
H-OUT
Horizontal output pin.
Open-collector output.
38
DEF/DAC GND
GND pin for DEF/DAC block
39
FBP IN
Inputs FBP for horizontal AFC.
Sets H-BLK width.
40
H CURVE
CORRECTION
Adjusts screen curve at high
voltage fluctuation. Input AC
component of high voltage
fluctuation.
When not used, connect 0.01-
F
capacitor between this pin and
GND.
DC
41
H-FREQ SW2
Switches horizontal frequency
(Switch 2).
Leave this pin open when
horizontal frequency is switched
by Bus controlling. Controlling this
pin prevails over Bus control.
(Refer to Table 1: Bus control
function.)
When this IC is used for CRT,
frequency of horizontal output (pin
37) is controlled according to
voltage of this pin. DC voltage that
is generated by dividing resistor of
DEF V
CC
(pin 45) should be used
to control this pin.
At BUS control (horizontal
frequency) : output voltage value
28 k/15 kHz
: DC 9 V
31 kHz
: DC 6 V
33 kHz
: DC 3 V
37 k/45 kHz
: DC 0 V
At pin 22 control, horizontal
frequency and input voltage value
0 to 1.0 V
: 37 k/45 kHz
2.0 V to 4.0 V
: 33 kHz
5.0 V to 7.0 V
: 31 kHz
8.0 V to 9.0 V
: 28 k/15 kHz
42
HVCO
Connects ceramic oscillator for
horizontal oscillation.
Use Murata
"CSBLA503KECZF30".
43
NC
This pin is not used.
Connect to GND.
45
37
38
5 k
45
38
41
1 k
30 k
1
k
20
pF
60
k
60
k
60
k
16
k
15
k
4.5 V
7.5 V
1.5 V
40
1 k
65
k
45
38
25
k
50
k
130
k
6.5 V
39
45
38
500
20 k
5
V
2.
25
V
30
k
max: 9 V
H-AFC threshold
: 5.3 V
BLK threshold
: 2.3 V
45
42
38
2
k
10 k
1 k
1
k
TA1360AFG
2003-01-21
8
Pin
No.
Pin Name
Function
Interface Circuit
Input Signal/Output Signal
44
AFC FILTER
Connects filter for detecting AFC.
DC
45
DEF/DAC V
CC
V
CC
pin for DEF/DAC block.
See "Maximum Ratings" about the
supply voltage.
46
NC
This pin is not used.
Connect to GND.
47
CP OUT
Outputs internal clamp pulse
(CP).
48
NC
This pin is not used.
Connect to GND.
49
SCP IN
Inputs SCP from up converter.
Input signals are clamp pulse
(CP) and black peak detection
stop pulse (BPP).
2.2 V to 2.8 V : BPP
4.2 V to 9 V : CP
50
HD IN
Inputs horizontal sync HD signal.
Inputs positive- or
negative-polarity signals.
or
51
NC
This pin is not used.
Connect to GND.
52
VD IN
Inputs vertical sync VD signal.
Inputs positive- or
negative-polarity signals.
or
45
50
38
1 k
50
k
Threshold
: 0.75 V
0 V
Threshold
: 0.75 V
0 V
5 V
0 V
45
47
38
2.
5
k
200
45
44
38
300
30 k
7.
5
k
6.
3
V
VCO
45
52
38
1 k
45
k
Threshold
: 0.75 V
0 V
Threshold
: 0.75 V
0 V
45
49
38
5 k
50
k
TA1360AFG
2003-01-21
9
Pin
No.
Pin Name
Function
Interface Circuit
Input Signal/Output Signal
53
SYNC IN
Inputs Y signal with sync signal
via clamp capacitor.
White 100%: 1 V
p-p
or
54
NC
This pin is not used.
Connect to GND.
55
H-FREQ SW1
Switches horizontal frequency
(Switch 1).
Leave this pin open when
horizontal frequency is switched
by Bus controlling.
Controlling this pin prevails over
Bus control. (Refer to Table 1:
Bus control function.)
When this IC is used for CRT,
connect this pin to DEF V
CC
(pin
45) or DEF GND (pin 38). If it is
not necessary to control this pin
on CRT, connect this pin directly
to DEF VCC or DEF GND on the
PCB.
DEF V
CC
or DEF GND
56
NC
This pin is not used.
Connect to GND.
57
VSM FILTER
Connects VSM output filter.
Please connect 0.01-
F capacitor
between this pin and GND.
DC
58
COLOR LIMITER
Connects filter for detecting color
limit.
DC
59
NC
This pin is not used.
Connect to GND.
45
55
38
1 k
50
A
50
k
30
k
45
53
38
1
k
1 k
60
k
1 k
1.
6
m
A
16
57
65
1
k
200
200
77
1
k
16
58
65
5 k
7
A
TA1360AFG
2003-01-21
10
Pin
No.
Pin Name
Function
Interface Circuit
Input Signal/Output Signal
60
C
r2
/P
r2
IN
Inputs C
r2
/P
r2
signal via clamp
capacitor.
700 mVp-p700 mVp-p at 100% color
bar for C
r1
/P
r1
61
C
b2
/P
b2
IN
Inputs C
b2
/P
b2
signal via clamp
capacitor.
700 mVp-p at 100% color bar for
C
b1
/P
b1
63
Y2 IN
Inputs Y2 signal via clamp
capacitor.
1 Vp-p (including sync) at 100%
color bar
or
62
NC
This pin is not used.
Connect to GND.
64
LIGHT AREA
DET FILTER
Connects filter for detecting light
area.
Voltage of this pin controls
dynamic
circuit gain for light
area.
DC
65
Y/C GND
GND pin for Y/C block
66
C
r1
/P
r1
IN
Inputs C
r1
/P
r1
signal via clamp
capacitor.
700 mVp-p700 mVp-p at 100% color
bar for C
r1
/P
r1
67
C
b1
/P
b1
IN
Inputs C
b1
/P
b1
signal via clamp
capacitor.
700 mVp-p at 100% color bar for
C
b1
/P
b1
68
Y1 IN
Inputs Y1 signal via clamp
capacitor.
1 Vp-p (including sync) at 100%
color bar
or
69
NC
This pin is not used.
Connect to GND.
16
65
1 k
1 k
5 k
66
67
68
75
64
65
100
k
5 k
1 k
1
k
16
65
1 k
1 k
5 k
60
61
63
TA1360AFG
2003-01-21
11
Pin
No.
Pin Name
Function
Interface Circuit
Input Signal/Output Signal
70
BPH FILTER
Connects filter for detecting black
peak.
Voltage of this pin controls black
stretch gain.
Leaving Y open and setting the
test circuit SW 2
= C enable to
monitor H/V-BPP
(black-stretch-stop pulse) width.
DC
71
DARK AREA DET
FILTER
Connects filter for detecting dark
area.
Voltage of this pin controls
dynamic
circuit gain for dark
area.
DC
72
73
NC
This pin is not used.
Connect to GND.
74
APL FILTER
Connects filter for correcting DC
restoration rate.
Leaving this pin open enables to
monitor Y signal after black
stretch and dynamic
.
75
Y/C V
CC
V
CC
pin for Y/C block.
See "Maximum Ratings" about the
supply voltage.
76
NC
This pin is not used.
Connect to GND.
77
VSM OUT
Outputs Y signal for VSM that
passed through HPF circuit (first
differential circuit).
Output signals are muted
according to pins 1, 2, and 80.
See pin 57.
78
ABCL IN
Inputs ABL and ACL signals.
Sets gain and start point of ABL
and dynamic ABL signal
according to bus controlling.
DC
75
70
65
1
k
200
4
k
1
k
1
k
5
V
75
71
65
100
k
5 k
1 k
1
k
78
10
16
30 k
5 k
7.
05
V
75
74
65
1 k
40 k
1 k
TA1360AFG
2003-01-21
12
Pin
No.
Pin Name
Function
Interface Circuit
Input Signal/Output Signal
79
Y
M
/P-MUTE/BLK
High-speed halftone switch for
internal RGB signal.
Enables picture mute and
blanking.
0 to 0.5 V
: Internal
1.2 V to 1.8 V : Half Tone
2.7 V to 4.0 V : P-Mute
7 V to 9 V
: Blanking
16
79
10
300
80
k
10
k
TA1360AFG
2003-01-21
13
Bus Control Map
Write Data
Slave Address: 88H
Sub-Add
D7 D6 D5 D4 D3 D2 D1 D0 Preset
00 H-FREQ1
H-DUTY
YUV-SW
DAC1
DAC2
SYNC-SW
H-FREQ2
1000
0000
01 HORIZONTAL
POSITION
CLP-PHS
1000
0000
02 ACB-MODE
SCP-SW
HBP-PHS1
SYNC
SEP-LEVEL TEST 1000
0000
03 V-BLK
PHASE VERTICAL
FREQUENCY
1000
0000
04
COMPRESSION-BLK PHASE-1
COMPRESSION-BLK PHASE-2
1000
0000
05 P-MODE1
UNI-COLOR
1000
0000
06 BRIGHTNESS
1000
0000
07 OSD-ACL
COLOR
1000
0000
08 TINT
HBP-PHS2
1000
0000
09 PICTURE
SHARPNESS
BLS
1000
0000
0A RGB
BRIGHTNESS
DCRR-SW
1000
0000
0B
HI BRT
RGB CONTRAST
1000
0000
0C SUB
CONTRAST WPS
YUV
MODE
Y-OUT
1000 0000
0D DRIVE
GAIN1 DR-R
1000
0000
0E DRIVE
GAIN2
DR-B/G
1000
0000
0F
R CUT OFF
1000
0000
10
G CUT OFF
1000
0000
11 B
CUT
OFF
1000
0000
12 R-Y/B-Y
GAIN
R-Y/B-Y
PHASE
1000
0000
13 G-Y/B-Y
GAIN
G-Y/B-Y
PHASE
1000
0000
14
COLOR SRT TRAN
C FREQ
GREEN STRETCH
COLOR
CLT
1000
0000
15
C.D.E.
Y/C GAIN COMP
BL STRETCH GAIN
FLESH
H-SHIFT
1000
0000
16
VSM PHASE
VSM GAIN
APACON PEAK FREQ 1000
0000
17
DC REST POINT
DC REST RATE
DC REST LIMIT
1000
0000
18
BLACK STRETCH POINT
APL VS BSP
B.L.C.
B.D.L
BS-AREA
1000
0000
19 SRT-GAIN
WPL-LEVEL
1000
0000
1A
D-ABL POINT
D-ABL GAIN
BL STRETCH POINT
P-MODE2
1000
0000
1B
ABL POINT
ABL GAIN
RGB OUT MODE
1000
0000
1C DYNC
GAIN
BS-CHAR1
STATIC
GAIN-1
STATIC
GAIN-2 1000
0000
1D OSD
BRIGHT
OSD
CONTRAST
Y/C-DL1
DYNC
AREA
1000
0000
1E
Y DETAIL CONTROL
BS-CHAR2
WP BLUE POINT
1000 0000
1F
Y GROUP DELAY CORRECTION
Y/C-DL2
WP BLUE GAIN
1000
0000
Read Data
Slave Address: 89H
D7 D6 D5 D4 D3 D2 D1 D0
0 POR
IK-IN
RGB-OUT
YUV-IN
H-OUT
VP-OUT
RGB-IN
SYNC-IN
TA1360AFG
2003-01-21
14
Bus Control Features
Write Mode
Resister Name
Description
Preset Value
H-FREQ1/2
Switches horizontal oscillation frequency. (See the appendix 1)
33.75 kHz
H-DUTY
Switches horizontal output duty.
0: 41% 1: 47%
41%
YUV-SW
Switches YUV input.
0: INPUT-1 (Y1/C
b1
/C
r1
) 1: INPUT-2 (Y2/C
b2
/C
r2
)
INPUT-1
DAC 1
Switches DAC controlling output.
0: OPEN (high) 1: ON (low)
Controls 1-bit DAC of open-collector when TEST is 00.
Outputs H/C-SYNC from pin 34 when TEST is 01.
OPEN
DAC 2
Switches DAC controlling output.
0: ON (low), 1: OPEN (high)
Controls 1-bit DAC of open-collector when TEST is 00.
Outputs ACB reference pulse from pin 23 when TEST is 01.
ON
SYNC-SW
Switches sync input.
0: Selects HD/VD input. 1: Selects SYNC input.
HD/VD
HORIZONTAL POSITION
Adjusts horizontal picture position (phase).
0000000:
-
12.5% 1111111:
+
12.5%
Note: VP output width (pin 35) varies with a change of horizontal position.
CENTER
CLP-PHS
Switches clamp pulse phase.
0: 0.7-
s (2.5%) width, 1.1-
s (3.8%) delay from HD stop phase.
1: 0.7-
s (2.4%) width, 0.2-
s (0.7%) delay from HD stop phase
when no signal, 0.8-
s (2.7%) width that is 1.2-
s (4.2%) delay from FBP start
phase.
Also switches CP phase of CP-OUT (pin 47).
1.1-
s delay
ACB MODE
Sets ACB mode; Sets converged reference level.
00: ACB OFF (cutoff BUS control), 01: ACB ON (5 IRE),
10: ACB ON (10 IRE) 11: ACB ON (20 IRE)
ACB ON
(10 IRE)
SCP-SW
SCP (sand castle pulse) Switches modes.
0: Internal Mode 1: External input Mode
Internal Mode
HBP-PHS1/2
Switches phase of black-stretch-detection stop pulse.
HBP-PHS1
=
0 and HBP-PHS2
=
0: FBP
3%
HBP-PHS1
=
0 and HBP-PHS2
=
1: FBP
8%
HBP-PHS1
=
1 and HBP-PHS2
=
0: FBP
13%
HBP-PHS1
=
1 and HBP-PHS2
=
1: FBP
18%
Leaving Y open and setting the test circuit SW2 to C enable to monitor H/V-BPP
(black-stretch-detection stop pulse) width through pin 70.
3%
SYNC SEP-LEVEL
Switches Sync SEP-level.
00: 16% 01: 24% 10: 32% 11: 40% (At 1125I/60)
16%
TEST
Test Mode:
Controls 1-bit DAC of open-collector when TEST is 00.
Outputs H/C-SYNC from pin 34, and ACB reference pulse from pin 23 when TEST
is 01.
Do not set TEST to 10/11 for that is shipment TEST Mode.
00
TA1360AFG
2003-01-21
15
Resister Name
Description
Preset Value
V-BLK PHASE
Switches vertical BLK stop phase.
00000: 16 H~ 11110: 46 H (1 H/STEP)
11111: Internal H/V-BLK OFF
Please set ACB Mode to OFF when internal H/V-BLK is OFF (11111).
32 H
V-FREQUENCY
Vertical free-run frequency: Sets V pull-in range. (See Appendix 2.)
1281 H
COMPRESSION-BLK
PHASE-1/2
Compression BLK phase: Sets BLK for upper and lower parts of screen. (See
Appendix 3.)
CENTER, OFF
P-MODE1/2
Picture Mode: Sets picture mute, halftone, blue background, and Y mute. (See
Appendix 4.)
P-MUTE 1
UNI-COLOR
Unicolor adjustment:
0000000:
-
16dB~ 1111111: 0dB
min
BRIGHTNESS
Brightness adjustment:
00000000:
-
40 IRE 11111111:
+
40 IRE
CENTER
OSD-ACL
OSD-ACL;
0: OFF 1: ON
ON
COLOR
Color adjustment:
0000000: COLOR MUTE,
0000001:
-
20dB or more 1111111:
+
4dB
C-MUTE
TINT
Tint adjustment:
0000000:
-
32 deg~ 1111111:
+
32 deg
0 deg
PICTURE-SHARPNESS
Sharpness adjustment:
0000000:
-
10dB or more 1000000:
+
10dB
1111111:
+
17.5dB (at peak FREQ)
CENTER
BLS
Blue stretch
correction: B-axis correction
0: OFF 1: ON
OFF
RGB-BRIGHTNESS
RGB brightness:
0000000;
-
20 IRE~ 1111111;
+
20 IRE
CENTER
DCRR-SW
Switches DC restoration rate.
0: 100% or higher 1: 100%or lower
100% or higher
HI BRT
High-bright color:
0: OFF 1: ON
ON
RGB-CONTRAST
RGB contrast:
0000000:
-
16.5dB 1111111: 0dB
min
SUB-CONTRAST
Sub-contrast:
00000:
-
3.3dB 11111:
+
2.5dB
CENTER
WPS
WPS level:
0: 110 IRE 1: 130 IRE
110 IRE
YUV MODE
Y/color-difference input Mode:
0: Y/Cb/Cr, 1: Y/Pb/Pr
(Remarks) Y/Cb/Cr: ITU-R BT 601
Y/Pb/Pr: ITU-R BT 709 (1125/60/2:1)
Y/Cb/Cr
Y-out
-out gamma control:
0: OFF 1: ON
OFF
DRIVE GAIN1/2
Drive gain 1/2;
0000000:
-
5dB 1111111:
+
3dB
CENTER
DR-R
DR-B/G
Switches RGB drive gain base. (See Appendix 5.)
R
TA1360AFG
2003-01-21
16
Resister Name
Description
Preset Value
R/G/B CUT OFF
R/G/B cutoff:
1) At ACB-OFF RGB-OUT
00000000: 1.9 V 11111111: 2.9 V
2) At ACB-ON SENS-IN
00000000: 0.5 Vp-p 11111111: 1.5 Vp-p
CENTER
R-Y/B-Y GAIN
Switches R-Y/B-Y relative amplitude:
0000: min (0.45) 1111: max (0.9)
CENTER
R-Y/B-Y PHASE
Switches R-Y/B-Y relative phase:
0000: min (90 deg) 1111: max (111.5 deg)
min
G-Y/B-Y GAIN
Switches G-Y/B-Y relative amplitude:
0000: min (0.25) 1111: max (0.48)
CENTER
G-Y/B-Y PHASE
Switches G-Y/B-Y relative phase:
0000: min (232 deg) 1111: max (254 deg)
min
COLOR SRT TRAN
Color SRT transient: Color-difference transient improvement
00: C-SRT OFF~ 11: max
CENTER
C FREQ
Color SRT peak frequency:
0: 4.5 MHz 1: 5.8 MHz
4.5 MHz
GREEN STRETCH
Green stretch:
00: OFF~ 11: max (
+
3dB)
OFF
COLOR
Color
correction point
00: OFF, 01: 0.23 Vp-p, 10: 0.40 Vp-p, 11: 0.58 Vp-p
OFF
CLT
Color limiter level:
0: 1.65 Vp-p, 1: 2 Vp-p
1.65 Vp-p
CDE
Color detail enhancer:
00: min 11: max
CENTER
Y/C GAIN COMP
Dynamic Y/C compensation: Operated when luminance level is made up
according to dynamic Y
.
00: OFF~ 11: max
OFF
BL STRETCH GAIN
Blue stretch gain: B-axis correction
00: OFF 11: max (
+
6.4dB)
OFF
FLESH
Flesh color: Skin tone color correction
0: OFF 1: ON (Lead-in angle:
33.7 deg)
OFF
H-SHIFT
Shifts a center of horizontal picture position (phase):
0: OFF 1: ONFBP shifts 6.7% against HD
OFF
VSM-PHASE
VSM phase:
000:
-
37.5 ns 101: normal 111:
+
15 ns
CENTER
VSM GAIN
VSM gain:
000: OFF 001: 0 dB~ 111:
+
16dB (VSM gain is limitted 1.4 Vp-p)
OFF
APACON PEAK f
0
APACON peak frequency:
00: 13.5 MHz 01: 9.5 MHz 10: 7.2 MHz 11: 4.5 MHz
13.5 MHz
DC REST POINT
DC restoration rate correction point:
000: 0% 111: 49%
CENTER
DC REST RATE
DC restoration correction rate:
000: 100% 111: 135% (70%)
min
DC REST LIMIT
DC restoration rate correction limit point:
00: 67% 01: 77 10: 80% 11: 80%
min
TA1360AFG
2003-01-21
17
Resister Name
Description
Preset Value
BLACK STRETCH POINT
Black stretch start point 1:
000: OFF 001: 25 IRE~ 111: 55 IRE
CENTER
APL VS BSP
Black stretch start point 2:
00: 0 IRE 11: 46 IRE up (at APL 100%)
0 IRE
B.L.C
Black level automatic correction: Up to 6.5 IRE. (Black stretch takes priority.)
0: OFF 1: ON
OFF
B.D.L.
Switches black detection level:
0: 3 IRE 1: 0 IRE
3 IRE
BS-AREA
Black stretch area reinforcement:
0: ON 1: OFF
ON
SRT-GAIN
SRT gain; Y transient improvement (LTI)
00000: min 11111: max
CENTER
WPL-LEVEL
White letters improvement amplitude;
000: min (21 IRE) ~ 110: max (102 IRE) 111: OFF
min
D-ABL POINT
Dynamic ABL detection voltage
00: min 11: max
CENTER
D-ABL GAIN
Dynamic ABL sensitivity
00: min 11: max
min
BL STRETCH POINT
Blue stretch point; B-axis correction
00: min (28 IRE) 11: max (60 IRE)
min
ABL POINT
ABL detection voltage
000: min 111: max
CENTER
ABL GAIN
ABL sensitivity
000: min 111: max
min
RGB-OUT MODE
RGB output mode; RGB output mode SW for test and adjustment
00: Normal 01: R only 10: G only 11: B only
Normal
DYNC
GAIN
Dynamic Y
gain vs dark area; dynamic
-correction according to dark area.
00:min~
11: max (Maximum gain is
+
6dB included Static Y
gain for dark area.)
CENTER
BS-CHAR1/2
Black stretch characteristic swich
BS-CHAR1
=
0 and BS-CHAR2
=
0: OFF
BS-CHAR1
=
0 and BS-CHAR2
=
1: min
BS-CHAR1
=
1 and BS-CHAR2
=
0: mid
BS-CHAR1
=
1 and BS-CHAR2
=
1: max
OFF
STATIC
GAIN-1
Static Y
dark area gain;
correction for dark area
000: OFF 001: min (
-
5dB) ~ 11: max (
+
2.4dB)
Note: When STATIC
GAIN-1 is 000(OFF), set DYNC
GAIN to min (00),
STATIC
GAIN-2 to OFF (11), and DYNC
AREA to min (000).
OFF
STATIC
GAIN-2
Static Y
light area gain;
correction for light area
00: max (
-
8.8dB)~ 11: OFF
When 00~10 is set, light area static Y
and light dynamic Y
according to light area
is operated.
max
OSD BRIGHT
OSD brightness:
00: 5 IRE 01: 0 IRE 10:
-
5 IRE 11:
-
10 IRE
-
5 IRE
OSD-CONTRAST
OSD contrast:
00: min (
-
9.5dB) 11: max (0dB)
min
TA1360AFG
2003-01-21
18
Resister Name
Description
Preset Value
Y/C DL1/2
Adjusts Y/C phase; adjusts the phase Y before passing through matrix circuit.
Y/C DL2
=
0 and Y/C DL1
=
0:
-
10 ns, Y/C DL2
=
0 and Y/C DL1
=
1:
-
5 ns
Y/C DL2
=
1 and Y/C DL1
=
0: 0 ns, Y/C DL2
=
1 and Y/C DL1
=
1:
+
5 ns
-
10 ns
DYNC
AREA
Dynamic
dark area detection sensitivity; switches detection sensitivity of dynamic
Y
of dark area.
000: min~ 111: max
min
Y DETAIL CONTROL
Controls Y detail; corrects sharpness of 5.0-MHz peak frequency.
0000:min (trap) 1111: max
+
6dB
CENTER
WP BLUE POINT
White peak blue point;
000: OFF 001: min (42 IRE) ~ 111: max (106 IRE)
OFF
Y-GROUP DELAY
CORRECTION
Y group delay correction; shoot balance correction.
0000: Pre-shoot gain is lowered. (Overshoot gain is raised.)
1111: Overshoot gain is lowered. (Pre-shoot gain is raised.)
CENTER
WP BLUE GAIN
White peak blue gain.
000: min (
+
3dB) 111: max (
+
10dB)
min
TA1360AFG
2003-01-21
19
Appendix 1: Horizontal Frequency
Pin Voltages (V)
Bus Data
Pin 55
Pin 41
00-D0
00-D7
00-D6
H-Frequency (kHz)
DEF V
CC
(8.0~9.0)
0 0 0
28.125
6.0 (5.0~7.0)
0
0
1
31.5
3.0 (2.0~4.0)
0
1
0
33.75
DEF GND
(0~1.0)
DEF GND
(0~1.0)
0 1 1
37.9
DEF V
CC
(8.0~9.0)
1 0 0
15.75
6.0 (5.0~7.0)
1
0
1
31.5
3.0 (2.0~4.0)
1
1
0
33.75
DEF V
CC
(8.0~9.0)
DEF GND
(0~1.0)
1 1 1
45
Note 1: Controlling pins prevails over BUS control. When the TA1360F is used for CRT, control horizontal oscillation
frequency by pins 41 and 55. (See the pin descriptions for details.)
Note 2: Horizontal output frequency may not be switched at once but may takes two steps if switching pins 41 and
55 is controlled at the same time. Switching horizontal output frequency may cause deterioration of the
horizontal transistor. Thus, be sure to take account of applications, included software.
Appendix 2; Vertical Frequency
V-BPP
Data V
Pull-in
Range
Start Phase
Stop Phase
Example of Format/V (H)-Frequency
000
48~1281 H
1100 H
1125P/30 Hz (33.75 kHz)
001 48~849
H
730
H
750P/60 Hz (45 kHz)
(750P/50Hz(37.5 kHz))
010 48~725
H
600
H
625P/50 Hz (31.5 kHz)
SVGA/60 Hz(37.9 kHz)
011 48~660
H
545
H
1125I/50 Hz (28.125 kHz)
1125I/60 Hz (33.75 kHz)
100
48~613 H
500 H
525P/60 Hz (31.5 kHz)
101 48~363
H
290
H
PAL/SECAM/50 Hz (15.625 kHz),
100 Hz (31.5 kHz)
110 48~307
H
240
H
V-BLK P.
(C.BLK P.)
+
20 H
NTSC/60 Hz (15.734 kHz),
120 Hz (31.5 kHz)
111 VP-OUT
HI
TA1360AFG
2003-01-21
20
Appendix 3; Compression-BLK Phase
V-Frequency Phase-1
(start
phase)
* Phase-2
(stop
phase)
000
1088 H~1116 H
001 720
H~748
H
010 592
H~620
H
011 528
H~556
H
100 488
H~516
H
101 280
H~308
H
110 224
H~252
H
50~78 H
(0000: C-BLK2 OFF)
111 C-BLK
OFF
*: C-BLK1
=
1111: C-BLK1 OFF
Appendix 4; P-Mode
05-D7 1A-D1 1A-D0 MODE
Description
0 0 0
NORMAL
1
P-Mute and halftone the main signal by pin Y
M
.
Insert analog RGB-IN by Ys3, and OSD-IN by Ys1/Ys2.
Analog RGB-IN
>
P-Mute
0 0 1 Y-MUTE
Full-screen-mute process is executed on Y of main signal by BUS.
Insert analog RGB-IN by Ys3, and OSD-IN by Ys1/Ys2.
Analog RGB-IN
>
P-Mute
0 1 0 Y
M
1
Full-screen-halftone process is executed on main signal by BUS.
Insert P-Mute by pin Y
M
, and analog RGB-IN by Ys3.
Ys1/Ys2 blends OSD-IN and main halftone signal.
Analog RGB-IN
>
P-Mute
0 1 1 BB
Blue background process is executed on main signal by BUS.
Insert P-Mute by pin Y
M
, analog RGB-IN by Ys3, and OSD-IN by Ys1/Ys2
Analog RGB-IN
>
P-Mute
1 0 0
P-MUTE
1
Full-screen-mute process is executed on main signal by BUS.
Insert analog RGB-IN by Ys3, and OSD-IN by Ys1/Ys2.
Analog RGB-IN
>
P-Mute
1 0 1 Y
M
2
Full-screen-halftone process is executed on main signal by BUS.
Insert P-Mute by pin Y
M
, and analog RGB-IN by Ys3.
Ys1/Ys2 blends OSD-IN and main halftone signal
P-Mute
>
Analog RGB-IN
1 1 0
P-MUTE
2
Full-screen-mute process is executed on main signal and analog RGB-IN by
BUS.
Insert OSD-IN by Ys1/Ys2.
P-Mute
>
Analog RGB-IN
1 1 1
NORMAL
2
P-Mute and halftone process is executed on the main signal by pin Y
M
.
Analog RGB-IN is inserted by Ys3, and OSD-IN by Ys1/Ys2.
P-Mute
>
Analog RGB-IN
Output priority; (000)~(100): Main signal
<
BB
<
P-MUTE
<
RGB-IN
<
OSD-IN
(101)~(111): Main signal
<
BB
<
RGB-IN
<
P-MUTE
<
OSD-IN
TA1360AFG
2003-01-21
21
Appendix 5; DR-R, DR-B/G
DR-R
DR-B/G
Reference Axis
Drive Gain1
Drive Gain2
0 0
R
G
B
0 1
R
G
B
1 0
G
R
B
1 1
B
G
R
Read Function
Signal Function
POR
Power-on reset:
0: RESISTER PRESET 1: Normal
After power on, 0 is returned at first read; 1, at second and subsequent reads.
IK-IN
Detects IK input; detects input through pin 8.
0: NG (no signal) 1: OK (signal detected)
RGB-OUT
Detects RGB-OUT self-check; detects output of pins 12, 13, 14.
0: NG (no signal) 1: OK (signal detected)
Detects signal when all three outputs hsve signals. Small signals are not detected.
YUV-IN
Detects YUV-IN self-check; detects input of pins 60, 61 63 or pins 66, 67, 68.
0: NG (no signal) 1: OK (signal detected)
Detects signal when all three inputs are AC signals. Small signals or signals like DC voltage are not
detected.
H-OUT
Detects H-OUT self-check; detects output of pin 37.
0: NG (no signal) 1: OK (signal detected)
VP-OUT
Detects VP-OUT self-check; detects output of pin 35.
0: NG (no signal) 1: OK (signal detected)
RGB-IN
Detects RGB-IN self-check; detects input of pins 24, 25, 26.
0: NG (no signal) 1: OK (signal detected)
Detects signal when all three inputs are AC signals. Small signals or signals like DC voltage are not
detected.
SYNC-IN
Detects SYNC-IN self-check; detects input of pin 53.
0: NG (no signal), 1: OK (signal detected)
TA1360AFG
2003-01-21
22
How to Transmit/Receive Via I
2
C Bus
Slave Address: 88H
A6 A5 A4 A3 A2 A1 A0 W/R
1 0 0 0 1 0 0 0/1
Start and Stop Conditions
Bit Transfer
Acknowledgement
SDA
SCL
S
Start condition
P
Stop condition
SDA
SCL
SDA must not be changed
SDA may be changed
SDA from transmitter
Low impedance only
at bit 9
Clock pulse for acknowledgement
S
High impedance at bit 9
1 8
9
SDA from receiver
SCL from master
TA1360AFG
2003-01-21
23
Data Transmit Format 1
Data Transmit Format 2
Data Receive Format
To receive data, the master transmitter changes to the receiver immediately after the first acknowledgement.
The slave receiver changes to the transmitter.
The stop condition is always created by the master.
Details are provided in the Philips I
2
C specifications.
Optional Data Transmit Format
In this way, sub addresses are automatically incremented from the specified sub address and data are set.
Purchase of TOSHIBA I
2
C components conveys a license under the Philips I
2
C Patent Rights to use these
components in an I
2
C system, provided that the system conforms to the I
2
C Standard Specification as defined by
Philips.
S
Slave address
0 A
Transmit data 1
A
Sub address
A
Transmit data n
A
Sub address
A P
S
Slave address
1 A
Receive data 2
A
Transmit data 1
A P
7 bit
MSB
8 bit
MSB
S
Slave address
A
Transmit data n
Transmit data 1
A P
7 bit
MSB
8 bit
MSB
0
Sub address
7 bit
MSB
A 1
8 bit
MSB
S
Slave address
0 A
Transmit data
A
Sub address
A P
7 bit
MSB
S: Start condition
8 bit
MSB
A: Acknowledgement
9 bit
MSB
P: Stop condition
TA1360AFG
2003-01-21
24
Maximum Ratings
(Ta
=
=
=
=
25C)
Characteristics Symbol Rating Unit
Supply voltage
V
CCmax
12 V
Input pin signal voltage
e
inmax
9
Vp-p
Power dissipation
P
D
(Note 3)
2604
mW
Power dissipation reduction rate
depending on temperature
1/
ja 20.8
mW/C
Operating temperature
T
opr
-
20 to 65
-
20 to 70
C
Storage temperature
T
stg
-
55 to 150
C
min 8.7 8.5
typ. 9.0 8.8
Supply voltage (pins 16, 45 and 75)
max 9.3 9.1
V
Note 3: See the following Figure A. (With device mounted on a PCB whose dimensions are 114.3 mm
76.2 mm
1.6 mm and whose surface is 20% copper. Mount the device on a PCB of at least these dimensions and
whose surface is at least 20% copper.)
When using in
-
25 to 70C of operating temperature, set the IC's power supply voltage (pins 16, 45, 75) to
8.8 V (
0.3 V).
When designing a set, make sure that the IC can radiate heat because the TA1360AFG has low thermal
capacity. Note that the power dissipation varies greatly according to conditions of a board.
Figure A Power Dissipation Reduction Curve
2604
0
150
25 65
1771
P
o
w
e
r
di
ssi
pati
on P
D
(mW
)
Ambient temperature Ta (C)
0
1667
70
TA1360AFG
2003-01-21
25
Note 4: Power supply sequence
At power-on, power should be supplied to the power supply pins according to the following sequence:
1. Pin 31 (I
2
L VDD)
2. Pin 45 (DEF/DAC V
CC
)
3. Pins 16 and 75 (YC V
CC
/RGB V
CC
)
Supply power to pin 37 via zener diode through resistor from pin 45. (See "Application Circuit".)
BUS preset value is become undefined and caused malfunction of the IC unless supplying power to all
supply pins or follow the power supply sequence described above. When the frequency of horizontal output
(pin 37) became undefined, horizontal transistor may be damaged. When the TA1360F is used for CRT,
control horizontal oscillation frequency by pins 41 and 55.
Figure B
Timing chart that indicates the timing from power-on
till horizontal output. (At Ta
=
=
=
=
25 C
)
t
I
2
L V
DD
Logic operation 1.3 V (typ.)
POR release voltage (BUS operation) 4.6 V (typ.)
Horizontal output 6.0 V (typ.)
V DEF/DAC
V
CC
TA1360AFG
2003-01-21
26
Operating Conditions
Characteristics Description
Min
Typ.
Max
Unit
T
opr
=
-
20 to 65C
(Note 5)
8.7
9.0
9.3
Pin 16, 45, 75
T
opr
=
-
20 to 70C
(Note 5)
8.5
8.8
9.1
Supply voltage (V
CC
)
Pin
31
1.8 2.0 2.2
V
Y input level
Pins 63, 68: 100% color bar, including sync (Picture
period amplitude, 0.7 Vp-p)
1.0
Color-difference input level
Pins 60, 61 66, 67: 100% color bar, not including sync
0.7
Vp-p
HD/VD input level
Pins 50, 52
2.0
5.0
V
CC
V
SYNC input level
Pin 53: 100% color bar, including sync
0.9
1.0
1.1
Vp-p
CP 4.2
5.0
V
CC
SCP input level
Pin 49
BPP
2.2 2.5 2.8
At 28 k/31 k/33 k/37 kHz
0
0
1.0
Pin 55
At 15 k/31 k/33 k/45 kHz
8.0
V
CC
V
CC
28.125 kHz or 15.75 kHz
8.0
V
CC
V
CC
31.5
kHz
5.0 6.0 7.0
33.75
kHz
2.0 3.0 4.0
Horizontal frequency switching
voltage
Pin 41
37.9 kHz or 45 kHz
0
0
1.0
H-AFC 6.5
7.0
V
CC
FBP input level
Pin 39
H-BLK
3.0 3.5 4.0
V
FBP input width
Pin 39
0.16
0.3 H
H-OUT input current
Pin 37
9.0 15.0
DAC input current
Pins 23, 34
0.3 1.0
mA
SCL/SDA pull-up voltage
Pins 28, 30
3.3
5.0
V
CC
V
SDA input current
Pin 28
2 mA
Analog RGB input level
Pins 24, 25, 26: White 100%
0.7
Analog OSD input level
Pins 18, 19, 21: White 100%
0.7
Vp-p
Y
S
3 switching voltage
Pin 2
1.5
5.0
V
CC
OSD 2.9
5.0
V
CC
Y
S
1/2 switching voltage
Pins 1, 80
VSM
MUTE
1.1 1.5 1.7
BLK 7.0
V
CC
V
CC
P-MUTE
2.7 3.5 4.0
Y
M
switching voltage
Pin 79
HALF
TONE
1.2 1.5 1.8
V
External V-BLK input current
Pin 35
0.78
1 mA
Note 5: See "Maximum Ratings" about T
opr
.
Electrical Characteristics
(
unless otherwise specified,
V
CC
=
=
=
=
9 V/2 V, Ta
=
=
=
=
25C)
Current Dissipation
Pin Name
Symbol
Test
Circuit
Min Typ. Max Unit
DEF/DAC V
CC
(9 V)
I
CC1
19.2 24.0 28.2
RGB V
CC
(9 V)
I
CC2
48.8 61.0 67.8
I
2
L V
DD
(2 V)
I
CC3
21.3 25.0 29.4
Y/C V
CC
(9 V)
I
CC4
36.8 46.0 51.1
mA
TA1360AFG
2003-01-21
27
Pin Voltage
Test Condition
(1) BUS
=
Preset
(2) SW71
=
B, SW70
=
B, SW68
=
C, SW67
=
B, SW66
=
B, SW64
=
B, SW63
=
B, SW60 to 61
=
B,
SW53
=
B, SW44
=
ON, SW40
=
B, SW39
=
A, SW37
=
A, SW24 to 26
=
A, SW21
=
A, SW18~19
=
A,
SW77
=
OFF, SW74
=
ON
Pin No.
Pin Name
Symbol
Test
Circuit
Min Typ. Max Unit
1 Y
S
2 V
1
0.1 0.2
2 Y
S
3 V
2
0.1 0.2
4 R
S/H
V
4
4.2 5.2 6.2
6 G
S/H
V
6
4.2 5.2 6.2
7 B
S/H
V
7
4.2 5.2 6.2
18
ANALOG OSD R IN
V
18
3.65 3.95 4.25
19 ANALOG
OSD
G
IN
V
19
3.65 3.95 4.25
21
ANALOG OSD B IN
V
21
3.65 3.95 4.25
24 ANALOG
R
IN
V
24
3.65 3.95 4.25
25 ANALOG
G
IN
V
25
3.65 3.95 4.25
26
ANALOG B IN
V
26
3.65 3.95 4.25
40 H
CURVE
CORRECTION
V
40
2.2 2.5 2.8
42 HVCO
V
42
4.4 5.0 5.6
44 AFC
FILTER
V
44
5.4 6.2 7.0
49 CP
IN
V
49
0 0.3
50 HD
IN
V
50
0 0.3
52 VD
IN
V
52
0 0.3
53 SYNC
IN
V
53
1.8 2.1 2.4
57 VSM
FILTER
V
57
7.5 7.7 7.9
58 COLOR
LIMITER
V
58
6.65 6.9 7.15
60 Cr/Pr2
IN
V
60
4.7 5.0 5.3
61 Cb/Pb2
IN
V
61
4.7 5.0 5.3
63 Y2
IN
V
63
4.7 5.0 5.3
64
LIGHT AREA DET FILTER
V
64
0.09 0.15
66 Cr/Pr1
IN
V
66
4.7 5.0 5.3
67 Cb/Pb1
IN
V
67
4.7 5.0 5.3
68 Y1
IN
V
68
4.7 5.0 5.3
70 BPH
FILTER
V
70
5.5 5.8 6.1
71
DARK AREA DET FILTER
V
71
0.09 0.15
74 APL
FILTER
V
74
4.8 5.0 5.2
77 VSM
OUT
V
77
4.1 4.3 4.5
78 ABCL
IN
V
78
6.1 6.35 6.6
79 Y
M
V
79
0.1 0.2
80 Y
S
1 V
80
0.1 0.2
V
TA1360AFG
2003-01-21
28
Picture Quality (Sharpness) Block
Characteristics Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
Y input dynamic range
D
RY
0.7 1.0 1.5 Vp-p
V
B
-
15 10 15
Black detection level shift
V
B3
(Note P01)
35 45 55
mV
Black stretch amp maximum gain
G
BS
(Note
P02)
2.4 2.8 3.2 dB
P
BST1
20 25 35
Black stretch start point 1
P
BST2
(Note P03)
50 55 60
IRE
P
BS1
0 5 10
Black stretch start point 2
P
BS2
(Note P04)
14 21 30
IRE
P
BSC1
26 28 30
P
BSC2
-
8
-
6
-
4
P
BSC3
26 28 30
P
BSC4
-
5.5
-
3
-
1
P
BSC5
26 28 30
Black stretch characteristic switch
P
BSC6
(Note P05)
-
3.5
-
2
-
0.5
IRE
Black stretch area reinforcement
current
IBSA
(Note
P06)
13 18 23
A
DV
01
80 120 160
DV
10
240 280 320
D.ABL detection voltage
DV
11
(Note P07)
380 420 460
mV
S
DAMIN
0.01 0.02
D.ABL sensitivity
S
DAMAX
(Note P08)
0.25 0.28 0.31
V/V
Black level correction
BLC
(Note
P09)
4.5 6.5 8.5 IRE
Dark area Y
correction point
P
DGP
(Note
P10)
25 28 33 IRE
Dark area dynamic Y
gain
G
DDGMAX
(Note
P11)
5.5 6 6.5 dB
G
DSGMIN
-
6.5
-
5
-
4
Dark area static Y
gain
G
DSGMAX
(Note P12)
2 2.4 2.6
dB
Light area Y
correction point
LPG
(Note
P13)
64 74 80 IRE
Light area dynamic Y
gain
GLDG
(Note
P14)
1.1 1.7 2.3 dB
G
LSGMIN
0.3 0.6 0.9
Light area static Y
gain
G
LSGMAX
(Note P15)
1.4 1.7 2.3
dB
DAMIN
0.25 0.3 0.37
DACEN
0.88 0.98 1.08
Dark area detection sensitivity
DAMAX
(Note P16)
0.95 1.05 1.15
V
ADT
100
0.9 1.1 1.2
ADT
135
1.2 1.35 1.5
DC restoration rate
ADT
65
(Note P17)
0.55 0.70 0.85
times
V
DT0
-
5 0 5
DC restoration point
V
DT1
(Note P18)
47 49 55
%
P
DTL60
64 67 70
P
DTL75
74 77 80
P
DTL87
74 80 82
DC restoration limit
P
DTL100
(Note P19)
74 80 82
%
TA1360AFG
2003-01-21
29
Characteristics Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
F
AP00
10.5 13.5 17
F
AP01
7 9.5 12
F
AP10
5 7.2 7.8
Sharpness control peak frequency
F
AP11
3.5 4.5 6.3
MHz
DC fluctuation at switching sharpness
control peak frequency
VRDC
(Note P20)
0.01 0.02 V
G
MAX00
15 17.5 19
G
MIN00
-
4
-
0.6 2.5
G
MAX01
15 17.5 19
G
MIN01
-
5
-
0.3 2.5
G
MAX10
15 17.5 19
G
MIN10
-
7
-
2.5 1.5
G
MAX11
15 17.5 19
Sharpness control range
G
MIN11
(Note P21)
-
12
-
5 0
dB
G
CEN00
7 10 13
G
CEN01
7 10 13
G
CEN10
7 10 13
Sharpness control center
characteristic
G
CEN11
(Note P22)
7 10 13
dB
T
SRT00
0.9 1.6 2.7
T
SRT01
3.5 4.8 7.1
T
SRT10
6.7 8.5 11.3
2T pulse response SRT control
T
SRT11
(Note P23)
11.5 12.5 15.5
dB
VSM peak frequency
F
VSM
19
19.5
25.5
MHz
G
V000
-
40
-
35
G
V001
-
2
-
1.2
-
0.4
G
V010
3.7 4.6 5.5
G
V011
7.1 8.2 9.3
G
V100
8.9 10.5 12.1
G
V101
11.4 12.6 13.8
G
V110
13.5 14.4 15.3
VSM gain
G
V111
(Note P24)
14.8 15.7 16.6
dB
V
SR1
0.62 0.78 0.85
V
SR2
0.62 0.78 0.85
VSM mute threshold voltage
V
SR580
Pins 1, 2, 80
0.62 0.78 0.85
V
V
LU
0.55 0.66 0.75
VSM limit
V
LD
(Note P25)
0.55 0.66 0.75
Vp-p
Y input to R output delay time
T
YR
110 125 140 ns
YDLA
3 5 10
YDLB
7 10 15
Y delay time switch
YDLC
(Note P26)
10 15 25
ns
G
AMIN
-
4
-
2.5
-
1
G
BMIN
2.5 3 3.5
G
AMAX
1 1.7 2.4
Y group delay correction
G
BMAX
(Note P27)
-
5
-
4
-
2
dB
TA1360AFG
2003-01-21
30
Characteristics Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
G
CDE00
9 10 11
G
CDE01
9 10 11
G
CDE10
9 10 11
Color detail enhancer
G
CDE11
(Note P28)
9 10 11
dB
Y detail frequency
F
YD
4 5 6
MHz
G
YDMAX
11 13 15
G
YDCEN
8 10 12
Y detail control range
G
YDMIN
(Note P29)
3 5 7
dB
TA1360AFG
2003-01-21
31
Color Difference Block 1: YUV input and matrix
Characteristics Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
D
RB
0.7 0.9 1.0
Color difference input dynamic range
D
RR
0.7 0.9 1.0
Vp-p
T
RMAX
25 29 33
T
RMIN
-
37
-
33
-
29
T
BMAX
27 31 35
Color difference tint control
characteristic
T
BMIN
-
36
-
32
-
28
F
B00
3.6 4.5 5.4
F
B01
4.6 5.8 7.0
F
R00
3.6 4.5 5.4
Color SRT peak frequency
F
R01
4.6 5.8 7.0
MHz
GS
B00CEN
1.5 2.8 4.1
GS
B00MAX
2.9 4.2 5.5
GS
B01CEN
2.0 3.3 4.6
GS
B01MAX
3.5 4.8 6.1
GS
R00CEN
3.4 4.7 6.0
GS
R00MAX
5.4 6.7 7.0
GS
R01CEN
3.1 4.4 5.7
Color SRT gain
GS
R01MAX
(Note S01)
5.2 6.5 7.8
dB
Cb1 input to B output delay time
T
B
130 155 185 ns
Cr1 input to R output delay time
T
R
130 155 185 ns
GC
BDY1
1.8 2.25 2.7
GC
BDY2
-
1.65
-
1.2
-
0.75
GC
RDY1
1.8 2.25 2.7
Dynamic Y/C compensation
GC
RDY2
(Note S02)
-
1.65
-
1.2
-
0.75
dB
G
Y00
2.4 3.4 4.4
G
Y01
2.4 3.4 4.4
G
CBB
9.5 11.0 12.5
G
PBB
9.9 11.4 12.9
G
PBR
-
18.0
-
16.0
-
14.0
G
CRR
9.5 11.0 12.5
G
PRB
-
15.0
-
13.5
-
12.0
YUV gain
G
PRR
(Note S03)
10.0 11.5 13.0
dB
TA1360AFG
2003-01-21
32
Characteristics Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
GrA01
0.98 1 1.02
GrA10
0.95 1 1.05
GrA11
0.93 1 1.07
GrB01
1.01 1.05 1.10
GrB10
1.05 1.1 1.15
GrB11
1.12 1.19 1.26
GrC01
1.10 1.14 1.18
GrC10
1.23 1.27 1.31
GrC11
1.35 1.42 1.49
GrD01
1.09 1.13 1.17
GrD10
1.21 1.25 1.29
GrD11
1.32 1.39 1.46
GrE01
0.98 1 1.02
GrE10
0.95 1 1.05
Green stretch
GrE11
(Note S04)
0.93 1 1.07
times
TA1360AFG
2003-01-21
33
Color Difference Block 2
Characteristics Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
Color difference contrast adjustment
characteristic
V
uCY
(Note A01)
14.5 16.0 17.5 dB
v
cCY
+
3.0 4.0 5.0
Color adjustment characteristic
vcCY
-
(Note A02)
-
35
-
22
-
17
dB
RMAX
109 111.5 114
RCNT
98.5 101 103.5
RMIN
88 90 92
V
R
/V
BMAX
0.86 0.90 0.94
V
R
/V
BCNT
0.65 0.69 0.73
R-Y relative phase and amplitude
V
R
/V
BMIN
0.42 0.45 0.49
times
GMAX
251 254 257
GCNT
244 247 250
GMIN
229 232 235
V
G
/v
BMAX
0.43 0.48 0.53
V
G
/v
BCNT
0.33 0.37 0.41
G-Y relative phase and amplitude
V
G
/v
BMIN
0.22 0.25 0.28
times
GHT
RY
0.47 0.50 0.53
GHT
GY
0.47 0.50 0.53
Color difference halftone
characteristic
GHT
BY
(Note A03)
0.47 0.50 0.53
times
V
1
0.09 0.23 0.37
V
2
0.26 0.40 0.54
V
3
0.44 0.58 0.72
Vp-p
Color
characteristic
(Note A04)
0.60 0.70 0.80
CLT
0
1.45 1.65 1.85
Color limiter characteristic
CLT
1
(Note A05)
1.80 2.00 2.20
Vp-p
High-bright color gain
HBC
1
(Note A06)
0.02 0.04 0.06 times
TA1360AFG
2003-01-21
34
Text Block
Characteristics Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
G
R
3.08 3.45 3.90
G
G
3.08 3.45 3.90
AC gain (Y1in~R/G/B out)
G
B
(Note T01)
3.08 3.45 3.90
times
G
G/R
0.94
1.00
1.06
AC gain axis difference
G
B/R
0.94
1.00
1.06
G
fR
30 60
G
fG
30 60
Frequency characteristic
(Y1in~R/G/B out)
G
fB
At
-
3dB, sharpness
characteristic is flat
30 60
MHz
G
fCb
10 12.5
Frequency characteristic
(Cb1/Cr1in~R/G/B out)
G
fCr
10 12.5
MHz
Unicolor adjustment characteristic
V
u
(Note T02)
15.0
16.0
17.0
dB
V
brMAX
4.10 4.45 4.80
V
brCNT
3.05 3.40 3.75
Brightness adjustment characteristic
V
brMIN
(Note T03)
1.95 2.30 2.65
V
V
wps1
2.20 2.32 2.44
White peak slice level
V
wps2
(Note T04)
2.59 2.74 2.89
Vp-p
Black peak slice level
V
bps
(Note T05)
1.15 1.35 1.45 V
N
12
-
52
-
46
N
13
-
52
-
46
RGB output S/N
N
14
(Note T06)
-
52
-
46
dB
G
HT1
0.45
0.50
0.55
Halftone characteristic
G
HT2
(Note T07)
0.45
0.50
0.55
times
Halftone on voltage
V
HT
Pin 79
0.65
0.85
1.05
V
V
VR
0.30
0.80
1.30
V
VG
0.30
0.80
1.30
V-BLK pulse output level
V
VB
0.30
0.80
1.30
V
V
HR
0.30
0.80
1.30
V
HG
0.30
0.80
1.30
H-BLK pulse output level
V
HB
0.30
0.80
1.30
V
td
ON
0.00
0.30
BLK pulse delay time
td
OFF
(Note T08)
0.08
0.30
s
v
su
+
1.95
2.45
2.95
Sub-contrast variable range
vsu
-
-
3.8
-
3.3
-
2.8
dB
CUT
+
0.42
0.47
0.52
Cut-off voltage variable range
CUT
-
0.42
0.47
0.52
V
V
#12
2.05 2.30 2.55
V
#13
2.05 2.30 2.55
RGB output voltage
V
#14
2.05 2.30 2.55
V
RGB output voltage 3-axis difference
V
OUT
0 150
mV
TA1360AFG
2003-01-21
35
Characteristics Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
DR
R1
+
2.5
3.0
3.5
DR
R1
-
-
5.5
-
5.0
-
4.5
DR
R2
+
2.5
3.0
3.5
DR
R2
-
-
5.5
-
5.0
-
4.5
DR
G1
+
2.5
3.0
3.5
DR
G1
-
-
5.5
-
5.0
-
4.5
DR
G2
+
2.5
3.0
3.5
DR
G2
-
-
5.5
-
5.0
-
4.5
DR
G3
+
2.5
3.0
3.5
DR
G3
-
-
5.5
-
5.0
-
4.5
DR
B1
+
2.5
3.0
3.5
DR
B1
-
-
5.5
-
5.0
-
4.5
DR
B2
+
2.5
3.0
3.5
DR
B2
-
-
5.5
-
5.0
-
4.5
DR
B3
+
2.5
3.0
3.5
Drive adjustment variable range
DR
B3
-
(Note T09)
-
5.5
-
5.0
-
4.5
dB
MU
RD
1.7
1.85
2.0
MU
GD
1.7
1.85
2.0
Output voltage at P-mute
MU
BD
1.7
1.85
2.0
V
P-mute ON voltage
V
MUTE
Pin 79
1.90
2.15
2.40
V
BB
R
1.0 1.2
1.4
BB
G
1.0 1.2
1.4
V
Output voltage at blue background
BB
B
1.1 1.25
1.4
Vp-p
Input impedance of #78
Zin
(Note T10)
24
30
36
k
ACL
1
-
6.5
-
4.5
-
2.5
ACL characteristic
ACL
2
(Note T11)
-
15.0
-
13.5
-
11.0
dB
ABL
P1
-
0.21
-
0.16
-
0.11
ABL
P2
-
0.28
-
0.23
-
0.18
ABL
P3
-
0.37
-
0.32
-
0.27
ABL
P4
-
0.45
-
0.40
-
0.35
ABL
P5
-
0.54
-
0.49
-
0.44
ABL
P6
-
0.62
-
0.57
-
0.52
ABL
P7
-
0.70
-
0.65
-
0.60
ABL point
ABL
P8
(Note T12)
-
0.75
-
0.70
-
0.65
V
ABL
G1
-
0.06
-
0.02
0.00
ABL
G2
-
0.17
-
0.12
-
0.07
ABL
G3
-
0.34
-
0.29
-
0.24
ABL
G4
-
0.52
-
0.47
-
0.42
ABL
G5
-
0.68
-
0.63
-
0.59
ABL
G6
-
0.85
-
0.80
-
0.75
ABL
G7
-
1.01
-
0.96
-
0.91
ABL gain
ABL
G8
(Note T13)
-
1.09
-
1.04
-
0.99
V
TA1360AFG
2003-01-21
36
Characteristics Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
V
12R
2.15
2.40
2.65
V
13R
0.30
0.80
1.30
V
14R
0.30
0.80
1.30
V
12G
0.30
0.80
1.30
V
13G
2.15
2.40
2.65
V
14G
0.30
0.80
1.30
V
12B
0.30
0.80
1.30
V
13B
0.30
0.80
1.30
RGB output mode
V
14B
(Note T14)
2.15
2.40
2.65
V
1
56 66
76
2
72
82
92
IRE
1
0.49
1.24
1.99
2
-
1.67
-
0.92
-
0.17
Y-OUT
characteristic
3
(Note T15)
-
4.59
-
3.84
-
3.09
dB
BS
Pmin
37 42 47
BS
Pcnt
72 77 82
BS
Pmax
101 106 111
IRE
BS
Gmin
2.1 3.1 4.1
BS
Gcnt
6.4 7.4 8.4
White-peak blue characteristic
BS
Gmax
(Note T16)
9
10
11
dB
Forced BLK input threshold voltage
V
BLKIN
Pin 79
5.1 5.6 6.1 V
ACBR
1
ACBG
2
ACBB
3
H
V
ACB1R
0.15 0.20 0.25
V
ACB1G
0.15 0.20 0.25
V
ACB1B
0.15 0.20 0.25
V
ACB2R
0.27 0.32 0.37
V
ACB2G
0.27 0.32 0.37
V
ACB2B
0.27 0.32 0.37
V
ACB3R
0.52 0.57 0.62
V
ACB3G
0.52 0.57 0.62
ACB insertion pulse phase and
amplitude
V
ACB3B
(Note T17)
0.52 0.57 0.62
Vp-p
IK
R
0.73
0.93
1.13
IK
G
0.73
0.93
1.13
IK input amplitude
IK
B
(Note T18)
0.73
0.93
1.13
Vp-p
DIK
in
+
3.00 3.30 3.60
IK input cover range
DIK
in
-
(Note T19)
-
0.50
-
0.30
-
0.10
V
TA1360AFG
2003-01-21
37
Characteristics Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
G
TXR
3.03
3.40
3.83
G
TXG
3.03
3.40
3.83
Analog RGB gain
G
TXB
(Note T20)
3.03
3.40
3.83
times
G
TXG/R
0.94
1.00
1.06
Analog RGB gain 3-axis difference
G
TXB/R
0.94
1.00
1.06
Gf
TXR
30 35
Gf
TXG
30 35
Analog RGB frequency characteristic
Gf
TXB
At
-
3dB
30 35
MHz
DR
24
0.80
1.20
1.50
DR
25
0.80
1.20
1.50
Analog RGB input dynamic range
DR
26
0.80
1.20
1.50
Vp-p
TXV
WPSR
2.45 2.70 2.95
TXV
WPSG
2.45 2.70 2.95
Analog RGB white peak slice level
TXV
WPSB
(Note T21)
2.45 2.70 2.95
Vp-p
V
BPSR
1.15 1.30 1.45
V
BPSG
1.15 1.30 1.45
Analog RGB black peak limit level
V
BPSB
(Note T22)
1.15 1.30 1.45
V
v
uTXR
15.5 16.5 18.5
v
uTXG
15.5 16.5 18.5
RGB contrast adjustment
characteristic
v
uTXB
(Note T23)
15.5 16.5 18.5
dB
V
brTXmax
3.0 3.2 3.4
V
brTXcnt
2.6 2.8 3.0
Analog RGB bright adjustment
characteristic
V
brTXmin
(Note T24)
2.1 2.3 2.5
V
Analog RGB mode switching voltage
V
TXON
Pin
2
0.65 0.85 1.05 V
RYS
15
50
tP
RYS
20
50
t
RYS
0
10
FYS
10
50
tP
RYS
30
50
Analog RGB mode switching transfer
characteristic
t
RYS
(Note T25)
0
10
ns
TXACL
1
-
6.7
-
4.7
-
2.7
Text ACL characteristic
TXACL
2
(Note T26)
-
16.5
-
14.5
-
12.5
dB
G
OSDR
2.95 3.30 3.70
G
OSDG
2.95 3.30 3.70
Analog OSD gain
G
OSDB
(Note T27)
2.95 3.30 3.70
times
G
OSDG/R
0.94
1.00
1.06
Analog OSD gain 3-axis difference
G
OSDB/R
0.94
1.00
1.06
Gf
OSDR
35
40
Gf
OSDG
35
40
Analog OSD frequency characteristic
Gf
OSDB
At
-
3dB
35
40
MHz
DR
18
0.80
1.20
1.50
DR
19
0.80
1.20
1.50
Analog OSD input dynamic range
DR
21
0.80
1.20
1.50
Vp-p
TA1360AFG
2003-01-21
38
Characteristics Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
OSDV
WPSR
2.45 2.70 2.95
OSDV
WPSG
2.45 2.70 2.95
Analog OSD input white peak slice
level
OSDV
WPSB
(Note T28)
2.45 2.70 2.95
Vp-p
OSDV
BPSR
1.30 1.45 1.60
OSDV
BPSG
1.30 1.45 1.60
Analog OSD black peak limit level
OSDV
BPSB
(Note T29)
1.30 1.45 1.60
V
V
UOSDR11
0.58 0.64 0.71
V
UOSDG11
0.58 0.64 0.71
V
UOSDB11
0.58 0.64 0.71
V
UOSDR10
0.47 0.53 0.59
V
UOSDG10
0.47 0.53 0.59
V
UOSDB10
0.47 0.53 0.59
V
UOSDR01
0.31 0.37 0.45
V
UOSDG01
0.31 0.37 0.45
V
UOSDB01
0.31 0.37 0.45
V
UOSDR00
0.19 0.22 0.24
V
UOSDG00
0.19 0.22 0.24
OSD contrast adjustment
characteristic
V
UOSDB00
(Note T30)
0.19 0.22 0.24
Vp-p
V
brOSD0
2.20 2.40 2.60
V
brOSD1
2.05 2.25 2.45
V
brOSD2
1.95 2.15 2.35
Analog OSD bright adjustment
characteristic
V
brOSD3
(Note T31)
1.80 2.00 2.20
V
V
OSDON1
Pin
80
2.05 2.30 2.55
Analog OSD mode switching voltage
V
OSDON2
Pin
1
2.05 2.30 2.55
V
RYS1
15
50
tP
RYS1
20
50
tP
RYS1
0
10
FYS1
10
50
tP
RYS1
30
50
tP
RYS1
0
10
RYS2
15
50
tP
RYS2
20
50
tP
RYS2
0
10
FYS2
10
50
tP
RYS2
30
50
Analog OSD mode switching transfer
characteristic
tP
RYS2
(Note T32)
0
10
ns
OSDACL
1
0.00
OSDACL
2
0.00
OSDACL
3
-
6.7
-
4.7
-
2.7
OSD ACL characteristic
OSDACL
4
(Note T33)
-
16.5
-
14.5
-
12.5
dB
TA1360AFG
2003-01-21
39
Characteristics Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
41TV
1
-
7
-
6
-
5
42TV
1
-
7
-
6
-
5
43TV
1
-
7
-
6
-
5
41TV
2
-
4
-
3
-
2
42TV
2
-
4
-
3
-
2
43TV
2
-
4
-
3
-
2
41TV
3
-
55
-
50
42TV
3
-
55
-
50
43TV
3
-
55
-
50
41OSD
1
-
6.5
-
5.5
-
4.5
42OSD
1
-
6.5
-
5.5
-
4.5
43OSD
1
-
6.5
-
5.5
-
4.5
41OSD
2
-
12.0
-
10.5
-
9.0
42OSD
2
-
12.0
-
10.5
-
9.0
43OSD
2
-
12.0
-
10.5
-
9.0
41OSD
3
-
40
-
30
42OSD
3
-
40
-
30
OSD blending characteristic
43OSD
3
(Note T34)
-
40
-
30
dB
Y
RGB input
V
V
A
-
50
-
45
Y
OSD input
V
V
O
-
55
-
45
RGB input
Y
V
A
V
-
50
-
45
RGB input
OSD input
V
A
O
-
50
-
45
OSD input
Y
V
O
V
-
45
-
40
OSD input
RGB input
V
O
A
Input: Signal 1
(f
o
=
4 MHz,
Amplitude 0.7 Vp-p)
-
50
-
45
RGB input in
three axes
-
50
-
40
Input crosstalk
OSD input in
three axes
Input: Signal 1
(f
o
=
1 MHz,
Amplitude 0.7 Vp-p)
-
50
-
40
dB
BLP
min
23 28 33
BLP
max
55 60 65
IRE
BLG
min
2.4 2.9 3.4
Blue stretch point/gain
BLG
max
(Note T35)
5.4 6.4 7.4
dB
BL
1
84 89 94
BL
2
89 94 99
BL
3
93 98 103
Blue stretch
correction
BL
4
(Note T36)
98 103 108
IRE
WPL1
16 21 25
WPL2
51 56 61
White letters improvement
WPL3
(Note T37)
97 102 107
Vp-p
TA1360AFG
2003-01-21
40
Sync Block
Characteristics Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
Sync input horizontal sync phase
S
PH
(Note HA01)
0.55 0.65 0.75
s
HD input horizontal sync phase
HD
PH
(Note HA02)
0.58 0.68 0.78
s
HD
DUTY1
0.5 2.0
HD
DUTY2
62 67 72
HD
DUTY3
99.5 98
Polarity detecting rage
HD
DUTY4
(Note HA03)
47.5 52.5 57.5
%
V
thS00
10 16 22
V
thS01
18 24 30
V
thS10
26 32 38
Sync input threshold amplitude
V
thS11
(Note HA04)
34 40 46
%
HD input threshold voltage
V
thHD
(Note HA05)
0.65 0.75 0.85 Vp-p
H
SFT
-
11 12.5 14
Horizontal picture position (phase)
adjustment variable range
H
SFT
+
(Note HA06)
11 12.5 14
%
Horizontal picture position (phase)
shift switching amount
H
SFT
5.2 6.7 9.2 %
Curve correction variable amount
H
#40
(Note HA07)
2.9 3.4 3.9 %
CP
S0
3.1 3.8 4.5
CP
W0
2.0 2.5 3.0
%
CP
V0
4.7 5.0 5.3 V
CP
S1
0 0.7 1.5
CP
W1
1.9 2.4 2.9
%
CP
V1
4.7 5.0 5.3 V
CP
S2
3.2 4.2 5.2
CP
W2
2.2 2.7 3.2
%
Clamp pulse phase/width/level
CP
V2
(Note HA08)
4.7 5.0 5.3 V
HBP
S00a
1.2 3.0 5.9
HBP
S00b
1.2 3.0 5.9
HBP
S01a
6.0 8.0 11.0
HBP
S01b
6.0 8.0 11.0
HBP
s10a
10.0 13.0 15.0
HBP
s10b
10.0 13.0 15.0
HBP
s11a
16.0 18.0 21.0
Black peak detection pulse phase
HBP
s11b
(Note HA09)
16.0 18.0 21.0
%
FBP threshold
V
thFBP
(Note HA10)
4.8 5.3 5.8 V
HVCO oscillation start voltage
V
VCO
Pin 42: Monitor, V
CC
voltage
3.0 4.0 5.0 V
H-OUT start voltage
V
HON
Pin 37: Monitor, V
CC
voltage
5.0 6.0 7.0 V
H-OUT stop voltage
V
HOFF
Pin 37: Monitor, V
CC
voltage 4.3 5.3 6.3 V
TH
A
38 41 43
H-OUT pulse duty
TH
B
(Note HB01)
44 47 49
%
TA1360AFG
2003-01-21
41
Characteristics Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
F15K
15.59 15.75 15.91
F28K
27.90 28.125 28.35
F31K
31.19 31.5 31.82
F33K
33.41 33.75 34.09
F37K
37.60 37.9 38.40
Horizontal free-run frequency
F45K
(Note HB02)
44.52 45.0 45.48
kHz
F15K
MIN
14.78 15.08 15.38
F15K
MAX
16.37 16.70 17.03
F28K
MIN
26.00 26.90 27.80
F28K
MAX
28.90 29.70 30.60
F31K
MIN
29.47 30.06 30.65
F31K
MAX
32.72 33.39 34.06
F33K
MIN
31.41 31.94 32.57
F33K
MAX
34.91 35.62 36.33
F37K
MIN
36.50 37.30 38.20
F37K
MAX
40.20 41.10 42.10
F45K
MIN
43.20 44.00 44.80
Horizontal oscillation frequency
variable range
F45K
MAX
(Note HB03)
47.85 48.65 49.45
kHz
BH15K
176 220 264
BH28K
320 400 480
BH31K
352 440 528
BH33K
376 470 564
BH37K
390 480 570
Horizontal oscillation control
sensitivity
BH45K
Hz/0.1 V (Note HB04)
520 650 780
V
HOH
4.8 5.1 5.2
H-OUT output voltage
V
HOL
(Note HB05)
0.1 0.3
V
Pin 55
V
fHSW1
1.7 2.0 2.3
V
fHSW2L
1.3 1.5 1.7
V
fHSW2M
4.3 4.5 4.7
Horizontal oscillation
frequency control voltage
threshold
Pin 41
V
fHSW2H
7.3 7.5 7.7
V
VDAC
1H
TEST
=
(00), DAC1
=
(0)
8.5
9.0
DAC1
VDAC
1L
TEST
=
(00), DAC1
=
(1)
0.3 0.7
VDAC
2H
TEST
=
(00), DAC2
=
(1)
8.5
9.0
DAC switch voltage
DAC2
VDAC
2L
TEST
=
(00), DAC2
=
(0)
0.3 0.7
V
VP output pulse width
VP
W
(Note V01)
4 4.5 5 H
000 VPt0
1278 1281 1284
001 VPt1
846 849 852
010 VPt2
722 725 728
011 VPt3
657 660 663
100 VPt4
610 613 616
101 VPt5
360 363 366
Vertical free-run
(maximum pull-in range)
110 VPt6
304 307 310
H
Vertical minimum pull-in range
T
VPULL
(Note V02)
47 48 49 H
TA1360AFG
2003-01-21
42
Characteristics Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
VBPP
0E
51 52 53
000
VBPP
0S
1099.5 1100.5 1101.5
VBPP
1E
51 52 53
001
VBPP
1S
729.5 730.5 731.5
VBPP
2E
49.5 50.5 51.5
010
VBPP
2S
599.5 600.5 601.5
VBPP
3E
49.5 50.5 51.5
011
VBPP
3S
544.5 545.5 546.5
VBPP
4E
51 52 53
100
VBPP
4S
499.5 500.5 501.5
VBPP
5E
51 52 53
101
VBPP
5S
289.5 290.5 291.5
VBPP
6E
(Note V03)
51 52 53
H
Vertical black peak detection
pulse
110
VBPP
6S
239.5 240.5 241.5
V
BLKMIN
15 16 17
Vertical blanking end phase
V
BLKMAX
(Note V04)
45 46 47
H
High V
VPH
4.6 5.0 5.4
VP output voltage
Low V
VPL
pin 35 voltage
0.1 0.5
V
15.75 kHz
10.0 11.6 13.4
28.125 kHz
5.4 6.4 8.8
31.5 kHz
4.8 5.8 7.6
33.75 kHz
4.4 5.4 7.2
37.9 kHz
3.9 4.8 6.6
SYNC input to VP output delay time
45 kHz
3.1 4.1 5.9
s
CBLK1
000min
1087 1088 1089
000
CBLK1
000max
1117 1118 1119
CBLK1
001min
719 720 721
001
CBLK1
001max
749 750 751
CBLK1
010min
591 592 593
010
CBLK1
010max
621 622 623
CBLK1
011min
527 528 529
011
CBLK1
011max
557 558 559
CBLK1
100min
487 488 489
100
CBLK1
100max
517 518 519
CBLK1
101min
279 280 281
101
CBLK1
101max
309 310 311
CBLK1
110min
223 224 225
Compression BLK 1
(start phase)
110
CBLK1
110max
253 254 255
H
TA1360AFG
2003-01-21
43
Characteristics Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
CBLK2
000min
49 50 51
000
CBLK2
000max
77 78 79
CBLK2
001min
49 50 51
001
CBLK2
001max
77 78 79
CBLK2
010min
49 50 51
010
CBLK2
010max
77 78 79
CBLK2
011min
49 50 51
011
CBLK2
011max
77 78 79
CBLK2
100min
49 50 51
100
CBLK2
100max
77 78 79
CBLK2
101min
49 50 51
101
CBLK2
101max
77 78 79
CBLK2
110min
49 50 51
Compression BLK 2
(end phase)
110
CBLK2
110max
77 78 79
H
External V-BLK input current
I
EXTBLK
Pin 35 input current
520 625 780
A
TA1360AFG
2003-01-21
44
Test Condition for Picture Quality (Sharpness) Block
Common Test Condition for Picture Quality (Sharpness) Block
1. SW67
=
SW66
=
B, SW63
=
B, SW60 to SW61
=
B, SW44
=
ON, SW40
=
B, SW18 to SW26
=
A, SW77
=
OPEN
2.
Send bus control data as preset values, turn ACB operation switching to ACB OFF (00), select Sync input (1), turn P-MODE to Normal 1(000), WPL-LEVEL to
max (111), and change subaddress (1C) to (03).
3.
Input sync signal, which is in sync with input signal for testing except "Sweep", to #53 (Sync input). "H-Freq." should be the same frequency as the one of #53.
4.
Set Y/color difference input mode to (0), sync separator level to 20 % (01), and vertical free-running frequency to 307H (110).
Test Conditions
SW Mode
Note No.
Characteristics
SW71 SW70 SW68 SW64 SW74
Test Method (Test condition: V
CC
=
9 V/2 V, Ta
=
25
3
C)
P01
Black detection level shift
B
C
C
B
OPEN 1. Connect external power supply PS to #68, and monitor #70 and #74.
2. Set black stretch point 1 to OFF (000), and black detection level to 0 IRE (1).
3. Increase PS voltage from 4.95 V in steps of 1 mV. At the moment when #70 picture period (High) drops to
Low level, monitor DC difference on #74 V
B
.
4. Set black detection level to 3 IRE (0).
5. Repeat the step 3 above and monitor DC difference, V
B3
on #74.
P02
Black stretch amp maximum
gain
B
A
A
B
OPEN 1. Set SW70 to A (maximum gain), and input 500-kHz sine wave to TPA.
2. Adjust signal amplitude to 0.1 Vp-p on #68.
3. Set black stretch point 1 to OFF (000), and measure #74 amplitude V
A
.
4. Set black stretch point 1 to 001 (black stretch ON), and measure #74 amplitude V
B
.
5. Calculate GBS using a following equation.
GBS
=
20
og
l
(V
B
V
A
) [dB]
V
B
, V
B3
#74 waveform
#70 waveform
TA1360AFG
2003-01-21
45
Test Conditions
SW Mode
Note No.
Characteristics
SW71 SW70 SW68 SW64 SW74
Test Method (Test condition: V
CC
=
9 V/2 V, Ta
=
25
3
C)
P03
Black stretch start point 1
A
A
C
B
OPEN 1. Set SW70 to A (maximum gain), and black stretch point 1 to OFF (000). Apply 0 V to #71.
2. Connect external power supply PS to #68, increase voltage from V
3
, and plot #74 voltage change S1. The
#74 voltage is set as V
0
when V
3
is applied, and as V
100
when V
3
+
0.7 V is applied.
3. Set black stretch point 1 to minimum (001), increase PS voltage from V
3
, and then plot #74 voltage change
S2.
4. Set black stretch point to maximum (111), repeat 3 above, then plot #74 voltage change S3.
5. Determine intersection points of S1, S2 (V
BST1
), and S3 (V
BST2
) as shown in the figure below. Also
calculate P
BST1
and P
BST2
using following equations.
V
Z
[V]
=
V
100
[V]
-
V
0
[V]
P
BST1
[(IRE)]
=
[(V
BST1
[V]
-
V
74
[V])
V
Z
]
100 (IRE)
P
BST2
[(IRE)]
=
[(V
BST2
[V]
-
V
74
[V])
V
Z
]
100 (IRE)
#74
#68
V
74
V
BST1
V
BST2
S3
S2
S1
TA1360AFG
2003-01-21
46
Test Conditions
SW Mode
Note No.
Characteristics
SW71 SW70 SW68 SW64 SW74
Test Method (Test condition: V
CC
=
9 V/2 V, Ta
=
25
3
C)
P04
Black stretch start point 2
A
A
A
B
ON
1. Set black stretch point 1 to OFF (000), apply 0 V to #71, input TG7 LINEARITY to TPA, adjust amplitude on
#68 as shown in the figure below, set unicolor to center (1000000), and measure amplitude of #12 (R OUT),
V
P12
.
2. Set black stretch point 1 to 001 (black stretch ON), connect external power supply PS to #74, and monitor
#12 (R OUT).
3. Set black stretch start point 2 data to minimum (00). When PS is V
74
(APL 0%), and V
74
+
1.0 V (APL
100%), determine black stretch start point difference
V
00
as shown in the figure below. (Monitor input
waveform and output waveform with an oscilloscope, adjust the both waveforms to have the same amplitude
(gradient), and compare them to determine the bend point of the output.)
4. Set black stretchstart point 2 data to maximum (11), determine black stretch start point difference
V1
1
.
5. Calculate
following
equations.
P
BS1
=
(
V
00
/V
P12
)
100
P
BS2
=
(
V
11
/V
P12
)
100
APL 0%
#68 waveform (linearity)
0.7 V
p-p
0.3 V
p-p
V
***
#12 (R OUT)
APL 100%
LINEARITY
TA1360AFG
2003-01-21
47
Test Conditions
SW Mode
Note No.
Characteristics
SW71 SW70 SW68 SW64 SW74
Test Method (Test condition: V
CC
=
9 V/2 V, Ta
=
25
3
C)
P05
Black stretch characteristic
switch
A
A
C
B
OPEN 1. Set SW70 to A (maximum gain), black stretch point 1 (18) to maximum (E0), subaddress (1C) data to (00)
and (1E) data to (08).
2. Apply 0 V to #71 and connect external power supply PS to #68. Set PS to V
68
+
0.7 V, and adjust unicolor so
that DC level of #12 is
+
1.0 V. Plot voltage change S4 of #12 (voltage in picture period).
3. Determine intersection points (V
BSC1
and V
BSC2
) of S2 and S4 obtained from the plot in black stretch start
point 1. Then calculate P
BSC1
and P
BSC2
using following equation.
4. Set black stretch characteristic switch subaddress data (1C)/(1E) to (20)/(00) and (20)/(08) respectively. As
described in steps 2 and 3, determine intersection points (V
BSC3
, V
BSC4
, V
BSC5
and V
BSC6
) and calculate
P
BSC3
,
P
BSC4
,
P
BSC5
and
P
BSC6.
P
BSC
*
=
(V
BSC
*
[V]
-
V
12
[V])
1.0
100 [(IRE)]
V
12
V68
S4 Black stretch characteristic switch ON
V
BSC2
V
BSC1
#12
S2
V
68
+
0.7 V
#68
TA1360AFG
2003-01-21
48
Test Conditions
SW Mode
Note No.
Characteristics
SW71 SW70 SW68 SW64 SW74
Test Method (Test condition: V
CC
=
9 V/2 V, Ta
=
25
3
C)
P06 Black
stretch
area
reinforcement current
B
C
B
ON
1. Connect external power supply PS1 to #68.
2. Leave SW70 open, put an ammeter between SW70A and #70, connect external power supply PS2 to SW70A,
set PS1 to 5.7 V, and set PS2 to 5 V.
3. Measure current value IBSA0 and IBSA1 when bus data of black stretch area reinforcement [18] is set to ON
[80] and OFF [81]. Calculate IBSA using the following equation.
IBSA
=
IBSA0
-
IBSA1
P07
D.ABL detection voltage
B
A
C
B
OPEN 1. Set D.ABL sensitivity to maximum (11), and black stretch point 1 to OFF (000).
2. Connect external power supply PS to #78 and decrease voltage from 6.5 V.
3. Repeat 2 when D.ABL detection voltage is changed to 00, 01, 10, and 11. At the moment when #74 picture
period changes to Low, measure respective PS voltages V
00
, V
01
, V
10
, and V
11
.
4. Calculate voltage differences between V
00
and V
01
(DV
01
), between V
00
and V
10
(DV
10
), and between V
00
and V
11
(DV
11
)
DV
***
=
V
00
-
V
01
(V
10
, V
11
)
#70 waveform
#74 detected
#74 undetected
mmeter
SW70
PS2
5 V
A
TA1360AFG
2003-01-21
49
Test Conditions
SW Mode
Note No.
Characteristics
SW71 SW70 SW68 SW64 SW74
Test Method (Test condition: V
CC
=
9 V/2 V, Ta
=
25
3
C)
P08
D.ABL sensitivity
B
A
C
B
ON
1. Set black stretch point 1 to OFF (000), and connect external power supply to #78.
2. Set D.ABL detection voltage to minimum (00). Interrelation between #78 voltage and #74 voltage when
D.ABL sensitivity is set to minimum (00) and maximum (11) can be plotted as figure shown below.
3. Measure gradients SDAMIN and SDAMAX using the figure below.
S
DAMIN
=
Y/
X S
DAMAX
=
Y/
X
Y
#78
X
100%
10%
10%
#74
TA1360AFG
2003-01-21
50
Test Conditions
SW Mode
Note No.
Characteristics
SW71 SW70 SW68 SW64 SW74
Test Method (Test condition: V
CC
=
9 V/2 V, Ta
=
25
3
C)
P09
Black level correction
B
A
A
B
OPEN 1. Set black stretch point 1[18] to OFF (00).
2. Input signal of 0.7-V picture period amplitude to #68, and measure #12 picture period amplitude VB [V].
3. Set black level correction [18] to ON [04], determine DC change VBLC [V], and calculate BLC [V] using the
following equation
BLC
=
(VBLC/VB)]
100 [(IRE)]
VB
#12
VBLC
Black level correction ON
Black level correction OFF
TA1360AFG
2003-01-21
51
Test Conditions
SW Mode
Note No.
Characteristics
SW71 SW70 SW68 SW64 SW74
Test Method (Test condition: V
CC
=
9 V/2 V, Ta
=
25
3
C)
P10 Dynamic
Y
correction point
A
B
C
B
OPEN 1. Connect external power supply PS1 to #68, PS2 to TP1, and set PS2 to 0 V.
2. Set dark area dynamic Y
gain VS dark area to MIN (00), static Y
gain1 to OFF (000).
3. Increase PS1 from V
68
[V] to V
68
[V]
+
0.7 V and plot voltage change of #12 picture period. Take 0 for V
68
[V] when the change is plotted. (V
68
is pin voltage of pin 68)
4. Set dark area dynamic Y
gain VS dark area max (11), static Y
gain1 to max (111) and PS2 to 1.2 V.
5. Increase PS1 from V
68
[V] to V
68
[V]
+
0.7 V and plot voltage change of #12 picture period.
6. Measure VDGP by the following figure, and P
DGP
using the following equation.
DGP
=
(VDGP [V]
-
V
68
[V])/0.7 [V]
100
OFF
ON
#12 voltage [V]
#68 voltage [V]
VDGP
V
68
+
0.7V
(100 IRE)
V
68
TA1360AFG
2003-01-21
52
Test Conditions
SW Mode
Note No.
Characteristics
SW71 SW70 SW68 SW64 SW74
Test Method (Test condition: V
CC
=
9 V/2 V, Ta
=
25
3
C)
P11 Dark
area
dynamic
Y
gain
A
B
C
B
OPEN 1. Connect external power supply PS1 to #68, external power supply PS2 to TP1, and set PS2 to 0 V.
2. Set dark area dynamic Y
gain [1C] to MIN [03], and dark area static Y
gain [1C] to 0dB [17].
3. Set PS1 to V
68
[V], and measure #12 picture period voltage VDDGV
68
[V].
Set PS1 VDGP [V], and measure #12 picture period voltage VDDGMIN [V].
4. Set dark area dynamic Y
gain [1C] to MAX [D7], PS2 to 1.2 V, measure voltage VDDGMAX [V] of #12
picture period when PS1 is VDGP [V], and calculate the following equations.
VDDGMAX
-
VDDGMIN
=
A
VDDGMIN
-
VDDGV
68
=
B
GDDGMAX
=
20 og
l
[B/(B-A)] [dB]
OFF
ON
#12 voltage [V]
#68 voltage [V]
VDGP
VDDGV
68
VDDGMIN
VDDGMAX
VDDGMIN
-
VDDGV
68
=
B
VDDGMAX
-
VDDGMIN
=
A
V
68
V
68
+
0.7 V
(100IRE)
TA1360AFG
2003-01-21
53
Test Conditions
SW Mode
Note No.
Characteristics
SW71 SW70 SW68 SW64 SW74
Test Method (Test condition: V
CC
=
9 V/2 V, Ta
=
25
3
C)
P12
Dark area static Y
gain
A
B
C
B
OPEN 1. Connect external power supply PS1 to #68, external power supply PS2 to TP1, and set PS2 to 0 V.
2. Set dark area dynamic Y
gain [1C] to MIN [03], and dark area static Y
gain [1C] to OFF [03].
3. Set PS1 to V
68
[V], and measure #12 picture period voltage VSGOFF1 [V].
4. Set PS1 to VDGP [V], and measure #12 picture period voltage VSGOFF2 [V].
5. Set dark area static Y
gain [1C] to MAX [1F], PS1 to VDGP [V], measure #12 picture period voltage
VSGMAX, and calculate GDSGMAX using the following equations.
VSGMAX
-
VSGOFF2
=
A
VSGOFF2
-
VSGOFF1
=
B
GDSGMAX
=
20
og
l
[B/(B - A)] [dB]
6. Set dark area static Y
gain [1C] to MIN [07], PS1 to VDGP [V], measure #12 picture period voltage VSGMIN,
and calculate GDSGMIN using the following equation.
GDSGMIN
=
20
og
l
[(VSGMIN
-
VSGOFF1)/(VSGOFF2
-
VSGOFF1)] [dB]
OFF
ON
#12 voltage [V]
#68 voltage [V]
VDGP
VSGOFF1
VSGOFF2
VSGMAX
VSGMAX
-
VSOFF2
=
A
V
68
V
68
+
0.7 V
(100IRE)
VSGOFF2
-
VSGOFF1
VSGMIN
-
VSGOFF1
OFF
ON
#12 voltage [V]
#68 voltage [V]
VDGP
VSGOFF1
VSGOFF2
VSGMIN
V
68
V
68
+
0.7 V
(100IRE)
TA1360AFG
2003-01-21
54
Test Conditions
SW Mode
Note No.
Characteristics
SW71 SW70 SW68 SW64 SW74
Test Method (Test condition: V
CC
=
9 V/2 V, Ta
=
25
3
C)
P13 Light
area
Y
correction point
A
B
C
A
OPEN 1. Connect external power supply PS1 to #68, external power supply PS2 to TP1, and set PS2 to 0 V.
2. Set dark area static Y
gain [1C] to 0dB [17], and bright area static Y
gain [1C] to 0dB [17].
3. Increase PS1 from V
68
[V] to V
68
[V] + 0.7 [V], and plot the voltage change of #12 picture period. Take 0 for
V
68
[V] when the change is plotted. (V
68
is pin voltage of pin 68)
4. Set light area static Y
gain [1C] to MAX [04].
5. Increase PS1 from V
68
[V] to V
68
[V]
+
0.7 [V], and plot the voltage change of #12 picture period.
6. Measure VLGP using the following figure, and PLGP using the following equation.
LGP
=
(VLGP [V]
-
V
68
[V])/0.7 [V]
100 (IRE)
#12 voltage [V]
OFF
ON
#68 voltage
VLGP
V
68
V
68
+
0.7 V
(100IRE)
TA1360AFG
2003-01-21
55
Test Conditions
SW Mode
Note No.
Characteristics
SW71 SW70 SW68 SW64 SW74
Test Method (Test condition: V
CC
=
9 V/2 V, Ta
=
25
3
C)
P14
Light area dynamic Y
gain
A
B
C
A
OPEN 1. Connect external power supply PS1 to #68, external power supply PS2 to TP7, and set PS2 to 1.2 V.
2. Set dark area static Y
gain [1C] to 0dB [17], and light area static Y
gain [1C] to 0dB [17].
3. Set PS1 to V
68
[V], and measure #12 picture period voltage VLDGOFF1.
4. Set PS1 to VLGP [V], and measure #12 picture period voltage VLDGOFF2.
5. Set light area static Y
gain [1C] to MAX [14], PS2 to 0 V, PS1 to VLGP [V], determine #12 picture period
voltage VLDGMAX [V] using the following equations.
VLDGMAX
-
VLDGOFF2
=
A
VLDGOFF2
-
VLDGOFF1
=
B
GLDG
=
20
og
l
[B/(B
-
A)]
VLDGMAX
-
VLDGOFF2
=
A
VLDGOFF2
-
VLDGOFF1
=
B
OFF
ON
#12 voltage [V]
#68 voltage
VLGP
VLDGOFF1
VLDGOFF2
VLDGMAX
V
68
V
68
+
0.7 V
(100IRE)
TA1360AFG
2003-01-21
56
Test Conditions
SW Mode
Note No.
Characteristics
SW71 SW70 SW68 SW64 SW74
Test Method (Test condition: V
CC
=
9 V/2 V, Ta
=
25
3
C)
P15
Light area static Y
gain
B
B
C
A
OPEN 1. Connect external power supply PS1 to #68, external power supply PS2 to TP7, and set PS2 to 0 V.
2. Set dark area static Y
gain [1C] to 0dB [17], and light area static Y
gain [1C] to 0dB [17].
3. Set PS1 to V
68
[V], and measure #12 picture period voltage VLSGOFF1 [V].
4. Set PS1 to VLGP [V], and measure #12 picture period voltage VLDGOFF2 [V].
5. Set light area static Y
gain [1C] to MAX [14], PS1 to VLGP [V], measure #12 picture period voltage
VlSGMAX, and calculate GLASGMAX [dB] using the following equations.
VLSGMAX
-
VLSGOFF2
=
A
VLSGOFF2
-
VLSGOFF1
=
B
GLSGMAX
=
20
og
l
[B/(B
-
A)] [dB]
6. Set light area static Y
gain [1C] to MIN [16], PS1 to VLGP [V], measure #12 picture period voltage
VLSGMIN, and calculate GLASGMIN [dB] using the following equations.
VLSGMIN
-
VLSGOFF2
=
C
VLSGOFF2
-
VLSGOFF1
=
B
GLSGMIN
=
20
og
l
[B/(B
-
C)] [dB]
VLSGMIN
-
VLDGOFF2
=
C
VLSGOFF2
-
VLSGOFF1
=
B
OFF
ON
#12 voltage [V]
#68 voltage [V]
VLGP
VLSGOFF1
VLSGMIN
V
68
V
68
+
0.7 V
(100IRE)
VLSGMAX
-
VLDGOFF2
=
A
VLSGOFF2
-
VLSGOFF1
=
B
OFF
ON
#12 voltage [V]
#68 voltage [V]
VLGP
VLSGOFF1
VLSGOFF2
VLSGMAX
V
68
V
68
+
0.7 V
(100IRE)
TA1360AFG
2003-01-21
57
Test Conditions
SW Mode
Note No.
Characteristics
SW71 SW70 SW68 SW64 SW74
Test Method (Test condition: V
CC
=
9 V/2 V, Ta
=
25
3
C)
P16 Dark
area
detection
sensitivity
A
B
A
A
OPEN 1. Input the signal whose picture period amplitude is 0.18 V to #68 as shown in the figure below.
2. Measure #71 pin voltage DAMIN, DACEN, and DAMAX [V] when dark area detection sensitivity [1D] is set to
MIN [00], CEN [04] and MAX [07].
#68
0.18 V
#71
DAMIN
CEN
MAX [V]
TA1360AFG
2003-01-21
58
Test Conditions
SW Mode
Note No.
Characteristics
SW71 SW70 SW68 SW64 SW74
Test Method (Test condition: V
CC
=
9 V/2 V, Ta
=
25
3
C)
P17 DC
restoration
rate
correction
gain
B
B
C
B
ON
1. Set DC restoration rate correction point to minimum (000), DC restoration rate correction limit point to 80%
(11), and connect external power supply PS1 to #68.
2. Monitor DC level of #12 picture period. Set PS1 to V
68
+
0.7 V, and adjust uncolor so that DC level is
+
0.7.
3. Set DC restoration correction rate to minimum (000), and measure V
DT1
and V
DT2
of V
68
[V] and V
68
+
0.1
V as shown in the figure below.
4. Set #68 to V
68
+
0.1 V, DC restoration correction rate to maximum (111), and measure V
DT3
.
5. Set DC restoration correction rate SW to less than 100 % (1), #68 to V
68
+
0.1 V, DC restoration correction
rate to maximum (111), and measure V
DT4
.
6. Calculate
ADT
100
, ADT
135
, and ADT
65
using following equations.
ADT
100
=
(V
DT2
[V]
-
V
DT1
[V])
0.1 [V]
ADT
135
=
(V
DT3
[V]
-
V
DT1
[V])
0.1 [V]
ADT
65
=
1
-
( (V
DT2
[V]
-
V
DT4
[V])
0.1 [V])
Picture period
V
DT1
V
68
[V]
V
DT2
V
DT3
V
DT4
V
68
+
0.1 V
#12 waveform
TA1360AFG
2003-01-21
59
Test Conditions
SW Mode
Note No.
Characteristics
SW71 SW70 SW68 SW64 SW74
Test Method (Test condition: V
CC
=
9 V/2 V, Ta
=
25
3
C)
P18 DC
restoration
rate
correction
point
B
B
C
B
ON
1. Set DC restoration rate correction point to minimum (000), DC restoration rate correction limit point to 80%
(11), and connect external power supply PS1 to #68.
2. Monitor DC level of #12 picture period. Set PS1 to V
68
+
0.7 V, and adjust unicolor so that DC level is
+
1.0.
3. Set DC restoration correction rate to minimum (000), and increase PS1 from V
68
. Plot relation between #74
(DC voltage) and #12 (voltage in picture period).
4. Set DC restoration correction rate to maximum (111), and increase PS1 from V
68
. Plot relation between #74
and #12.
5. Set DC restoration correction rate to maximum (111), DC restoration rate correction point (111), and increase
PS1 from V
68
. Plot relation between #74 and #12.
6. Determine
V
DT0
, and V
DT1
using the following equations.
V
DT0
= [(V
SP0
-
V
74
)/1 V]
100%
V
DT1
= [(V
SP1
-
V
74
)/1 V]
100%
DC restoration correction
rate 000
DC restoration rate correction
point 111
DC restoration rate
correction point 000
#74
V
SP1
V
SP0
V
PC
#12
TA1360AFG
2003-01-21
60
Test Conditions
SW Mode
Note No.
Characteristics
SW71 SW70 SW68 SW64 SW74
Test Method (Test condition: V
CC
=
9 V/2 V, Ta
=
25
3
C)
P19 DC
restoration
rate
correction
limit point
B
B
B
C
ON
1. Set unicolor to maximum (1111111), DC restoration rate correction point to minimum (000), and connect
external power supply PS1 to #74.
2. Set DC restoration correction rate to maximum (111).
3. Increase PS from 5 V. Monitor #12, and plot DC restoration correction amount.
4. Repeat the step 3 above by changing data at DC restoration rate correction limit point. Measure the value
using the figure below. Calculate P
DTL60
, P
DTL75
, P
DTL87
, and P
DTL100
using following equations.
P
DTL60
= [(V
L60
-
V
74
)/1.0]
100%
P
DTL75
= [(V
L75
-
V
74
)/1.0]
100%
P
DTL87
= [(V
L87
-
V
74
)/1.0]
100%
P
DTL100
= [(V
L100
-
V
74
)/1.0]
100%
100% (00)
87% (01)
73% (10)
60% (11)
V
L87
V
L100
V
L75
V
L60
#74
#12
TA1360AFG
2003-01-21
61
Test Conditions
SW Mode
Note No.
Characteristics
SW71 SW70 SW68 SW64 SW74
Test Method (Test condition: V
CC
=
9 V/2 V, Ta
=
25
3
C)
P20
DC fluctuation at switching
sharpness control peak
frequency
B
B
A
B
ON
1. Set unicolor [05] to MAX [7F], SRT gain [19] to MIN [00], and CDE [15] to CEN [80]. Input setup signal
(0.2 Vp-p) to TPA as shown in the figure below.
2. Set sharpness [09] to MIN [00] and MAX [80]. Monitor #43, measure DC level VRDCMIN and VRDCMAX [V].
Calculate VRDC [V] using the following equation.
VRDC
=
VRDCMIN
-
VRDCMAX
[V]
#68
0.2 V
#12
VRDC
*
TA1360AFG
2003-01-21
62
Test Conditions
SW Mode
Note No.
Characteristics
SW71 SW70 SW68 SW64 SW74
Test Method (Test condition: V
CC
=
9 V/2 V, Ta
=
25
3
C)
P21
Sharpness control range
B
B
A
B
ON
1. Input sine wave to TPA. (The frequency is variable.)
2. Set #68 amplitude to 20 mVp-p.
3. Set unicolor to maximum (1111111), SRT-GAIN to minimum (00000), APACON peak frequency to 13.5 M
(00), and color detail enhancer (CDE) to center (10).
4. Set picture mute to OFF (P-MODE: Normal 1, 000), and monitor #12.
5. Set picture sharpness to center (1000000). Set input frequency to 100 kHz, and measure the amplitude V
100
.
6. Set picture sharpness to maximum (1111111). Set input frequency to F
AP00
, measure the amplitude V
MAX00
,
and calculate G
MAX00
using the following equations.
7. Set picture sharpness to minimum (0000000). Set input frequency to F
AP00
, measure the amplitude V
MIN00
,
and calculate G
MIN00
using the following equations.
8. Set APACON peak frequency to 9.5 M (01). Set input frequency to F
AP01
, measure V
MAX01
/V
MIN01
and
calculate G
MAX01
/G
MIN01
.
9. Set APACON peak frequency to 6.4 M (10). Set input frequency to F
AP10
, measure V
MAX10
/V
MIN10
and
calculate G
MAX10
/G
MIN10
.
10. Set APACON peak frequency to 4.5 M (11). Set input frequency to F
AP11
, measure V
MAX11
/V
MIN11
and
calculate G
MAX11
/G
MIN11
.
G
MAX
***
=
20
og
l
(V
MAX
***
V
100
) [dB]
G
MIN
***
=
20
og
l
(V
MIN
***
V
100
) [dB]
Note: When a spectrum analyzer is used, measure gain for low frequency.
TA1360AFG
2003-01-21
63
Test Conditions
SW Mode
Note No.
Characteristics
SW71 SW70 SW68 SW64 SW74
Test Method (Test condition: V
CC
=
9 V/2 V, Ta
=
25
3
C)
P22 Sharpness
control
center
characteristic
B
B
A
B
ON
1. Input sine wave to TPA. (The frequency is variable.)
2. Set the amplitude of #68 to 20 mVp-p.
3. Set unicolor to maximum (1111111), SRT-GAIN to minimum (00000), APACON peak frequency to 13.5 M
(00), and color detail enhancer (CDE) to center (10).
4. Set picture mute to OFF (P-MODE: Normal 1, 000), and monitor #12.
5. Set picture sharpness to center (1000000). Set input frequency to 100 kHz, and measure the amplitude
V
100
.
6. Set picture sharpness to center (1000000). Set input frequency to F
AP00
, measure #12 amplitude V
CEN00
,
and calculate G
CEN00
using the following equations.
7. Set APACON peak frequency to 9.5 M (01). Set input frequency to F
AP01
, measure V
CEN01
and calculate
G
CEN01
.
8. Set APACON peak frequency to 6.4 M (10). Set input frequency to F
AP10
, measure V
CEN10
and calculate
G
CEN10
.
9. Set APACON peak frequency to 4.5 M (11). Set input frequency to F
AP11
, measure V
CEN11
and calculate
G
CEN11
.
G
CEN
***
=
20
og
l
(V
CEN
***
V
100
) [dB]
Note: When a spectrum analyzer is used, measure gain for low frequency.
TA1360AFG
2003-01-21
64
Test Conditions
SW Mode
Note No.
Characteristics
SW71 SW70 SW68 SW64 SW74
Test Method (Test condition: V
CC
=
9 V/2 V, Ta
=
25
3
C)
P23 2T
pulse
response
SRT
control
B
B
A
B
ON
1. Input 2T pulse (0.7 Vp-p) signal to TPA. Set unicolor to maximum (1111111), SRT-GAIN to minimum
(00000), CDE to center (10) picture sharpness control to center (1000000).
2. Set APACON peak frequency to13.5 M (00), and monitor #12.
3. Measure
T
SRTMIN00
and V
SRTMIN00
as shown in the figure below.
4. Set SRT-GAIN to maximum (11111), and measure T
SRTMAX00
and V
SRTMAX00
.
5. Set APACON peak frequency to 9.5 M (01). Set SRT-GAIN to minimum (00000) and maximum (11111).
Measure T
SRTMIN01
/V
SRTMIN01
and T
SRTMAX01
/ V
SRTMAX01
.
6. Set APACON peak frequency to 6.4 M (10). Set SRT-GAIN to minimum (00000) and maximum (11111).
Measure T
SRTMIN10
/V
SRTMIN10
and T
SRTMAX10
/ V
SRTMAX10
.
7. Set APACON peak frequency to 4.5 M (11). Set SRT-GAIN to minimum (00000) and maximum (11111).
Measure T
SRTMIN11
/V
SRTMIN11
and T
SRTMAX11
/V
SRTMAX11
.
8. Calculate the following equations.
T
SRT00
=
20
og
l
[
((V
SRTMAX00
/T
SRTMAX00
)/(V
SRTMIN00
/T
SRTMIN00
))
T
SRT01
=
20
og
l
[(V
SRTMAX01
/T
SRTMAX01
)/(V
SRTMIN01
/T
SRTMIN01
)]
T
SRT10
=
20
og
l
[(V
SRTMAX10
/T
SRTMAX10
)/(V
SRTMIN10
/T
SRTMIN10
)]
T
SRT11
=
20
og
l
[(V
SRTMAX11
/T
SRTMAX11
)/(V
SRTMIN11
/T
SRTMIN11
)]
20%
100%
T
***
20%
V
***
TA1360AFG
2003-01-21
65
Test Conditions
SW Mode
Note No.
Characteristics
SW71 SW70 SW68 SW64 SW74
Test Method (Test condition: V
CC
=
9 V/2 V, Ta
=
25
3
C)
P24
VSM
gain
B B A B ON
1.
Input
sine
wave
of
F
VSM
frequency to TPA. Set #68 amplitude to 0.02 Vp-p.
2. Turn on SW77 and change VSM gain from minimum (001) to maximum (111). Measure #77 amplitude, V
001
,
V
011
, V
100
, V
101
, V
110
, and V
111
. Set input amplitude to 0.7 Vp-p, and VSM gain to OFF (000). Measure
TP77 amplitude V
000
.
3. Calculate the following equations.
G
V000
= 20
og
l
(V
000
/0.7) [dB]
G
V001
= 20
og
l
(V
001
/0.02) [dB]
G
V010
= 20
og
l
(V
010
/0.02) [dB]
G
V011
= 20
og
l
(V
011
/0.02) [dB]
G
V100
= 20
og
l
(V
100
/0.02) [dB]
G
V101
= 20
og
l
(V
101
/0.02) [dB]
G
V110
= 20
og
l
(V
110
/0.02) [dB]
G
V111
= 20
og
l
(V
111
/0.02) [dB]
P25
VSM limit
B
B
B
A
ON
1. Input sine wave of frequency F
VSM
to TPA.
2. Set VSM gain to 111, and #68 amplitude to 0.7 Vp-p.
3. Turn on SW77 and measure TP77 amplitude V
LU
and V
LD
[Vp-p] as shown in the figure below.
V
LU
V
LD
TA1360AFG
2003-01-21
66
Test Conditions
SW Mode
Note No.
Characteristics
SW71 SW70 SW68 SW64 SW74
Test Method (Test condition: V
CC
=
9 V/2 V, Ta
=
25
3
C)
P26
Y delay time switching
B
B
A
B
ON
1. Set unicolor to maximum (1111111), SRT-GAIN to minimum (00000), and input 2T pulse signal
(approximately 0.7 V (p-p)) to TPA.
2. Set picture sharpness to center (1000000).
3. Monitor #68 and #12 as shown in the figure below. Measure YDL00 that is the time difference between
signals #68 and #12.
4. Set Y/C-DL1 to
+
5 ns (1), and
measure YDL01 as shown in the
figure below.
5. Set Y/C-DL1 to 0 ns (0),
Y/C-DL2 to
+
10 ns (1) and
measure YDL10 as shown in the
figure below.
6. Set Y/C-DL1 to
+
5 ns (1),
Y/C-DL2 to
+
10 ns (1) and
measure YDL11 as shown in the
figure below.
7. Determine YDLA, YDLB, and
YDLC using the following
equations.
YDLA
=
YDL01
-
YDL00
YDLB
=
YDL10
-
YDL00
YDLC
=
YDL11
-
YDL00
2T pulse
Approximately
0.7 Vp-p
50%
50%
YDL00
#68
#12
YDL01
YDL10
YDL11
TA1360AFG
2003-01-21
67
Test Conditions
SW Mode
Note No.
Characteristics
SW71 SW70 SW68 SW64 SW74
Test Method (Test condition: V
CC
=
9 V/2 V, Ta
=
25
3
C)
P27
Y group delay correction
B
B
A
B
ON
1. Input Multi Burst signal (4.2-MHz frequency, 0.1 Vp-p at #68) of A signal in TPA. Set unicolor to maximum
(1111111), SRT-GAIN to minimum (00000), and Color detail enhancer (CDE) to minimum (00000).
2. Set sharpness to flat (DEC [30]),
APACON peak frequency to 4.5
M (11), and monitor #12.
3. Sine wave signal A input
becomes like signal B on #12 as
shown in the figure on the right.
Measure S
A
and S
B
.
4. When group delay correction is
set to minimum (0000), signal A
becomes like signal C on #12.
Measure S
AMIN
and S
BMIN
.
5. When group delay correction is
set to maximum (1111), signal A
becomes like signal D on #12.
Measure S
AMAX
and S
BMAX
.
6. Calculate the following equations.
G
AMIN
=
20
og
l
(S
AMIN
/S
A
) [dB]
G
BMIN
=
20
og
l
(S
BMIN
/S
B
) [dB]
G
AMAX
=
20
og
l
(S
AMAX
/S
A
) [dB]
G
BMAX
=
20
og
l
(S
BMAX
/S
B
) [dB]
Note: Sine wave input starts and ends within the picture period such as a burst signal. The wave is not
continuous.
Signal
A
Signal
B
Signal
C
Signal
D
S
A
S
B
S
AMIN
S
BMIN
S
BMAX
S
AMAX
TA1360AFG
2003-01-21
68
Test Conditions
SW Mode
Note No.
Characteristics
SW71 SW70 SW68 SW64 SW74
Test Method (Test condition: V
CC
=
9 V/2 V, Ta
=
25
3
C)
P28
Color detail enhancer (CDE)
B
B
A
B
ON
1. Set unicolor to maximum (1111111), SRT-GAIN to minimum (00000), color to center (1000000), and color
limiter level to 2 Vp (1). Input SWEEP signal to TPA so that #68 amplitude is 20 mVp-p. Set SW67 to A, and
input signal as shown in the figure below (#67 amplitude is 0.2 Vp-p) to TP67.
2. Set picture sharpness to center (1000000), Y detail control to center (1000), and monitor #14 with a spectrum
analyzer.
3. When CDE is at minimum (00), set low frequency area to 0dB, and determine peak level G
CDEMIN
.
4. When CDE is at maximum (11), set low frequency area to 0dB, and determine peak level G
CDEMAX
.
5. Calculate the following equation.
G
CDE00
=
G
CDEMAX00
-
G
CDEMIN00
6. When APACON peak frequency is 13.5 M (00), 9.5 M (01), 6.4 M (10), and 4.5 M (11), calculate G
CDE00
,
G
CDE01
, G
CDE10
, and G
CDE11
respectively using above equation.
max
Output gain [dB]
Input frequency [MHz]
0dB
picture period
BLK
period
0.2 Vp-p
min
TA1360AFG
2003-01-21
69
Test Conditions
SW Mode
Note No.
Characteristics
SW71 SW70 SW68 SW64 SW74
Test Method (Test condition: V
CC
=
9 V/2 V, Ta
=
25
3
C)
P29
Y detail control range
B
B
A
B
ON
1. Set unicolor to maximum (1111111), SRT-GAIN to minimum (00000), CDE to center (10), and APACON
peak frequency to 4.5 M (11). Input SWEEP signal to TPA.
2. Set #68 amplitude to 20mVp-p.
3. Set picture sharpness to center (1000000), Y detail control to maximum (1111), and monitor #12 with a
spectrum analyzer.
4. Set low frequency area to 0dB, and measure each peak level G
YDMAX
.
5. Set Y detail control to center (1000), and measure peak level G
YDCEN
.
6. Set Y detail control to minimum (0000), and measure peak level G
YDMIN
.
TA1360AFG
2003-01-21
70
Test Conditions for Color Difference Block 1: YUV input and matrix
Common Test Condition for Color Difference Block 1: YUV input and matrix
1. SW71
=
B, SW70
=
B, SW44
=
ON, SW18 to SW26
=
A, SW77
=
OPEN, SW74
=
OPEN
2.
Transfer BUS control data with preset values.
3.
Turn ACB operation switching to ACB OFF (0), and turn high blight color OFF (0).
4.
Input sync signal [must be sync with input signal for testing except Sweep.] to #53 (sync input), and set SYNC-IN-SW to 1.
Test Conditions
SW Mode
Note No.
Characteristics
SW68 SW67 SW66 SW64
Test Method (Test condition: V
CC
=
9 V/2 V, Ta
=
25
3
C)
C A A B
SW63 SW61 SW60
S01
Color SRT gain
B B B
1. Set Y mute ON (P-MODE: Y-MUTE, 001), brightness to center (10000000), color to center (1000000),
unicolor to maximum (1111111).
2. Input 2T pulse signal to TP67 so that #67 amplitude is 423 mVp-p.
3. Monitor #14 output waveform. When color SRT peak frequency is 4.5 MHz (0), measure gradients of color
SRT gain for minimum (00), center (10), and maximum (11) that are SB00MIN, SB00CEN, and SB00MAX as
shown in the figure below. Set SB00MIN to 0dB, calculate GS
B00CEN
=
20
og
l
(SB00CEN/SB00MIN) and
GS
B00MAX
=
20
og
l
(SB00MAX/SSB00MIN).
4. When color SRT peak is 5.8 MHz (1), measure gradients of color SRT gain for minimum (00), center (10), and
maximum (11). Calculate G
SB01CEN
and G
SB01MAX
.
5. Input 2T pulse signal to TP66 so that #66 amplitude is 300 mVp-p.
6. Monitor #12 output waveform. When color SRT peak frequency is 4.5 MHz (0), measure gradients of color
SRT gain for minimum (00), center (10), and maximum (11) that are SR00MIN, S
R00CEN
, and S
R00MAX
as
shown in the figure below. Set SR00MIN to 0dB, calculate GSB00CEN
=
20
og
l
(SB00CEN/SB00MIN) and
GSB00MAX
=
20
og
l
(SB00MAX/SSB00MIN).
7. When color SRT peak is
5.8 MHz (1), measure
gradients of color SRT
gain for minimum (00),
center (10), and
maximum (11). Calculate
G
SR01CEN
and
G
SR01MAX
.
20%
100%
T
***
20%
V
***
Gradient S
***
= V
***
/T
***
TA1360AFG
2003-01-21
71
Test Conditions
SW Mode
Note No.
Characteristics
SW68 SW67 SW66 SW64
Test Method (Test condition: V
CC
=
9 V/2 V, Ta
=
25
3
C)
C A A B
SW63 SW61 SW60 SW74
S02 Dynamic
Y/C
compensation
B B B
OPEN
1. Input 100-kHz sync signal to TP67, and set #67 amplitude to 0.2 Vp-p.
2. Set Y mute OFF (P-MODE: Normal 1, 000), brightness to center (1000000), color to center (1000000),
unicolor to maximum (1111111), and Y/C Gain Comp to minimum (00). Set black stretch point 1 to OFF (000),
dark area static Y
gain to minimum (00), light area static Y
gain to maximum (11), and SW1 to B. Apply 5.16
V to #68 from external power supply PS1.
3. Monitor #14 output waveform, and measure amplitude VBDY0.
4. Set Y/C Gain Comp to maximum (11). Set SW1 to B. Set black stretch point 1 to OFF (000), dark area static
Y
gain to maximum (11), light area static Y
gain to maximum (00), and monitor #14 amplitude VBDY1.
5. Set Y/C Gain Comp to maximum (11). Switch SW1 to A, and TPI to GND. Set black stretch point 1 to
maximum (111), dark area static Y
gain to minimum (00), bright area static Y
gain to maximum (11), and
monitor #14 amplitude VBDY2.
6. Calculate the following equations.
GC
BDY1
=
20
og
l
(VBDY1/VBDY0), GC
BDY2
=
20
og
l
(VBDY2/VBDY0)
7. Input 100-kHz sync signal to TP5, and repeat the procedure above. Calculate the following equations.
GC
RDY1
=
20
og
l
(VRDY1/VRDY0), GC
RDY2
=
20
og
l
(VRDY2/VBDY0)
TA1360AFG
2003-01-21
72
Test Conditions
SW Mode
Note No.
Characteristics
SW68 SW67 SW66 SW64
Test Method (Test condition: V
CC
=
9 V/2 V, Ta
=
25
3
C)
A/C A/B A/B B
SW8 SW9 SW10 SW56
S03 YUV
gain
B B B
OPEN
1. Set picture mute to OFF (P-MODE: Normal 1, 000), brightness to maximum (11111111), color to center
(1000000), and unicolor to maximum (1111111).
2. Set SW68 to A. Set SW67 and SW66 to B, and input 100-kHz sine wave to TPA. Set #68 amplitude to
0.2 Vp-p.
3. Set SW74 open. Measure #74 amplitude VY00 and VY01 when Y/color difference input mode is set to
Y/Cb/Cr (0) and Y/Pb/Pr (1).
4. Set SW68 to C, SW67 to A, and SW66 to B. Input 100-kHz sine wave to TP67, and set #67 amplitude to
0.2 Vp-p.
5. Measure #14 amplitude VB00 when Y/color difference input mode is set to Y/Cb/Cr (0).
6. Measure #14 and #12 amplitude VBB01 and VBR01 when Y/color difference input mode is set to Y/Pb/Pr (1).
7. Set SW68 to C, SW67 to B, and SW66 to A. Input 100-kHz sine wave to TP66, and set #66 amplitude to
0.2 Vp-p.
8. Measure #12 amplitude VR00 when Y/color difference input mode is set to Y/Cb/Cr (0).
9. Measure #14 and #12 amplitude VRB01 and VRR01 when Y/color difference input mode is set to Y/Pb/Pr (1).
10. Calculate the following equations.
G
Y00
=
20
og
l
(VY00/0.2), G
Y01
=
20
og
l
(VY01/0.2)
G
CBB
=
20
og
l
(VB00/0.2), G
PBB
=
20
og
l
(VBB01/0.2),
G
PBR
=
20
og
l
(VBR01/0.2)
G
CRR
=
20
og
l
(VR00/02), G
PRB
=
20
og
l
(VRB01/0.2),
G
PRR
=
20
og
l
(VRR01/0.2)
TA1360AFG
2003-01-21
73
Test Conditions
SW Mode
Note No.
Characteristics
SW68 SW67 SW66 SW64
Test Method (Test condition: V
CC
=
9 V/2 V, Ta
=
25
3
C)
C A A
SW26 SW25 SW24 SW21
A A A A
SW19 SW18
S04 Green
stretch
A A
1. Input signal B as shown in the figure below from TP67 (Cb/Pb1 input), and signal A from TP66 (Cr/Pr input).
2. Set brightness [06] to maximum (FF).
3. Measure amplitudes A, B, C, D, and E at #13 (Gout) as shown in the figure below. (A00 to E00)
4. Set green stretch [14] data to (08), and repeat the step 3 above. (A01 to E01)
5. Set green stretch [14] data to (10), and repeat the step 3 above. (A10 to E10)
6. Set green stretch [14] data to (18), and repeat the step 3 above. (A11 to E11)
7. Green stretch gain is calculated by the following equations
A00
A01
GrA01
=
A00
A10
GrA10
=
A00
A11
GrA11
=
B00
B01
GrB01
=
B00
B10
GrB10
=
B00
B11
GrB11
=
C00
C01
GrC01
=
C00
C10
GrC10
=
C00
C11
GrC11
=
D00
D01
GrD01
=
D00
D10
GrD10
=
D00
D11
GrD11
=
E00
E01
GrE01
=
E00
E10
GrE10
=
E00
E11
GrE11
=
Signal A
0.05 Vp-p
-
0.087 Vp-p
-
0.05 Vp-p
0 Vp-p
-
0.1 Vp-p
Signal B
-
0.07 Vp-p
-
0.122 Vp-p
-
0.14 Vp-p
-
0.122 Vp-p
0 Vp-p
B
Pin 13
E
D
C
A
150
270
240
210
180
TA1360AFG
2003-01-21
74
Test Conditions for Color Difference Block 2
Common Test Conditions for Color Difference Block 2
1. SW71
=
B, SW70
=
B, SW61 to SW63
=
B, SW44
=
ON, SW40
=
B
2.
Unless otherwise specified, measure each bus data with preset values.
3.
Set the following data.
Subaddress (00)
Data (02)
Subaddress (02)
Data (0C)
Subaddress (05)
Data (7F)
Subaddress (06)
Data (6C)
Subaddress (07)
Data (40)
Subaddress (0B)
Data (7F)
Subaddress (0C)
Data (84)
Subaddress (12)
Data (F0)
Subaddress (13)
Data (F0)
Subaddress (15)
Data (00)
Subaddress (18)
Data (00)
Subaddress (1A)
Data (C0)
Subaddress (1B)
Data (E0)
Subaddress (1C)
Data (03)
Subaddress (1D)
Data (78)
Test Conditions
SW Mode
Note No.
Characteristics
SW68 SW67 SW66 SW26 SW25 SW24 SW21 SW19 SW18
Test Method
A01 Color
difference
contrast
adjustment
characteristic
C A
or
B
A
or
B
A
A
A
A
A
A
1. Set brightness to maximum, and subaddress (12) data to (F0).
2. Input signal 3 (f
0
=
100 kHz, picture period amplitude = 0.23 Vp-p) from pin 66.
3. Change unicolor data to maximum (7F), center (40), and minimum (00), and
measure pin 12 picture period amplitude V
uCYMAX
, V
uCYCNT
, and V
uCYMIN
respectively.
4. Determine unicolor amplitude ratio between maximum and minimum in
decibels. (
V
uCY
)
5. Repeat the steps 2 to 4 above with the following pins: Input (picture period
amplitude 0.2 Vp-p) from pin 67, and measure pin 14.
TA1360AFG
2003-01-21
75
Test Conditions
SW Mode
Note No.
Characteristics
SW68 SW67 SW66 SW26 SW25 SW24 SW21 SW19 SW18
Test Method
A02 Color
adjustment
characteristic
C A
or
B
A
or
B
A
A
A
A
A
A
1. Set brightness to maximum, and subaddress (12) data to (F0).
2. Input signal 3 (f
0
=
100 kHz, picture period amplitude
=
0.115 Vp-p) from pin 66.
3. Change color data to maximum (7F), center (40), and minimum (01), and
measure pin 12 picture period amplitudes V
CCYMAX
V
CCYCNT
, and V
CCYMIN
respectively.
4. Calculate amplitude ratios of maximum and minimum against color center in
decibels. (
V
CCY
)
5. Repeat the steps 2 to 4 above with the following pins: Input (picture period
amplitude 0.1Vp-p) from pin 67 and measure pin 14.
A03
Color difference halftone
characteristic
C A
or
B
A
or
B
A A A A A A
1. Input signal 3 (f
0
=
100 kHz, picture period amplitude 0.2 Vp-p) from pin 66.
2. Measure pin 12 output picture period amplitude vHTARY.
3. Apply 1.5 V to pin 79 from external power supply.
4. Measure pin 12 output picture period amplitude vHTBRY.
5. Calculate
GHT
RY
=
vHTBRY/vHTARY
6. Repeat the steps 1 to 5 above and measure pin 13.
Calculate GHT
GY
=
vHTBGY/vHTAGY
7. Repeat the steps 1 to 5 above and measure pin 67. Calculate GHT
BY
=
vHTBBY/vHTABY.
TA1360AFG
2003-01-21
76
Test Conditions
SW Mode
Note No.
Characteristics
SW68 SW67 SW66 SW26 SW25 SW24 SW21 SW19 SW18
Test Method
A04 Color
characteristic C B A A A A A A A
1.
Input
signal
2
from
pin
66.
2. Increase signal 2 amplitude A. Determine gamma correction point V
1, V
2,
and V
3 of subaddress data (14). Set subaddress (14) data as follows:
(01)
-
OFF
(03)
-
1ON
(05)
-
2ON
(07)
-
3ON
Measure #12 output signal amplitude levels and chart a characteristic diagram.
3. Determine
V
where
starts applying and gradient
at
ON when linearity at
OFF is 1.
#12 output
amplitude
#66 input
amplitude
V
OFF
ON
TA1360AFG
2003-01-21
77
Test Conditions
SW Mode
Note No.
Characteristics
SW68 SW67 SW66 SW26 SW25 SW24 SW21 SW19 SW18
Test Method
A05 Color
limiter
characteristic
C B A A A A A A A
1.
Input
signal
2
(picture
period
amplitude
=
0.56 Vp-p) from pin 67.
2. Set subaddress (14) to (00)/(01), and measure pin 12 output signal picture
period amplitude, CLT
0
/CLT
1
.
A06
High-bright
color
gain C B A A A A A A A
1.
Input
signal
2
(picture
period
amplitude
=
0.28 Vp-p) from pin 67.
2. Adjust color so that pin 14 output picture period amplitude is 1.2 Vp-p.
3. Set subaddress (0B) data to (80) and measure pin 14 output signal picture
period amplitude v
14
.
4. Calculate the following equation. HBC
1
=
(1.2
-
v
14
)/1.2
TA1360AFG
2003-01-21
78
Test Conditions for Text Block
Common Test Conditions for Text Block
1. SW71
=
B, SW70
=
B, SW60 to SW64
=
B, SW44
=
ON, SW40
=
B
2.
Unless otherwise specified, measure each bus data with preset values.
3.
Set the following data.
Subaddress (00) Data (02)
Subaddress (02) Data (0C)
Subaddress (05) Data (7F)
Subaddress (06) Data (6C)
Subaddress (07) Data (40)
Subaddress (0B) Data (7F)
Subaddress (0C) Data (84)
Subaddress (12) Data (F0)
Subaddress (13) Data (F0)
Subaddress (15) Data (00)
Subaddress (18) Data (00)
Subaddress (1A) Data (C0)
Subaddress (1B) Data (E0)
Subaddress (1C) Data (03)
Subaddress (1D) Data (78)
Test Conditions
SW Mode
Note
No.
Characteristics
SW68 SW67 SW66 SW26 SW25 SW24 SW21 SW19 SW18
Test Method
T01
AC
gain
A B B A A A A A A
1.
Input
signal
1
(f
0
=
100 kHz, picture period amplitude
=
0.2 Vp-p) from pin 68.
2. Measure pins 12, 13, and 14 picture period amplitude, V
12
, V
13
, and V
14
.
3. Calculate AC gain using the following equations.
G
R
=
V
12
/0.2 G
G
=
V
13
/0.2 G
B
=
V
14
/0.2
T02 Unicolor
adjustment
characteristic
A B B A A A A A A
1.
Input
signal
1
(f
0
=
100 kHz, picture period amplitude
=
0.2 Vp-p) from pin 68.
2. Change unicolor data to maximum (7F), center (40), and minimum (00) and measure pin 12
picture period amplitude, V
uMAX
, V
uCNT
, and V
uMIN
respectively.
3. Calculate amplitude ratio of V
uMAX
and V
uMIN
in decibels (
V
u
)
T03 Brightness
adjustment
characteristic
A
B
B
A
A
A
A
A
A
1. Input signal 2 from pin 68 and adjust pin 12 picture period output amplitude to 1 Vp-p.
2. Change brightness data to maximum (7F), center (80), and minimum (00) and measure pin
12 voltages, V
brMAX
, V
brCNT
, and V
brMIN
respectively.
TA1360AFG
2003-01-21
79
Test Conditions
SW Mode
Note
No.
Characteristics
SW68 SW67 SW66 SW26 SW25 SW24 SW21 SW19 SW18
Test Method
T04 White
peak
slice level
C B B A A A A A A
1.
Set
subcontrast
to
maximum.
2. Apply external power supply to pin 68 and gradually increase voltage from 5.8 V.
3. When picture period of pin 12 is clipped, measure pin 12 picture period amplitude voltage,
V
wps1
.
4. Change subaddress (0C) data to (FC) and repeat the steps 1 to 3 above. (V
wps2
)
T05 Black
peak
slice level
C
B
B
A
A
A
A
A
A
1. Apply external power supply to pin 68 and gradually decrease voltage from 5.8 V.
2. When picture periods are clipped, measure pins 14, 13, and 12 voltage, V
bps
.
T06 RGB
output
S/N
C
B
B
A
A
A
A
A
A
1. Adjust brightness data so that picture period voltage of pin 14 is 2.4 V.
2. Set color data to minimum.
3. Measure noise levels n14-, n13-, and n12-Vp-p in picture period of pin 14, 13, and 12 with an
oscilloscope.
4. Calculate
S/N.
N
14
=
-
20
og
l
[2.3/(0.2
n14)]
N
13
=
-
20
og
l
[2.3/(0.2
n13)]
N
12
=
-
20
og
l
[2.3/(0.2
n12)]
T07 Halftone
characteristic
A B B A A A A A A
1.
Input
signal
1
(f
0
=
100 kHz, picture period amplitude 0.2 Vp-p) from pin 68.
2. Measure pin 14 picture period amplitude v14A.
3. Apply 1.5 V to pin 79 from external power supply.
4. Measure pin 14 picture period amplitude v14B
5. Calculate the following equation. G
HT1
=
v14B/v14A
6. Stop applying voltage to pin 79. Set subaddress (1A) to data (E2) and measure pin 14-picture
period amplitude, v14C.
7. Calculate the following equation. G
HT2
=
v414C/v14A
TA1360AFG
2003-01-21
80
Test Conditions
SW Mode
Note
No.
Characteristics
SW68 SW67 SW66 SW26 SW25 SW24 SW21 SW19 SW18
Test Method
T08 BLK
pulse
delay time
C
B
B
A
A
A
A
A
A
1. Apply signal shown in the figure (A) below to pin 39 (BLK input), and measure td
ON
and
td
OFF
of output signals from pins 12, 13, and 14 shown in the figure (B) below.
63.5
s
td
ON
td
OFF
(A) Appling signal
to pin 39
(B) Output signal from
pins 12, 13, and 14
TA1360AFG
2003-01-21
81
Test Conditions
SW Mode
Note
No.
Characteristics
SW68 SW67 SW66 SW26 SW25 SW24 SW21 SW19 SW18
Test Method
T09 Drive
adjustment
variable range
A B B A A A A A A
1.
Input
signal
1
(f
0
=
100 kHz, picture period amplitude 0.2 Vp-p) from pin 68.
2. Measure picture period amplitude of pin 13 when subaddress (0D) data is changed to
maximum (FE), center (80), and minimum (00).
3. Use picture period amplitude at center as the base. Determine amplitude ratio DR
G1
+
and
DR
G1
-
at maximum and minimum in decibels.
4. Repeat the steps 1 to 3 above to measure amplitude ratio of pin 14, DR
B1
+
and DR
B1
-
in
decibels when subaddress (0E) data is changed.
5. Repeat the steps 1 to 3 above to measure amplitude ratio of pin 13, DR
G2
+
and DR
G2
-
in
decibels when subaddress (0E) center data is set to (81) used as the base.
6. Repeat the steps 1 to 3 above to measure picture period amplitude ratio of pin 14, DR
B2
+
and DR
B2
-
in decibels when subaddress (0E) data is changed to maximum (FF), center (81),
and minimum (01).
7. Repeat the steps 1 to 3 above to measure picture period amplitude ratio of pin 12, DR
R1
+
and DR
R2
-
in decibels when subaddress (0D) data is changed to maximum (FF), center (81),
and minimum (01).
8. Repeat the steps 1 to 3 above to measure picture period amplitude ratio of pin 14, DR
B3
+
and DR
B3
-
in decibels when subaddress (0D) data is set to (81), and subaddress (0E) data
is changed.
9. Repeat the steps 1 to 3 above to measure picture period amplitude ratio of pin 13, DR
G3
+
and DR
G3
-
in decibels when subaddress (0E) data is set to (81), and subaddress (0D) data
is changed to maximum (FF), center (81), and minimum (01).
10. Repeat the steps 1 to 3 above to measure picture period amplitude ratio of pin 12, DR
R2
+
and DR
R2
-
in decibels when subaddress (0D) data is set to (81), and subaddress (0E) data
is changed to maximum (FF), center (81), and minimum (01).
T10 #78
input
impedance
C
B
B
A
A
A
A
A
A
1. Connect external power supply, an ammeter, and a voltmeter to pin 78. Adjust voltage so that
current value is set to zero.
2. Measure the current when voltage of pin 78 is increased by 0.2V. (l
in
)
3. Calculate
the
following
equation.
in53
=
0.2 V/I
in
(
)
-
+
Ammeter (
A)
Voltmeter
78
A
V
TA1360AFG
2003-01-21
82
Test Conditions
SW Mode
Note
No.
Characteristics
SW68 SW67 SW66 SW26 SW25 SW24 SW21 SW19 SW18
Test Method
T11 ACL
characteristic
A B B A A A A A A
1.
Input
signal
1
(f
0
=
100 kHz, picture period amplitude 0.2 Vp-p) from pin 68.
2. Measure pin 12 picture period amplitude, vACL1.
3. Apply "DC voltage of pin 78
-
0.8 V" to pin 78 from external power supply and measure pin
12-picture period amplitude, vACL2.
4. Apply "DC voltage of pin 78
-
1.3 V" to pin 78 from external power supply and measure pin
12-picture period amplitude, vACL3.
5. Calculate
the
following
equations.
ACL
1
=
-
20
og
l
(vACL2/vACL1)
ACL
2
=
-
20
og
l
(vACL3/vACL1)
T12
ABL
point C B B A A A A A A
1.
Measure
DC
voltage
of
pin
78,
VABL1.
2. Set subaddress (1B) data to (1C).
3. Apply external voltage to pin 78, and decrease voltage from 6.5 V. When voltage of pin 12
starts changing, measure pin 78 voltage, VABL2.
4. Change subaddress (1B) data to (3C), (5C), (7C), (9C), (BC), (DC), and (FC) under the
status of the step 3 above. Measure pin 78 voltage: VABL3, VABL4, VABL5, VABL6, VABL7,
VABL8, and VABL9.
5. ABL
P1
=
VABL2
-
VABL1 ABL
P5
=
VABL6
-
VABL1
ABL
P2
=
VABL3
-
VABL1 ABL
P6
=
VABL7
-
VABL1
ABL
P3
=
VABL4
-
VABL1 ABL
P7
=
VABL8
-
VABL1
ABL
P4
=
VABL5
-
VABL1 ABL
P8
=
VABL9
-
VABL1
TA1360AFG
2003-01-21
83
Test Conditions
SW Mode
Note
No.
Characteristics
SW68 SW67 SW66 SW26 SW25 SW24 SW21 SW19 SW18
Test Method
T13 ABL gain
C
B
B
A
A
A
A
A
A
1. Apply 6.5-V external voltage to pin 78.
2. Set subaddress (1B) data to (00).
3. Set brightness data to maximum.
4. Apply 4.5-V external voltage to pin 78.
5. Change subaddress (1B) data to (00), (04), (08), (0C), (10), (14), (18), and (1C).
Repeat the step 3 above, and measure VABL11, VABL12, VABL13, VABL14, VABL15,
VABL16, VABL17, and VABL18.
6. ABL
G1
=
VABL11
-
VABL10
ABL
G2
=
VABL12
-
VABL10
ABL
G3
=
VABL13
-
VABL10
ABL
G4
=
VABL14
-
VABL10
ABL
G5
=
VABL15
-
VABL10
ABL
G6
=
VABL16
-
VABL10
ABL
G7
=
VABL17
-
VABL10
ABL
G8
=
VABL18
-
VABL10
T14 RGB
output
mode
C
B
B
A
A
A
A
A
A
1. Adjust brightness data so that picture period voltage of pin 12 is 2.4 V.
2. Set subaddress (1B) data to (01).
3. Measure pins 12, 13, and 14 picture period voltage, V
12R
, V
13R
, and V
14R
.
4. Set subaddress (1B) data to (02), and repeat the step 3 above. Measure pins 12, 13, and 14
picture period voltage, V
12G
, V
13G
, and V
14G
.
5. Set subaddress (1B) data to (03), and repeat the step 3 above. Measure pins 12, 13, and 14
picture period voltage, V
12B
, V
13B
, and V
14B
.
TA1360AFG
2003-01-21
84
Test Conditions
SW Mode
Note
No.
Characteristics
SW68 SW67 SW66 SW26 SW25 SW24 SW21 SW19 SW18
Test Method
T15 Y-OUT
characteristic
A B B A A A A A A
1. Input RAMP waveform from pin 68. Adjust input amplitude so that picture period amplitude of
pin 12 is 2.3 Vp-p.
2. Set subaddress (0C) data to (81).
3. Adjust input amplitude so that picture period amplitude of pin 12 is 2.3 Vp-p.
4. Monitor pin 12. According to the figure below, determine Y-OUT
correction start points
1
and
2. Also determine ratios of gradients at Y-OUT ON to Y-OUT OFF in decibel. (
1,
2,
and
3)
100 IRE
2
1
Output amplitude (Y-OUT)
Input amplitude
2.3 Vp-p
1
2
3
Note: Solid line indicates gamma OFF.
Dotted line indicates gamma ON.
TA1360AFG
2003-01-21
85
Test Conditions
SW Mode
Note
No.
Characteristics
SW68 SW67 SW66 SW26 SW25 SW24 SW21 SW19 SW18
Test Method
T16 White-peak
blue
characteristic
A B B A A A A A A
1.
Input
0.7-Vp-p
RAMP
signal
from
pin
68.
2. Set subcontrast data to maximum.
3. Set subaddress (1F) data to (04).
4. Set subaddress (1E) data to (01), and monitor pin 14. Determine blue stretch start point
BS
Pmin
using the figure below.
5. Repeat the step 4 above by changing subaddress (1E) data to (04) and (07). Determine blue
stretch start point BS
PCNT
and BS
Pmax
.
6. Set subaddress (1E) data to (04).
7. Monitor pin 14 and calculate ratio of blue stretch ON gradient in relative to blue stretch OFF
gradient in decibel (BS
GCNT
) using the figure below.
8. Repeat the step 7 above by changing subaddress (1F) data to (00) and (07). Calculate
gradient ratio in decibel (BS
Gmin
and BS
Gmax
).
Note: Calculate white-peak blue start point in IRE as setting positive amplitude at pedestal level
of output signal to 2.3 Vp-p
=
100 IRE.
ON
OFF
Start point
Output
Input amplitude
(Output from pin 14)
TA1360AFG
2003-01-21
86
Test Conditions
SW Mode
Note
No.
Characteristics
SW68 SW67 SW66 SW26 SW25 SW24 SW21 SW19 SW18
Test Method
T17 ACB
insertion
pulse phase
and amplitude
A
or
C
B B A A A A A A
1.
Input
signal
1(f
0
=
100 kHz, picture period amplitude
=
0.2 Vp-p) from pin 68. Control drive
gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12.
Set brightness data to 108.
2. Measure pins 4, 6, and 7 voltage. Apply measured voltages from external power supply.
3. Set subaddress (02) data to (40).
4. Use output signals from pins 12, 13, and 14, and measure ACB insertion pulse phase as
shown in the Figure 1.
Note: Take picture period following FBP input fall after V
BLK ends as phase 1H. After next H
BLK, count the phase as 2H, 3H, and so on.
5. Monitor pins 12, 13, and 14. Measure ACB insertion pulse amplitudes (level from picture
period amplitude at quiescent.): VACB1R, VACB1G, and VACB2B.
6. Set subaddress (02) data to (80), and repeat the step 5 above: VACB2R, VACB2G, and
VACB2B.
7. Set subaddress (02) data to (C0), and repeat the step 5 above: VACB3R, VACB3G, and
VACB3B.
Figure 1: RGB Output
ACB insertion pulse
1H 2H 3H 4H
V
BLK period
Figure 2: FBP Input (#39)
TA1360AFG
2003-01-21
87
Test Conditions
SW Mode
Note
No.
Characteristics
SW68 SW67 SW66 SW26 SW25 SW24 SW21 SW19 SW18
Test Method
T18 IK
input
amplitude
A
or
C
B B A A A A A A
1.
Input
signal
1(f
0
=
100 kHz, picture period amplitude
=
0.2 Vp-p) from pin 68. Control drive
gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12.
2. Set subaddress (02) data to (40).
3. Measure voltage amplitude of pin-8 input signal in ACB insertion period.
1H
=
IK
R
2H
=
IK
G
3H
=
IK
B
T19 IK input cover
range
C B B A A A A A A
1.
Input
signal
1(f
0
=
100 kHz, picture period amplitude
=
0.2 Vp-p) from pin 68. Control drive
gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12.
2. Set subaddress (02) data to (40).
3. Measure pin 8 DC voltage in V
BLK period. (#8VBLK)
4. Apply the current externally to pin 8.
5. Measure DC voltage of pin 8 in V
BLK period when pin-12 picture period voltage begins to
be decreased. (#8VBLK
+
)
6. Apply current outward from pin 8.
7. Measure DC voltage of pin 8 in V
BLK period when pin-12 picture period voltage begins to
be increased. (#8VBLK
-
)
8. DIK
in
+
=
(#8VBLK
+
)
-
(#8VBLK)
DIK
in
-
=
(#8VBLK
-
)
+
(#8VBLK)
T20 Analog
RGB
gain
A B B A
or
B
A
or
B
A
or
B
A A A
1.
Input
signal
1(f
0
=
100 kHz, picture period amplitude
=
0.2 Vp-p) from pin 68. Control drive
gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12.
2. Apply 5-V external voltage to pin 2.
3. Input
signal
1(f
0
=
100 kHz, picture period amplitude
=
0.2 Vp-p) from pin 24.
4. Measure pin 12 picture period amplitude, v12R.
5. Repeat the steps 3 and 4 above with the following pins:
Input from pin 25, and measure output from pin 13 (v13G).
Input from pin 26, and measure output from pin 14 (v14B).
6 Calculate the following equations. GTXR
=
v12R/0.2 GTXG
=
v13G/0.2 GTXB
=
v14B/0.2
T21 Analog
RGB
white peak
slice level
A B B A A A A A A
1.
Input
signal
1(f
0
=
100 kHz, picture period amplitude
=
0.2 Vp-p) from pin 68. Control drive
gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12.
2. Apply 5-V external voltage to pin 2.
3. Set RGB contrast data to maximum (7F).
4. Input signal 2 to pin 24. Gradually increase picture amplitude, and measure picture period
amplitude voltage when output from pin 12 is clipped.
5. Repeat the steps 3 and 4 above with following pins: Input from pin 25 and measure output
from pin 13. Input from pin 26 and measure output pin 14.
TA1360AFG
2003-01-21
88
Test Conditions
SW Mode
Note
No.
Characteristics
SW68 SW67 SW66 SW26 SW25 SW24 SW21 SW19 SW18
Test Method
T22 Analog
RGB
black peak
limit level
A B B A A A A A A
1.
Input
signal
1(f
0
=
100 kHz, picture period amplitude
=
0.2 Vp-p) from pin 68. Control drive
gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12.
2. Apply 5-V external voltage to pin 2.
3. Set RGB contrast data to maximum (7F).
4. Input signal 2 to pin 24. Gradually decrease picture amplitude, and measure picture period
amplitude voltage when output from pin 12 is clipped.
5. Repeat the step 4 above with the following pins: Input from pin 25 and measure output from
pin 13. Input from pin 26 and measure output pin 14.
T23 RGB
contrast
adjustment
characteristic
A B B A
or
B
A
or
B
A
or
B
A
A
A
1. Input
signal
1(f
0
=
100 kHz, picture period amplitude
=
0.2 Vp-p) from pin 68. Control drive
gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12.
2. Apply 5-V external voltage to pin 2.
3. Input
signal
1
(f
0
=
100 kHz, picture period amplitude
=
0.2 Vp-p) from pin 24.
4. RGB contrast data to maximum (7F), center (40), and minimum (00). Measure pin 12 picture
period amplitudes V
uTXR
(maximum, center, and minimum) respectively.
5. Calculate amplitude ratio of maximum and minimum in decibels.
6. Repeat the steps 4 and 5 above with the following pins: Input from pin 25 and measure pin
13. Input from pin 26 and measure pin 14.
T24 Analog
RGB
brightness
adjustment
characteristic
A B B A
or
B
A
or
B
A
or
B
A A A
1.
Input
signal
1(f
0
=
100 kHz, picture period amplitude
=
0.2 Vp-p) from pin 68. Control drive
gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12.
2. Input signal 2 from pins 26, 25, and 24.
3. Apply 5-V external voltage to pin 2.
4. Adjust amplitude A of signal 2 so that picture period amplitude of pin 12 is 0.5 Vp-p.
5. Change RGB brightness data to maximum (FE), center (80), and minimum (00). Measure
pins 12, 13, and 14 picture period voltage V
brTX
(maximum, center, and minimum)
respectively.
T25 Analog
RGB
mode
switching
transfer
characteristic
C B B A A A A A A
1.
Set
RGB
brightness
data
to
maximum
(FE).
2. Input signal 4 (signal amplitude
=
1.5 Vp-p) from pin 2.
3. Measure input/output transfer characteristics using pin 12 according to the figure T-2.
4. Repeat the steps 2 and 3 above with the following pins: Input from pin 25 and measure pin
13. Input from pin 24 and measure pin 14.
5. Calculate maximum inter-axial rise/fall transfer delay time, using the data measured above.
TA1360AFG
2003-01-21
89
Test Conditions
SW Mode
Note
No.
Characteristics
SW68 SW67 SW66 SW26 SW25 SW24 SW21 SW19 SW18
Test Method
T26 Text
ACL
characteristic
A B B A A B A A A
1.
Input
signal
1(f
0
=
100 kHz, picture period amplitude
=
0.2 Vp-p) from pin 68. Control drive
gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12.
2. Apply 5-V external voltage to pin 2.
3. Input
signal
1(f
0
=
100 kHz, picture period amplitude
=
0.2 Vp-p) from pin 24.
4. Measure pin 12 picture period amplitude, vTXACL1.
5. Apply "pin 78 DC voltage
-
0.8 V" to pin 78 from external power supply, and measure pin
12-picture period amplitude, vTXACL2.
6. Apply "pin 78 DC voltage
-
1.3 V" to pin 78 from external power supply, and measure pin
12-picture period amplitude, vTXACL3.
7. TXACL
1
=
-
20
og
l
(vTXACL2/vTXACL1)
TXACL
2
=
-
20
og
l
(vTXACL3/vTXACL1)
T27 Analog
OSD
gain
A B B A A A A
or
B
A
or
B
A
or
B
1. Input
signal
1(f
0
=
100 kHz, picture period amplitude
=
0.2 Vp-p) from pin 68. Control drive
gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12.
2. Apply 5-V external voltage to pins 1 and 80.
3. Input
signal
1(f
0
=
100 kHz, picture period amplitude
=
0.2 Vp-p) from pin 18.
4. Measure pin 12 picture period amplitude, v12R.
5. Repeat the steps 3 and 4 above with the following pins: Input from pin 19, and measure pin
13. Input from pin 21 and measure pin 14. (v13G and v14B)
6. Calculate
the
following
equations.
G
OSDR
=
v12R/0.2 G
OSDG
=
v13G/0.2 G
OSDB
=
v14B/0.2
T28 Analog
OSD
input white
peak slice
level
A B B A A A A A A
1.
Input
signal
1(f
0
=
100 kHz, picture period amplitude
=
0.2 Vp-p) from pin 68. Control drive
gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12.
2. Apply 5-V external voltage to pins 1 and 80.
3. Input signal 2 from pin 18. Gradually increase picture amplitude, and measure picture period
amplitude voltage when output from pin 12 is clipped.
4. Repeat the step 3 above with the following pins: Input from pin 19, and measure pin 13. Input
from pin 21, and measure pin 14.
T29 Analog
OSD
black peak
limit level
A B B A A A A A A
1.
Input
signal
1(f
0
=
100 kHz, picture period amplitude
=
0.2 Vp-p) from pin 68. Control drive
gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12.
2. Apply 5-V external voltage to pins 1 and 80.
3. Input signal 2 from pin 18. Gradually decrease picture amplitude, and measure picture period
amplitude voltage when output from pin 12 is clipped.
4. Repeat the step 3 above with the following pins: Input from pin 19, and measure pin 13. Input
from pin 21, and measure pin 14.
TA1360AFG
2003-01-21
90
Test Conditions
SW Mode
Note
No.
Characteristics
SW68 SW67 SW66 SW26 SW25 SW24 SW21 SW19 SW18
Test Method
T30 OSD
contrast
adjustment
characteristic
A B B A A A A
or
B
A
or
B
A
or
B
1. Input
signal
1(f
0
=
100 kHz, picture period amplitude
=
0.2 Vp-p) from pin 68. Control drive
gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12.
2. Apply 5-V external voltage to pins 1 and 80.
3. Input
signal
1(f
0
=
100 kHz, picture period amplitude
=
0.2 Vp-p) from pin 18.
4. Change OSD contrast data to (11), (10), (01), and (00). Measure pin 12 picture period
amplitude V
uOSDR
(11), (10), (01), and (00) respectively.
5. Repeat the steps 3 and 4 above with the following pins: Input from pin 19, and measure pin
13, V
uOSDG
(11), (10), (01), and (00). Input from pin 21, and measure pin 14, VuOSDB
(11), (10), (01), and (00).
T31 Analog
OSD
brightness
adjustment
characteristic
C B B A A A A A A
1.
Input
signal
1(f
0
=
100 kHz, picture period amplitude
=
0.2 Vp-p) from pin 68. Control drive
gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12.
2. Apply 5-V external voltage to pins 1 and 80.
3. Change OSD brightness data (subaddress 1D) to (38), (78), (B8), and (F8), and measure
picture period voltage of pins 12, 13, and 14 respectively.
Data
(38)
=
V
brOSD0
Data
(78)
=
V
brOSD1
Data
(B8)
=
V
brOSD2
Data
(F8)
=
V
brOSD3
T32 Analog
OSD
mode
switching
transfer
characteristic
C B B A A A A A A
1.
Set
OSD
brightness
data
to
maximum
(11).
2. Input signal 4 (signal amplitude = 4.5 Vp-p) from pin 1.
3. Measure input/output transfer characteristics using pin 12 according to the figure T-2.
4. Repeat the steps 2 and 3 above, and measure pins 13 and 14.
5. Calculate maximum inter-axial rise/fall transfer delay time, using the data measured above.
6. Repeat the steps 1 to 5 above with the following pin. Input signal 4 (signal amplitude 4.5
Vp-p) from pin 80.
TA1360AFG
2003-01-21
91
Test Conditions
SW Mode
Note
No.
Characteristics
SW68 SW67 SW66 SW26 SW25 SW24 SW21 SW19 SW18
Test Method
T33 OSD
ACL
characteristic
A B B A A A A A B
1.
Input
signal
1(f
0
=
100 kHz, picture period amplitude
=
0.2 Vp-p) from pin 68. Control drive
gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12.
2. Set subaddress (07) data to (01).
3. Apply 5-V external voltage to pins 1 and 80.
4. Input
signal
1
(f
0
=
100 kHz, picture period amplitude
=
0.2 Vp-p) from pin 18.
5. Measure pin 12 picture period amplitude, vOSDACL1.
6. Apply "pin 78 DC voltage
-
0.8 V" to pin 78 from external power supply, and measure pin
12-picture period amplitude, vOSDACL2.
7. Apply "pin 78 DC voltage
-
1.3 V" to pin 78 from external power supply, and measure pin
12-picture period amplitude, vOSDACL3.
8. OSDACL
1
=
-
20
og
l
(vOSDACL2/vOSDACL1)
OSDACL
2
=
-
20
og
l
(vOSDACL3/vOSDACL1)
9. OSDACL3
OSDACL4 Change subaddress (07) data to (80), and repeat the steps 6 to 8
above to measure OSDACL3 and OSDACL4.
TA1360AFG
2003-01-21
92
Test Conditions
SW Mode
Note
No.
Characteristics
SW68 SW67 SW66 SW26 SW25 SW24 SW21 SW19 SW18
Test Method
T34 OSD
blending
characteristic
A
C
B B A A A A
B
A
B
B
B
1. Input
signal
1(f
0
=
100 kHz, picture period amplitude
=
0.2 Vp-p) from pin 68.
2. Measure pins 14, 13, and 12 picture period amplitude, v14a, v13a, and v12a.
3. Apply 5-V external voltage to pin 80.
4. Measure pins 14, 13, and 12 picture period amplitude, v14b, v13b, and v12b.
5. Calculate v14b amplitude in relation to v14a, v13b amplitude in relation to v13a, and v12b
amplitude in relation to v12a in decibel:
14TV1,
13TV1, and
12TV1.
6. Apply 5-V external voltage to pin 1, and repeat the steps 3 to 5 above:
14TV2,
13TV2, and
12TV2.
7. Apply 5-V external voltage to pins 1 and 80, and repeat the steps 3 to 5 above:
14TV3,
13TV3, and
12TV3.
8. Set SW68 to C. Set SW21, 19, and 18 to B.
9. Input
signal
1
(f
0
=
100 kHz, picture period amplitude
=
0.2 Vp-p) from pins 21, 19, and 18.
10. Apply 5-V external voltage to pins 1 and 80.
11. Measure pins 14, 13, and 12 picture period amplitude, v14c, v13c, and v12c.
12. Apply 5-V external voltage to pin 1.
13. Measure pins 14, 13, and 12 picture period amplitude, v14d, v13d, and v12d.
14. Calculate v14d amplitude in relation to v14c, v13d amplitude in relation to v13c, and v12d
amplitude in relation to v12c in decibel:
14OSD1,
13OSD1, and
12OSD1.
15. Apply 5-V external voltage to pin 80, and repeat the steps 12 to 14 above:
14OSD2,
13OSD2, and
12OSD2.
16. Apply 5-V external voltage to pins 1 and 80, and repeat the steps 12 to 14 above:
14OSD3,
13OSD3, and
12OSD3.
TA1360AFG
2003-01-21
93
Test Conditions
SW Mode
Note
No.
Characteristics
SW68 SW67 SW66 SW26 SW25 SW24 SW21 SW19 SW18
Test Method
T35 Blue
stretch
point/gain
A B B A A A A A A
1.
Input
RAMP
signal
0.7
Vp-p
from
pin
68.
2. Set subcontrast data to maximum.
3. Set subaddress (15) data to (0C).
4. Set subaddress (1A) data to (C0), monitor pin 14, and measure blue stretch start point using
the figure below (BLP
min
).
5. Set subaddress (1A) data to (CC), and repeat the step 4 above. (BLP
max
)
6. Set subaddress (1A) data to (C4).
7. Monitor pin 14 and measure gradient at blue stretch ON in decibel in relation to the one at
blue stretch OFF according to the figure below. (BLG
max
)
8. Set subaddress (15) data to (04), and repeat the step 7 above. (BLG
min
)
Note: Calculate blue stretch start point in IRE as setting positive amplitude at pedestal level of
output signal to 2.3 Vp-p = 100 IRE.
Blue stretch ON
Blue stretch OFF
Output amplitude
Input amplitude
TA1360AFG
2003-01-21
94
Test Conditions
SW Mode
Note
No.
Characteristics
SW68 SW67 SW66 SW26 SW25 SW24 SW21 SW19 SW18
Test Method
T36 Blue
stretch
gamma
correction
A B B A A A A A A
1.
Input
RAMP
signal
0.7
Vp-p
from
pin
68.
2. Set subcontrast data to maximum.
3. Set subaddress (15) data to (08).
4. Set subaddress (09) data to (81).
5. Monitor pin 14 and measure amplitude of the intersection point of blue stretch
OFF and
blue stretch
ON according to the figure below. Calculate pin 14 output amplitude in IRE as
setting positive amplitude at pedestal level of output signal to 2.3 Vp-p
=
100 IRE.
6. Set subaddress (1A) data to (C4), (C8), and (CC). Repeat the step 5 above. (BL
2, BL
3, and
BL
4)
Blue stretch
OFF
Blue stretch
ON
Output amplitude
Input amplitude
Intersection
poiint
BL
TA1360AFG
2003-01-21
95
Test Conditions
SW Mode
Note
No.
Characteristics
SW68 SW67 SW66 SW26 SW25 SW24 SW21 SW19 SW18
Test Method
T37 White
letters
improvement
A
B
B
A
A
A
A
A
A
1. Apply a pulse to pin 68 as shown in Figure A.
2. Monitor # 12 output waveform. Plot # 12 output amplitude when changing # 68 input signal
amplitude from 0 to 120 IRE (0.857 Vp-p) (See Figure B below).
3. Set subaddress (19) data to (80).
4. Monitor # 12 output waveform. Plot # 12 output amplitude when changing # 68 input signal
amplitude from 0 to 120 IRE (0.857 Vp-p). Then, compare to the plot in the step 2, calculate
a point where a gradient changes (WPL1).
5. Repeat the step 4 above by changing subaddress (19) data to (83) and (86). Calculate
points where gradients change (WPL2, WPL3).
Figure A
80 ns
# 12 output
amplitude
Data 87
Data 86
Data 83
Data 80
Figure B
# 68 input amplitude
WPL2
WPL3
WPL1
TA1360AFG
2003-01-21
96
Test Condition for Synchronization Block
Common Test Conditions for Synchronization Block: unless otherwise specified,
V
CC
=
=
=
= 9 V, Ta ==== 25C, bus data; preset value, SW68 ==== A, SW53 ==== A, SW INPUT ==== B,
SW44
=
=
=
= ON, SW41 ==== OPEN, SW40 ==== B, SW39a ==== B, SW39b ==== OPEN, SW37 ==== B
Note Characteristics
Test
Conditions
HA01 Sync input horizontal
sync phase
1.
Input signal A (as shown in the figure below) to TPA. Set subaddress (00) data to 82H.
2.
Monitor # 53 (Sync input) and #44 (AFC filter) waveforms. Measure phase difference (S
PH
).
HA02 HD input horizontal
sync phase
1. Set subaddress (00) data to 40H.
2. Input signal B (as shown in the figure below) to TP50.
3. Monitor #50 (Sync input) and #44 (AFC filter) waveforms. Measure phase difference (HD
PH
).
29.36
s
0.285 V
0.593
s
Signal A
#44 waveform
S
PH
31.75
s
1.5 V
2.35
s
Signal B
#44 waveform
HD
PH
TA1360AFG
2003-01-21
97
Note Characteristics
Test
Conditions
HA03 Polarity
detection
range
1. Set subaddress (00) data to 40H.
2. Input signal B (as shown in the figure below) to TP50 pin.
3. Decrease signal B duty from 10% (to shorter negative polarity period) and measure signal B
duty (HD
DUTY1
) when #50 input signal phase no longer locks with that of #37 (H-OUT).
4. Increase signal B duty from 10% (to longer negative polarity period) and measure signal B duty
(HD
DUTY2
) when #39 (FBP input) phase changes in relation to signal B.
5. Further increase signal B duty (to longer negative polarity period) and measure signal B duty
(HD
DUTY3
) when #50 input signal phase no longer locks with that of #37 (H-OUT).
6. Decrease signal B duty from 90 % (to shorter negative polarity period) and measure signal B
duty (HD
DUTY4
) when #39 (FBP input) phase changes in relation to signal B.
Duty
= A/B 100% (0 to 100%)
HA04 Sync
input
threshold
amplitude
1. Set subaddress (00) data to 82H, and TEST mode to 01.
2. Connect variable power supply to #53 via 20-k
resistor.
3. Set variable power supply voltage to 0 V, and measure #53 voltage. (SYNC_TIP_00) Also
check that #34 voltage is set to Low (GND level).
4. Increase variable power supply voltage so that #34 voltage becomes High (VCC level).
Measure #53 voltage. (SYNC_OFF_00)
5. Calculate the following equation to determine SYNC input separation level at SYNC separation
level is 00. V
thS00
= (SYNC_OFF_00 - SYNC_TIP_00)/0.286 100
6. Change SYNC separation level to 01, 10, and 11. Calculate following equations to determine
VthS01, VthS10, and VthS11.
V
thS01
= (SYNC_OFF_01 - SYNC_TIP_01)/0.286 100
V
thS10
= (SYNC_OFF_10 - SYNC_TIP_10)/0.286 100
V
thS11
= (SYNC_OFF_11 - SYNC_TIP_11)/0.286 100
31.75
s
1.5 V
Signal B
A
B
Sync separation level
0.08H
40IRE
(
= 286 mVp-p)
53
1H
Sync tip level
34
(SYNC output mode
TA1360AFG
2003-01-21
98
Note Characteristics
Test
Conditions
HA05 HD
input
threshold
amplitude
1. Set subaddress (00) data to 40H.
2. Input signal B (as shown in the figure below) to TP50.
3. Increase signal B amplitude from 0 Vp-p. When #37 (H-OUT) phase locks with that of signal B,
measure signal B amplitude V
thHD
.
HA06 Horizontal
picture
phase adjustment
variable range
1. Set subaddress (00) data to 40H.
2. Input signal B (the figure is shown below) to TP50.
3. Change subaddress (01) data from 80H to 00H, and measure phase change amount
H
SFT
-
of #39 (H-OUT) waveform.
4. Change slave address (01) data from 80H to FEH, and measure phase change amount
H
SFT
+
of #39 (H-OUT) waveform.
31.75
s
V
thDH
2.35
s
Signal B
31.75
s
1.5 V
2.35
s
Signal B
#39 waveform
Data: 00H
H
SFT
-
H
SFT
+
#39 waveform
Data: FEH
#39 waveform
Data: 80H
TA1360AFG
2003-01-21
99
Note Characteristics
Test
Conditions
HA07 Curve
correction
amount
1. Set subaddress (00) data to 40H.
2. Input signal B (as shown in the figure below) to TP50.
3. Connect external voltage to #40 (curve correction), and measure phase change amount
(
H#40) of #37 (H-OUT) output waveform at 1.5 V and 3.5 V.
HA08 Clamp pulse phase,
width and level
1. Set subaddress (00) data to 40H.
2. Input signal B (as shown in the figure below) to TP50.
3. Measure #47 (SCP output) clamp pulse phase (CP
S0
), width (CP
PW0
), and output level
(CP
V0
) in relation to signal B.
4. Set subaddress (01) data to 81H, and repeat the step 3 above to measure (CP
S1
), (CP
W1
),
and (CP
V1
).
5. Apply no signal input to TP50.
6. Measure #47 clamp pulse phase (CP
S2
), width (CP
W2
), and output level (CP
V2
) in relation to
#39.
31.75
s
1.5 V
2.35
s
Signal B
#37 waveform
(#40 voltage; 1.5 V)
H#40
#37 waveform
(#40 voltage; 3.5 V)
31.75
s
1.5 V
2.35
s
Signal B
#47 waveform
#39 waveform
CP
V0/1
CP
W0/1
CP
S0/1
#47 waveform
CP
V2
CP
W2
CP
S2
TA1360AFG
2003-01-21
100
Note Characteristics
Test
Conditions
HA09 Black peak detection
pulse phase and
level
1. Set subaddress (00) data to 40H.
2. Set SW70 to C, SW68 to C, and SW39A to OPEN
3. Input signal C (as the figure shown below) to #39 (FBP input).
4. Measure #70 (BPH filter) black peak detection pulse phase (HBP
S00a
and HBP
S00b
) in relation
to signal C.
5. Set HBP-PHS 1/2 to (01), (10), and (11). Measure black peak detection pulse phase.
HA10 FBP input threshold
1. Set subaddress (00) data to 40H.
2. Input signal B (as shown in the figure below) to TP50.
3. Increase amplitude of FBP signal to be input to #39 (FBP input) from 0 Vp-p. When #37
(H-OUT) phase locks with that of signal B, measure #39 input amplitude V
thFBP
.
31.75
s
1.5 V
2.35
s
31.5
s
2 V
0 V
Signal C
#70 waveform
4.13
s
HBP
S**b
HBP
S**a
TA1360AFG
2003-01-21
101
Note Characteristics
Test
Conditions
HB01 H-OUT pulse duty
1. No signal input.
2. Measure T1 and T2 (as shown in the figure below) from #37 (H-OUT) output waveform when
subaddress (00) data is 80H and A0H. Calculate duties (TH
A
and TH
B
) using the following
equation:
TH
= T1/(T1 + T2) 100 %
HB02 Horizontal
free-run
frequency
1. Set SW44 to open.
2. Set subaddress (00) data to 01H and measure horizontal free-run frequency (F15K) according
to #37 (H-OUT) output waveform.
3. Set subaddress (00) data to 00H, 41H, 81H, C0H, and C1H. Measure horizontal free-run
frequency F28K, F31K, F33K, F37K, and F45K as in the step 2 above.
HB03 Horizontal
oscillation
frequency variable
range
1. Set subaddress (00) data to 01H.
2. Connect
10-k
resistor between #44 and V
CC
. Measure horizontal frequency (F15K
MIN
)
according to #37 (H-OUT) output waveform.
3. Connect
68-k
resistor between #44 and GND. Measure horizontal frequency (F15K
MAX
)
according to #37 (H-OUT) output waveform.
4. Set subaddress (00) data to 00H, 41H, 81H, C0H, and C1H. Repeat the steps 2 and 3 above
and measure horizontal frequencies F28K
MIN
, F28K
MAX
, F31K
MIN
, F31K
MAX
, F33K
MIN
,
F33K
MAX
, F37K
MIN
, F37K
MAX
, F45K
MIN
, and F45K
MAX
.
HB04 Horizontal
oscillation
control sensitivity
1.
Set SW44 to open.
2.
Connect external power supply to TP44, and set subaddress (00) data to 01H.
3. Apply
V
44
+ 0.05 V, and V
44
- 0.05 V to TP44. Measure frequencies FA and FB according to
#37 (H-OUT) output waveform. Calculate frequency change rate (BH15K) using the following
equation.
BH15K
= (FB - FA)/0.1
4.
Set subaddress (00) data to 00H, 41H, 81H, C0H, and C1H. Repeat the step 2 above, and
measure frequency change rate BH28K, BH31K, BH33K, BH37K, and BH45K
HB05 H-OUT
output
voltage
1. Set SW37 to open.
2. Measure voltage at High (V37
H
) and Low (V37
L
) of #37 (H-OUT) output waveform.
#37 waveform
T1 T2
TA1360AFG
2003-01-21
102
Note Characteristics
Test
Conditions
V01
VP output pulse
width, Vertical
free-run (maximum
pull-in range)
1. Input signal D (shown in the figure below) to TP50, and signal E (shown in the figure below) to
#39 (FBP input).
2. Measure VP output pulse width (VPw) according to TP35 output waveform.
3. Measure VP pull-in range (VPt0) according to TP35 output waveform.
4. Set subaddress (03) data to 01H, 02H, 03H, 04H, 05H, and 06H. Measure pull-in range VPt1,
VPt2, VPt3, VPt4, VPt5, and VPt6 as in the step 3 above.
V02 Vertical
minimum
pull-in range
1. Repeat the step 1 of Note #V01.
2. Input signal F (shown in the figure below) to TP52.
3. Increase signal-F cycle from 30 H. Measure the cycle (T
VPULL
) when phase locks with that of
TP35.
Signal F (TP 52
waveform input)
T
VPULL
3H
#39
input waveform
TP 35 waveform
#39
input waveform
VPt
TP35 waveform
VPw
Signal E
(#39 input waveform)
9 V
GND
5.6
s
Signal D
(TP50 input signal)
4 V
2.35
s
29.63
s
TA1360AFG
2003-01-21
103
Note Characteristics
Test
Conditions
V03
Vertical black peak
detection pulse
1. Repeat the step 1 of Note #V01. Set SW70 to C, and SW68 to C.
2. Input signal F (shown in the figure below) to TP52.
3. Measure phase differences VBPP
0E
and VBPP
0S
according to #47 output waveform.
4. Set subaddress (03) data to 01H, 02H, 03H, 04H, 05H, and 06H. Measure phase differences
VBPP
1E
, VBPP
1S
, VBPP
2E
, VBPP
2S
, VBPP
3E
, VBPP
3S
, VBPP
4E
, VBPP
4S
, VBPP
5E
,
VBPP
5S
, VBPP
6E
, and VBPP
6S
as in the step 3 above.
V04 Vertical
blanking
stop
phase
1. Repeat the step 1 of Note #V01.
2. Input signal F (shown in the figure below) to TP52.
3. Set subaddress (03) data to 00H and F0H. Measure blanking stop phase VBLK
MIN
and
VBLK
MAX
according to #12 output waveform.
Signal F (TP 52
waveform input)
1125H
3H
#39
input waveform
#12
input waveform
VBLK
Signal F (TP 52
waveform input)
262.5H to 1125H
3H
VBPP
E
VBPP
S
#39
input waveform
#70 waveform
TA1360AFG
2003-01-21
104
Figure T-1 Signals for Text/Color Difference Signal 2
Sine wave of frequency f
0
(2) Input signal 1
Amplitude A
(3) Input signal 2
(4) Input signal 3
Sine wave of frequency f
0
63.5
s
(1) Video
signal
TA1360AFG
2003-01-21
105
Figure T-2 Test Pulses for Text/Color Difference Signal 2
63.5
s
20
s 20
s 20
s
20 ns
20 ns
50%
0%
10%
50%
90%
t
PR
t
PF
R
F
t
PR
t
PF
R
F
0%
10%
50%
90%
100%
100%
(1) Input signal 4
(2)
(3)
TA1360AFG
2003-01-21
106
Test Circuit
0.1
F
30 pF
1
F
100 k
TA1360AFG
#64
#58
0.
01
F
#54
2.
2
F
0.
1
F
#51
0.
01
F
49
64
63
61
60
58
56
54
53
51
50
48
46
45
44
43
42
HVC
O
N
C
AFC F
I
L
T
E
R
DEF
/
D
A
C V
C
C
N
C
N
C
SCP I
N
HD I
N
N
C
SYNC I
N
N
C
N
C
COL
O
R L
I
MI
TE
R
C
r2
/P
r2
IN
C
b2
/P
b2
IN
Y2 I
N
LI
G
H
T
A
R
EA
DET
F
I
L
T
E
R
41
H-
FREQ S
W
2
62
N
C
59
N
C
57
VSM
F
I
LTE
R
55
H-
FREQ S
W
1
52
VD I
N
47
CP OU
T
0.47
F
100
F
#70
#74
65
66
67
68
69
70
71
73
74
75
77
78
79
80
72
76
Y
s
1
(ANALOG OSD)
Y
M
/P-MUTE/BLK
ABCL IN
VSM OUT
Y/C V
CC
APL FILTER
NC
DARK AREA DET FILTER
BPH FILTER
NC
Y1 IN
C
b1
/P
b1
IN
C
r1
/P
r1
IN
Y/C GND
NC
#40
1 k
1
F
40
39
38
36
35
34
31
30
28
27
26
25
29
32
33
37
ANALOG G IN
ANALOG B IN
I
2
L GND
SDA
SCL
I
2
L V
DD
DAC1 (SYNC OUT)
VP OUT
NC
DEF/DAC GND
FBP IN
H CURVE
CORRECTION
NC
NC
NC
H-OUT
#4
0.
01
F
16
1
2
3
4
6
8
10
12
14
15
17
18
19
20
22
24
5
7
9
11
13
21
23
ANAL
OG R
I
N
NC
NC
ANAL
OG O
S
D
G I
N
ANAL
OG OSD
R I
N
NC
RG
B V
CC
NC
B O
U
T
R O
U
T
RG
B GN
D
I
K
IN
G S/
H
R S/
H
NC
Y
S
3 (
A
N
A
LO
G
R
G
B)
Y
S
2 (
A
N
A
LO
G
O
S
D
)
NC
B S/
H
NC
NC
G OUT
ANAL
OG OSD
B
I
N
DAC2
(
A
C
P
P
U
L
S
E)
V
CC
(9 V)
3.
9 k
75
10
F
2 k
5.
1 k
TPA
10
F
NC
#67
A
B
TP67
#66
0.1
F
A
B
TP66
A
B
C
0.1
F
0.1
F
0.1
F
TP
64
#63
B
A
B
A
0.
47
F
0.
1
F
SW
6
4
SW
6
3
0.
1
F
#61
TP
61
A
B
SW
6
1
0.
1
F
#60
TP
60
A
B
0.
1
F
SW
6
0
#57
#55
10
0
TP
55
30 k
TP
53
b
A
B
SW INPUT
A
B
#53 #52
10
0
TP
52
#50
10
0
TP
50
#49
10
0
TP
49
#47
10
0
TP
47
0.
01
F
#44
3 k
1
F
#42
C
SBLA
503KE
C
Z
F
3
0
47
0
#41
15 k
15
k
15 k
TPB
3.
9 k
75
10
F
2 k
5.
1 k
TPC
TPD
A
B
TP71
#71
A
B
1
F
2 k
20 k
SW74
0.01
F
#75
SW77
1 k
#77
0.01
F
#78
100 k
TP78
#79
#80
100
A
B
SW40
10 k
10 k
5.1 k
470
470
A
B
TP26
SW26
0.1
F
#26
A
B
TP25
SW25
0.1
F
#25
TP28
30 k
TP30
TP35
#28
#30
#31
#34
#35
3.9 k
SW37
C
A
B
SW39a
C
A
B
SW39B
0.
01
F
#6
0.
01
F
#7
0.
01
F
#8
30
0
pF
#12
#13
#14
10 k
10 k
10 k
10 k
10 k
10 k
10 k
10
0
10
0
10
0
10
0
F
#16
#18
0.
1
F
A
B
SW
1
8
TP
18
#19
0.
1
F
A
B
SW
1
9
TP
19
#21
0.
1
F
A
B
SW
2
1
TP
21
#24
0.
1
F
A
B
SW
2
4
TP
24
#23
10 k
16
15
14
13
12
11
10
9
1
2
3
4
5
6
7
8
TC
45
38BP
51 k
51 k
10
F
10
00 pF
5.
1 k
50 k
12
00 p
F
7.
5 k
50 k
45 kH
z
16
15
14
13
12
11
10
9
1
2
3
4
5
6
7
8
TC
45
38BP
51 k
51 k
10
F
10
00 pF
5.
1 k
50
k
12
00 p
F
7.
5 k
50 k
31.
5/
3
3
.
7
5
k
H
z
16
15
14
13
12
11
10
9
1
2
3
4
5
6
7
8
TC
45
38BP
51 k
51 k
10
F
10
00 p
F
5.
1 k
50
k
12
00 pF
7.
5 k
50 k
15.
75 k
H
z
V
CC
(9 V)
47
0
S
W
53
b
TP
53
S
W
44
TP
44
1 k
#39
TP40b
2.0 V
1/
2
W
220
6.
8 V
10
0
F
#2
#1
#37
20 k
SW70
SW68
SW67
SW66
SW71
TP77
TA1360AFG
2003-01-21
107
Application Circuit
R OU
T
G OU
T
B OU
T
0.01
F
TA1360AFG
0.
01
F
2.
2
F
10
0
F
49
64
63
61
60
58
56
54
53
51
50
48
46
45
44
43
42
HVC
O
N
C
AFC F
I
L
T
E
R
DEF
/
D
A
C V
C
C
N
C
N
C
SCP I
N
HD I
N
N
C
SYNC I
N
N
C
N
C
COL
O
R L
I
MI
TE
R
C
r2
/P
r2
IN
C
b2
/P
b2
IN
Y2 I
N
LI
G
H
T
A
R
EA
DET
F
I
L
T
E
R
41
H-
FREQ S
W
2
62
N
C
59
N
C
57
VSM
F
I
LTE
R
55
H-
FREQ S
W
1
52
VD I
N
47
CP OU
T
100
F
65
66
67
68
69
70
71
73
74
75
77
78
79
80
72
76
Y
s
1
(ANALOG OSD)
Y
M
/P-MUTE/BLK
ABCL IN
VSM OUT
Y/C V
CC
APL FILTER
NC
DARK AREA DET FILTER
BPH FILTER
NC
Y1 IN
C
b1
/P
b1
IN
C
r1
/P
r1
IN
Y/C GND
NC
40
39
38
36
35
34
31
30
28
27
26
25
29
32
33
37
ANALOG G IN
ANALOG B IN
I
2
L GND
SDA
SCL
I
2
L V
DD
DAC1 (SYNC OUT)
VP OUT
NC
DEF/DAC GND
FBP IN
H CURVE
CORRECTION
NC
NC
NC
H-OUT
0.
01
F
16
1
2
3
4
6
8
10
12
14
15
17
18
19
20
22
24
5
7
9
11
13
21
23
ANALOG R
I
N
NC
NC
ANAL
OG OSD
G
I
N
ANAL
OG OSD
R I
N
NC
RG
B V
CC
NC
B O
U
T
R O
U
T
RG
B GN
D
I
K
IN
G S/
H
R S/
H
NC
Y
S
3 (
A
N
A
LO
G
R
G
B)
Y
S
2 (
A
N
A
LO
G
O
S
D
)
NC
B S/
H
NC
NC
G OUT
ANAL
OG OSD
B
I
N
DAC2
(
A
C
P
P
U
L
S
E)
2.2
F
NC
M
0.1
F
M
0.1
F
VD-
I
N
CP-
O
UT
0.
01
F
C
SBLA
503KE
C
Z
F
3
0
3.
9 k
75
10
F
1 k
5.
1 k
C
r1
/P
r1
IN
0.01
F
0.01
F
100 k
ABCL
YM
Ys1
470
470
470
ANALOG B IN
0.1
F
ANALOG G IN
0.1
F
SDA
30 k
SCL
30
0
pF
10
0
10
0
F
0.
1
F
0.
1
F
0.
1
F
0.
1
F
30 k
2.0 V
6.
8 V
47
H
100 k
M
0.1
F
3.
9 k
75
10
F
1 k
5.
1 k
3.
9 k
75
10
F
1 k
5.
1 k
C
b1
/P
b1
IN
Y1 IN
1
F
0.47
F
M
0.
01
F
3 k
A
B
SCP-
I
N
HD
-
I
N
0.
47
F
M
0.
1
F
C
b2
/P
b2
IN
3.
9 k
75
10
F
1 k
5.
1 k
M
0.
1
F
M
0.
1
F
C
r2
/P
r2
IN
3.
9 k
75
10
F
1 k
5.
1 k
Y2-IN
3.
9 k
75
10
F
1 k
5.
1 k
10 k
1 k
2.
2
F
2.
2
F
2.
2
F
30 k
47
H
10
0
10
0
SYNC IN
3.
9 k
75
10
F
1 k
5.
1 k
1 k
1.
5 k
56
0
0.
1
F
47
H
VSM OUT
Ys
2
Ys
3
IK
-
I
N
OSD
R-
I
N
OSD
G-
I
N
OSD
B-
I
N
ANALOG R
-
I
N
DAC2
-
O
U
T
DAC1-OUT
VP-OUT
H-OUT
FBP-IN
CURVE CORR
V
CC
V
CC
M
: Mylar capacitor
Application of H-FREQ switching (31.5 k/33.75 k/45 kHz)
Tr.
H-FREQ
A B
Pin
55
voltage Pin 41 voltage
31.5 kHz
L
L
9 V
6 V
33.75 kHz
L
H
9 V
3 V
45 kHz
H
*
9 V
0 V
*: Don't care
1
F
0.
1
F
TA1360AFG
2003-01-21
108
ACB Application Circuit
8
CRT
B
CRT
G
CRT
R
20~51 k
51~330 pF
6.
8 V
Z
+B
R G B
1 V
p-p
0~3.0 V (DC)
CLAMP
I
K
IN
TA1360AFG
2003-01-21
109
Package Dimensions
Weight: 1.6 g (typ.)
TA1360AFG
2003-01-21
110
TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and
conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability
Handbook" etc..
The TOSHIBA products listed in this document are intended for usage in general electronics applications
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,
etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or
bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,
medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this
document shall be made at the customer's own risk.
The products described in this document are subject to the foreign exchange and foreign trade laws.
The information contained herein is presented only as a guide for the applications of our products. No
responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
rights of the third parties which may result from its use. No license is granted by implication or otherwise under
any intellectual property or other rights of TOSHIBA CORPORATION or others.
The information contained herein is subject to change without notice.
000707EBA
RESTRICTIONS ON PRODUCT USE