ChipFind - документация

Электронный компонент: BF998RW

Скачать:  PDF   ZIP
BF998/BF998R/BF998RW
Vishay Telefunken
www.vishay.de
FaxBack +1-408-970-5600
Rev. 4, 23-Jun-99
1 (9)
Document Number 85011
NChannel Dual Gate MOS-Fieldeffect Tetrode,
Depletion Mode
Electrostatic sensitive device.
Observe precautions for handling.
Applications
Input and mixer stages in UHF tuners.
Features
D
Integrated gate protection diodes
D
Low noise figure
D
Low feedback capacitance
D
High cross modulation performance
D
Low input capacitance
D
High AGC-range
D
High gain
13 579
2
1
4
3
94 9279
BF998 Marking: MO
Plastic case (SOT 143)
1 = Source, 2 = Drain, 3 = Gate 2, 4 = Gate 1
95 10831
2
1
4
3
94 9278
BF998R Marking: MOR
Plastic case (SOT 143R)
1 = Source, 2 = Drain, 3 = Gate 2, 4 = Gate 1
2
1
3
4
13 566
13 654
BF998RW Marking: WMO
Plastic case (SOT 343R)
1 = Source, 2 = Drain, 3 = Gate 2, 4 = Gate 1
BF998/BF998R/BF998RW
Vishay Telefunken
www.vishay.de
FaxBack +1-408-970-5600
Rev. 4, 23-Jun-99
2 (9)
Document Number 85011
Absolute Maximum Ratings
T
amb
= 25
_
C, unless otherwise specified
Parameter
Test Conditions
Symbol
Value
Unit
Drain - source voltage
V
DS
12
V
Drain current
I
D
30
mA
Gate 1/Gate 2 - source peak current
I
G1/G2SM
10
mA
Gate 1/Gate 2 - source voltage
V
G1S/G2S
7
V
Total power dissipation
T
amb
60
C
P
tot
200
mW
Channel temperature
T
Ch
150
C
Storage temperature range
T
stg
65 to +150
C
Maximum Thermal Resistance
T
amb
= 25
_
C, unless otherwise specified
Parameter
Test Conditions
Symbol
Value
Unit
Channel ambient
on glass fibre printed board (25 x 20 x 1.5) mm
3
plated with 35
m
m Cu
R
thChA
450
K/W
Electrical DC Characteristics
T
amb
= 25
_
C, unless otherwise specified
Parameter
Test Conditions
Type
Symbol
Min
Typ
Max Unit
Drain - source
breakdown voltage
I
D
= 10
m
A,
V
G1S
= V
G2S
= 4 V
V
(BR)DS
12
V
Gate 1 - source
breakdown voltage
I
G1S
= 10 mA,
V
G2S
= V
DS
= 0
V
(BR)G1SS
7
14
V
Gate 2 - source
breakdown voltage
I
G2S
= 10 mA,
V
G1S
= V
DS
= 0
V
(BR)G2SS
7
14
V
Gate 1 - source
leakage current
V
G1S
= 5 V,
V
G2S
= V
DS
= 0
I
G1SS
50
nA
Gate 2 - source
leakage current
V
G2S
= 5 V,
V
G1S
= V
DS
= 0
I
G2SS
50
nA
Drain current
V
DS
= 8 V, V
G1S
= 0,
V
G2S
= 4 V
BF998/BF998R/
BF998RW
I
DSS
4
18
mA
G2S
BF998A/BF998RA/
BF998RAW
I
DSS
4
10.5
mA
BF998B/BF998RB/
BF998RBW
I
DSS
9.5
18
mA
Gate 1 - source
cut-off voltage
V
DS
= 8 V, V
G2S
= 4 V,
I
D
= 20
m
A
V
G1S(OFF)
1.0
2.0
V
Gate 2 - source
cut-off voltage
V
DS
= 8 V, V
G1S
= 0,
I
D
= 20
m
A
V
G2S(OFF)
0.6
1.0
V
BF998/BF998R/BF998RW
Vishay Telefunken
www.vishay.de
FaxBack +1-408-970-5600
Rev. 4, 23-Jun-99
3 (9)
Document Number 85011
Electrical AC Characteristics
V
DS
= 8 V, I
D
= 10 mA, V
G2S
= 4 V, f = 1 MHz , T
amb
= 25
_
C, unless otherwise specified
Parameter
Test Conditions
Symbol
Min
Typ
Max
Unit
Forward transadmittance
y
21s
21
24
mS
Gate 1 input capacitance
C
issg1
2.1
2.5
pF
Gate 2 input capacitance
V
G1S
= 0, V
G2S
= 4 V
C
issg2
1.1
pF
Feedback capacitance
C
rss
25
fF
Output capacitance
C
oss
1.05
pF
Power gain
G
S
= 2 mS, G
L
= 0.5 mS, f = 200 MHz
G
ps
28
dB
g
G
S
= 3,3 mS, G
L
= 1 mS, f = 800 MHz
G
ps
16.5
20
dB
AGC range
V
G2S
= 4 to 2 V, f = 800 MHz
D
G
ps
40
dB
Noise figure
G
S
= 2 mS, G
L
= 0.5 mS, f = 200 MHz
F
1.0
dB
g
G
S
= 3,3 mS, G
L
= 1 mS, f = 800 MHz
F
1.5
dB
BF998/BF998R/BF998RW
Vishay Telefunken
www.vishay.de
FaxBack +1-408-970-5600
Rev. 4, 23-Jun-99
4 (9)
Document Number 85011
Typical Characteristics (T
amb
= 25
_
C unless otherwise specified)
0
50
100
150
200
250
300
0
20
40
60
80
100 120 140 160
T
amb
Ambient Temperature (
C )
96 12159
P
T
otal Power Dissipation ( mW
)
tot
Figure 1. Total Power Dissipation vs.
Ambient Temperature
0
5
10
15
20
25
30
0
2
4
6
8
10
V
DS
Drain Source Voltage ( V )
12812
I Drain Current ( mA
)
D
V
G1S
= 0.6V
0.4V
0
0.4V
0.2V
V
G2S
= 4V
0.2V
Figure 2. Drain Current vs. Drain Source Voltage
0
4
8
12
16
20
0.8
0.4
0.0
0.4
0.8
1.2
V
G1S
Gate 1 Source Voltage ( V )
12816
I Drain Current ( mA
)
D
6V
5V
4V
0
2V
1V
3V
V
DS
= 8V
V
G2S
=1V
Figure 3. Drain Current vs. Gate 1 Source Voltage
0
4
8
12
16
20
0.6
0.2
0.2
0.6
1.0
1.4
V
G2S
Gate 2 Source Voltage ( V )
12817
I Drain Current ( mA
)
D
0
2V
1V
3V
V
DS
= 8V
5V
V
G1S
= 1V
4V
Figure 4. Drain Current vs. Gate 2 Source Voltage
0
0.5
1.0
1.5
2.0
2.5
3.0
2
1.5
1.0
0.5
0.0
0.5
1.0
1.5
V
G1S
Gate 1 Source Voltage ( V )
12863
C Gate 1 Input Capacitance ( pF )
issg1
V
DS
=8V
V
G2S
=4V
f=1MHz
Figure 5. Gate 1 Input Capacitance vs.
Gate 1 Source Voltage
0
0.5
1.0
1.5
2.0
2.5
3.0
2
4
6
8
10
12
V
DS
Drain Source Voltage ( V )
12864
C Output Capacitance ( pF )
oss
V
G2S
=4V
f=1MHz
Figure 6. Output Capacitance vs. Drain Source Voltage
BF998/BF998R/BF998RW
Vishay Telefunken
www.vishay.de
FaxBack +1-408-970-5600
Rev. 4, 23-Jun-99
5 (9)
Document Number 85011
50
40
30
20
10
0
10
1
0.5
0.0
0.5
1.0
1.5
V
G1S
Gate 1 Source Voltage ( V )
12818
S
T
ransducer
Gain
(
dB
)
2
21
4V
0
2V
1V
3V
f= 800MHz
0.2V
V
G2S
=0.8V
0.4V
Figure 7. Transducer Gain vs. Gate 1 Source Voltage
0
4
8
12
16
20
24
28
32
0
4
8
12
16
20
24
28
I
D
Drain Current ( mA )
12819
V
DS
=8V
f=1MHz
V
G2S
=4V
2V
1V
0
3V
y Forward
T
ransadmittance ( mS )
21s
Figure 8. Forward Transadmittance vs. Drain Current
0
2
4
6
8
10
12
14
16
18
20
0
2
4
6
8
10
12
14
Re (y
11
) ( mS )
12820
Im ( y ) ( mS )
11
V
DS
=8V
V
G2S
=4V
I
D
=10mA
f=100...1300MHz
f=1300MHz
700MHz
400MHz
1000MHz
100MHz
Figure 9. Short Circuit Input Admittance
40
35
30
25
20
15
10
5
0
5
0
4
8
12
16
20
24
28
32
Re (y
21
) ( mS )
12821
Im ( y ) ( mS )
21
V
DS
=8V
V
G2S
=4V
f=100...1300MHz
f=100MHz
1300MHz
1000MHz
400MHz
700MHz
I
D
=5mA
10mA
20mA
Figure 10. Short Circuit Forward Transfer Admittance
0
1
2
3
4
5
6
7
8
9
0
0.25
0.50
0.75
1.00
1.25
1.50
Re (y
22
) ( mS )
12822
Im ( y ) ( mS )
22
V
DS
=15V
V
G2S
=4V
I
D
=10mA
f=100...1300MHz
f=1300MHz
1000MHz
400MHz
100MHz
700MHz
Figure 11. Short Circuit Output Admittance
BF998/BF998R/BF998RW
Vishay Telefunken
www.vishay.de
FaxBack +1-408-970-5600
Rev. 4, 23-Jun-99
6 (9)
Document Number 85011
V
DS
= 8 V, I
D
= 10 mA, V
G2S
= 4 V , Z
0
= 50
W
S
11
12 960
j0.2
j0.5
j
j2
j5
0
j0.2
j0.5
j
j2
j5
1
0.2
0.5
1
2
5
1300MHz
1000
100
Figure 12. Input reflection coefficient
S
21
12 962
0
90
180
90
1
2
150
120
60
30
120
150
60
30
1300MHz
100
400
700
1000
Figure 13. Forward transmission coefficient
S
12
12 973
0
90
180
90
0.08
0.16
150
120
60
30
120
150
60
30
1300MHz
100
200
1200
Figure 14. Reverse transmission coefficient
S
22
12 963
j0.2
j0.5
j
j2
j5
0
j0.2
j0.5
j
j2
j5
1
0.2
0.5
1
2
5
1300MHz
100
Figure 15. Output reflection coefficient
BF998/BF998R/BF998RW
Vishay Telefunken
www.vishay.de
FaxBack +1-408-970-5600
Rev. 4, 23-Jun-99
7 (9)
Document Number 85011
Dimensions of BF998 in mm
96 12240
Dimensions of BF998R in mm
96 12239
BF998/BF998R/BF998RW
Vishay Telefunken
www.vishay.de
FaxBack +1-408-970-5600
Rev. 4, 23-Jun-99
8 (9)
Document Number 85011
Dimensions of BF998RW in mm
96 12238
BF998/BF998R/BF998RW
Vishay Telefunken
www.vishay.de
FaxBack +1-408-970-5600
Rev. 4, 23-Jun-99
9 (9)
Document Number 85011
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating
systems with respect to their impact on the health and safety of our employees and the public, as well as their
impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as
ozone depleting substances ( ODSs ).
The Montreal Protocol ( 1987 ) and its London Amendments ( 1990 ) intend to severely restrict the use of ODSs and
forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban
on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of
ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2 . Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency ( EPA ) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C ( transitional substances ) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer application
by the customer. Should the buyer use Vishay-Telefunken products for any unintended or unauthorized application, the
buyer shall indemnify Vishay-Telefunken against all claims, costs, damages, and expenses, arising out of, directly or
indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 ( 0 ) 7131 67 2831, Fax number: 49 ( 0 ) 7131 67 2423