ChipFind - документация

Электронный компонент: X3100

Скачать:  PDF   ZIP
Preliminary Information
Characteristics subject to change without notice.
1 of 40
REV 1.1.8 12/10/02
www.xicor.com
X3100/X3101
FUNCTIONAL DIAGRAM
Protection Circuit
Timing Control
& Configuration
OVT UVT OCT
FET Control
Circuitry
4 kbit
EEPROM
Analog
MUX
SPI
I/F
5VDC
Regulator
Internal Voltage Regulator
Power On reset &
Status Register
VSS
VCELL1
CB1
VCC
RGP
OVP/LMON
UVP/OCP
AS0
AS1
AS2
AO
S0
SCK
CS
SI
CB3
CB2
CB4
VCELL2
VCELL3
VCELL4/VSS
Protection
Sample Rate
Timer
RGC RGO
Configuration
Register
Over-current
Protection &
Current Sense
VCS1 VCS2
Over-charge
Over-discharge
Protection
Sense
Circuits
Control
Register
FEATURE
Software Selectable Protection Levels and
Variable Protect Detection/Release Times
Integrated FET Drive Circuitry
Cell Voltage and Current Monitoring
0.5% Accurate Voltage Regulator
Integrated 4kbit EEPROM
Flexible Power Management with 1A Sleep
Mode
Cell Balancing Control
BENEFIT
Optimize protection for chosen cells to allow
maximum use of pack capacity.
Reduce component count and cost
Simplify implementation of gas gauge
Accurate voltage and current measurements
Record battery history to optimize gas gauge,
track pack failures and monitor system use
Reduce power to extend battery life
Increase battery capacity and improve cycle life
battery life
A
PPLICATION
N
OTE
A V A I L A B L E
3 or 4 Cell Li-Ion BATTERY PACKS
DESCRIPTION
The X3100 is a protection and monitor IC for use in
battery packs consisting of 4 series Lithium-Ion
battery cells. The X3101 is designed to work in 3 cell
applications. Both devices provide internal over-
charge, over-discharge, and over-current protection
circuitry, internal EEPROM memory, an internal
voltage regulator, and internal drive circuitry for
external FET devices that control cell charge,
discharge, and cell voltage balancing.
Over-charge, over-discharge, and over-current
thresholds reside in an internal EEPROM memory
register and are selected independently via software
using a 3MHz SPI serial interface. Detection and time-
out delays can also be individually varied using
external capacitors.
Using an internal analog multiplexer, the X3100 or
X3101 allow battery parameters such as cell voltage
and current (using a sense resistor) to be monitored
externally by a separate microcontroller with A/D
converter. Software on this microcontroller implements
gas gauge and cell balancing functionality in software.
The X3100 and X3101 contain a current sense
amplifier. Selectable gains of 10, 25, 80 and 160 allow
an external 10 bit A/D converter to achieve better
resolution than a more expensive 14 bit converter.
An internal 4kbit EEPROM memory featuring
IDLock
TM
, allows the designer to partition and "lock in"
written battery cell/pack data.
The X3100 and X3101 are each housed in a 28 Pin
TSSOP package.
Preliminary
3 or 4 Cell Li-Ion Battery Protection and Monitor IC
4 cell / 3 cell
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
2 of 40
REV 1.1.8 12/10/02
www.xicor.com
PRINCIPLES OF OPERATION
The X3100 and X3101 provide two distinct levels of
functionality and battery cell protection:
First, in Normal mode, the device periodically checks
each cell for an over-charge and over-discharge state,
while continuously watching for a pack over-current
condition. A protection mode violation results from an
over-charge, over-discharge, or over-current state. The
thresholds for these states are selected by the user
through software. When one of these conditions occur, a
Discharge FET or a Charge FET or both FETs are
turned off to protect the battery pack. In an over-
discharge condition, the X3100 and X3101 devices go
into a low power sleep mode to conserve battery power.
During sleep, the voltage regulator turns off, removing
power from the microcontroller to further reduce pack
current.
Second, in Monitor mode, a microcontroller with A/D
converter measures battery cell voltage and pack current
via pin AO and the X3100 or X3101 on-board MUX. The
user can thus implement protection, charge/discharge,
cell balancing or gas gauge software algorithms to suit
the specific application and characteristics of the cells
used. While monitoring these voltages, all protection
circuits are on continuously.
In a typical application, the microcontroller is also
programmed to provide an SMBus interface along with
the Smart Battery System interface protocols. These
additions allow an X3100 or X3101 based module to
adhere to the latest industry battery pack standards.
PIN CONFIGURATION
PIN NAMES
PIN DESCRIPTIONS
Battery Cell Voltage (VCELL1-VCELL4):
These pins are used to monitor the voltage of each
battery cell internally. The voltage of an individual cell
can also be monitored externally at pin AO.
The X3100 monitors 4 battery cells. The X3101 monitors
3 battery cells. For the X3101 device connect the
VCELL4/VSS pin to ground.
VCC
RGP
RGC
RGO
VCELL1
CB1
VCELL2
CB2
1
2
3
4
28
27
26
25
28 Lead TSSOP
UVP/OCP
OVP/LMON
CS
SCK
VCELL3
CB3
VCELL4/VSS*
CB4
5
6
7
8
24
23
22
21
X3100/
SO
SI
AS2
AS1
VSS
VCS1
VCS2
OVT
9
10
11
12
20
19
18
17
AS0
AO
UVT
OCT
13
14
16
15
X3101
*For X3101, Connect to ground.
Pin
Symbol
Description
1
VCELL1 Battery cell 1 voltage input
2
CB1
Cell balancing FET control output 1
3
VCELL2 Battery cell 2 voltage
4
CB2
Cell balancing FET control output 2
5
VCELL3 Battery cell 3 voltage
6
CB3
Cell balancing FET control output 3
7
VCELL4/
VSS
Battery cell 4 voltage (X3100)
Ground (X3101)
8
CB4
Cell balancing FET control output 4
9
V
SS
Ground
10
VCS1
Current sense voltage pin 1
11
VCS2
Current sense voltage pin 2
12
OVT
Over-charge detect/release time input
13
UVT
Over-discharge detect/release time input
14
OCT
Over-current detect/release time input
15
AO
Analog multiplexer output
16
AS0
Analog output select pin 0
17
AS1
Analog output select pin 1
18
AS2
Analog output select pin 2
19
SI
Serial data input
20
SO
Serial data output
21
SCK
Serial data clock input
22
CS
Chip select input pin
23
OVP/
LMON
Over-charge Voltage Protection output/
Load Monitor output
24
UVP/
OCP
Over-discharge protection output/
Over-current protection output
25
RGO
Voltage regulator output pin
26
RGC
Voltage regulator control pin
27
RGP
Voltage regulator protection pin
28
V
CC
Power supply
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
3 of 40
REV 1.1.8 12/10/02
www.xicor.com
Cell Voltage Balancing Control (CB1-CB4):
These outputs are used to switch external FETs in order
to perform cell voltage balancing control. This function
can be used to adjust individual cell voltages (e.g.
during cell charging). CB1CB4 can be driven high
(Vcc) or low (Vss) to switch external FETs ON/OFF. When
using the X3101, the CB4 pin can be left unconnected,
or the FET control can be used for other purposes.
Current Sense Inputs (VCS1VCS2):
A sense resistor (R
SENSE
) is connected between VCS1
and VCS2 (Figure 1). R
SENSE
has a resistance in the
order of 20m
to 100m
, and is used to monitor current
flowing through the battery terminals, and protect
against over-current conditions. The voltage at each end
of R
SENSE
can also be monitored at pin AO.
Over-charge Voltage detect Time control (OVT):
This pin is used to control the delay time (T
OV
)
associated with the detection of an over-charge
condition (see section "Over-charge Protection" on page
13).
Over-discharge detect/release time control (UVT):
This pin is used to control the delay times associated
with the detection (T
UV
) and release (T
UVR
) of an over-
discharge (under-voltage) condition (see section "Over-
discharge Protection" on page 15).
Over-current detect/release time control (OCT):
This pin is used to control the delay times associated
with the detection (T
OC
) and release (T
OCR
) of an over-
current condition (see section "Over-Current Protection"
on page 18).
Analog Output (AO):
The analog output pin is used to externally monitor
various battery parameter voltages. The voltages which
can be monitored at AO (see section "Analog
Multiplexer Selection" on page 20) are:
Individual cell voltages
Voltage across the current sense resistor (R
SENSE
)
.
This voltage is amplified with a gain set by the user in
the control register (see section "Current Monitor
Function" on page 20.)
The analog select pins pins AS0AS2 select the desired
voltage to be monitored on the AO pin.
Analog Output Select (AS0AS2):
These pins select which voltage is to be multiplexed to
the output AO (see section "Sleep Control (SLP)" on
page 10 and section "Current Monitor Function" on
page 20)
Serial Input (SI):
SI is the serial data input pin. All opcodes, byte
addresses, and data to be written to the device are input
on this pin.
Serial Output (SO):
SO is a push/pull serial data output pin. During a read
cycle, data is shifted out on this pin. Data is clocked out
by the falling edge of the serial clock. While CS is HIGH,
SO will be in a High Impedance state.
Note:
SI and SO may be tied together to form one line
(SI/SO). In this case, all serial data communication with
the X3100 or X3101 is undertaken over one I/O line.
This is permitted ONLY if no simultaneous read/write
operations occur.
Serial Clock (SCK):
The Serial Clock controls the serial bus timing for data
input and output. Opcodes, addresses, or data present
on the SI pin are latched on the rising edge of the clock
input, while data on the SO pin change after the falling
edge of the clock input.
Chip Select (CS):
When CS is HIGH, the device is deselected and the SO
output pin is at high impedance. CS LOW enables the
SPI serial bus.
Over-charge Voltage Protection/Load Monitor
(OVP/LMON):
This one pin performs two functions depending upon
the present mode of operation of the X3100 or X3101.
--Over-charge Voltage Protection (OVP)
This pin controls the switching of the battery pack charge
FET. This power FET is a P-channel device. As such,
cell charge is possible when OVP/LMON=V
SS
, and cell
charge is prohibited when OVP/LMON=V
CC
. In this
configuration the X3100 and X3101 turn off the charge
voltage when the cells reach the over-charge limit. This
prevents damage to the battery cells due to the
application of charging voltage for an extended period of
time (see section "Over-charge Protection" on page 13).
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
4 of 40
REV 1.1.8 12/10/02
www.xicor.com
--Load Monitor (LMON)
In Over-current Protection mode, a small test current
(7.5A typ.) is passed out of this pin to sense the load
resistance. The measured load resistance determines
whether or not the X3100 or X3101 returns from an
over-current protection mode (see section "Over-Current
Protection" on page 18).
Over-discharge (Under Voltage) Protection/
Over-current Protection (UVP/OCP):
Pin UVP/OCP controls the battery cell discharge via an
external power FET. This P-channel FET allows cell
discharge when UVP/OCP=Vss, and prevents cell
discharge when UVP/OCP=Vcc. The X3100 and X3101
turn the external power FET off when the X3100 or
X3101 detects either:
--Over-discharge Protection (UVP)
In this case, pin 24 is referred to as "Over-discharge
(Under-Voltage) protection (UVP)" (see section "Over-
discharge Protection" on page 15). UVP/OCP turns off
the FET to prevent damage to the battery cells by being
discharged to excessively low voltages.
--Over-current protection (OCP)
In this case, pin 24 is referred to as "Over-current
protection (OCP)" (see section "Over-Current Protection"
on page 18). UVP/OCP turns off the FET to prevent
damage to the battery pack caused by excessive current
drain (e.g. as in the case of a surge current resulting
from a stalled disk drive).
TYPICAL APPLICATION CIRCUIT
The X3100 and X3101 have been designed to operate
correctly when used as connected in the Typical
Application Circuit (see Figure 1 on page 5).
The power MOSFET's Q1 and Q2 are referred to as the
"Discharge FET" and "Charge FET," respectively. Since
these FETs are p-channel devices, they will be ON when
the gates are at V
SS
, and OFF when the gates are at
V
CC
. As their names imply, the discharge FET is used to
control cell discharge, while the charge FET is used to
control cell charge. Diode D1 allows the battery cells to
receive charge even if the Discharge FET is OFF, while
diode D2 allows the cells to discharge even if the charge
FET is OFF. D1 and D2 are integral to the Power FETs. It
should be noted that the cells can neither charge nor
discharge if both the charge FET and discharge FET are
OFF.
Power to the X3100 or X3101 is applied to pin VCC via
diodes D6 and D7. These diodes allow the device to be
powered by the Li-Ion battery cells in normal operating
conditions, and allow the device to be powered by an
external source (such as a charger) via pin P+ when the
battery cells are being charged. These diodes should
have sufficient current and voltage ratings to handle both
cases of battery cell charge and discharge.
The operation of the voltage regulator is described in
section "Voltage Regulator" on page 21. This regulator
provides a 5VDC0.5% output. The capacitor (C1)
connected from RGO to ground provides some noise
filtering on the RGO output. The recommended value is
0.1F or less. The value chosen must allow V
RGO
to
decay to 0.1V in 170ms or less when the X3100 or
X3101 enter the sleep mode. If the decay is slower than
this, a resistor (R1) can be placed in parallel with the
capacitor.
During an initial turn-on period (T
PUR
+ T
OC
), V
RGO
has
a stable, regulated output in the range of 5VDC 10%
(see Figure 2). The selection of the microcontroller
should take this into consideration. At the end of this turn
on period, the X3100 and X3101 "self-tunes" the output
of the voltage regulator to 5V+/-0.5%. As such, V
RGO
can be used as a reference voltage for the A/D converter
in the microcontroller. Repeated power up operations,
consistently re-apply the same "tuned" value for V
RGO
.
Figure 1 shows a battery pack temperature sensor
implemented as a simple resistive voltage divider,
utilizing a thermistor (R
T
) and resistor (R
T
'). The voltage
V
T
can be fed to the A/D input of a microcontroller and
used to measure and monitor the temperature of the
battery cells. R
T
' should be chosen with consideration of
the dynamic resistance range of R
T
as well as the input
voltage range of the microcontroller A/D input. An output
of the microcontroller can be used to turn on the
thermistor divider to allow periodic turn-on of the sensor.
This reduces power consumption since the resistor
string is not always drawing current.
Diode D3 is included to facilitate load monitoring in an
Over-current protection mode (see section "Over-
Current Protection" on page 18), while preventing the
flow of current into pin OVP/LMON during normal
operation. The N-Channel transistor turns off this
function during the sleep mode.
Resistor R
PU
is connected across the gate and drain of
the charge FET (Q2). The discharge FET Q1 is turned
off by the X3100 or X3101, and hence the voltage at pin
OVP/LMON will be (at maximum) equal to the voltage of
the battery terminal, minus one forward biased diode
voltage drop (V
P+
V
D7
). Since the drain of Q2 is
connected to a higher potential (V
P+
) a pull-up resistor
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
5 of 40
REV 1.1.8 12/10/02
www.xicor.com
R
CB
.
V
SS
VCS1
VCS2
O
V
T
UVT
OCT
VCELL1
CB1
CB3
VCELL4/V
SS
VCELL3
X3100/X3101
CB2
V
CC
RGP
RGC
RGO
O
VP/
UVP/
C
,
ASIC
100
R
CB
100
100
100
R
CB
R
CB
Q6
Q7
Q8
Q9
0.01uF
0.01uF
0.01uF
0.01uF
C
OV
C
OC
C
UV
R
LMT
I
LMT
Q
3
Q
1
Q
2
R
PU
D
3
I
LMON
P+
P-
D
6
D
7
R
T
'
R
T
V
T
VCELL2
R
SENSE
3 or 4
Li-Ion cells
Discharge FET
Charge FET
V
RGO
CB4
D
1
D
2
B+
B-
OCP
0.1F
1F
Q
10
T
r
ansistor Recommendations
Q1, Q2 = Si4435
Q3 = 2N3906
Q4 - Q10 = 2N7002
R
POR
C
POR
AS0
AS1
AS2
AO
CS
SCK
SO
SI
LMON
SMBCLK
SMBD
A
T
A
28
27
26
25
24
23
21
20
19
22
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
1M
100
100
FETs Q4 and Q5 are needed
only if e
xter
nal pull-ups on
the SMBus lines cause
v
oltage to appear at the uC
Vcc pin dur
ing sleep mode
.
1M
Q
4
Q5
BA
T54
B
A
T
54
A/D
A/D Input
A/D Input
V
CC
Reset
GP
I/O
GP
I/O
I/O
GP
Set High
after power
up to enable
SMBus and
LMON
Choose R1 and
C1 such that
V
RGO
goes to
0.1V (or less) in
170ms (or less)
when entering
the Sleep Mode
(at 25
o
C).
F
or the X3101, or X3100
when 3 cells are used,
VCELL4/V
SS
MUST be
tied to Ground (Vss).
CB4
is left unconnected.
C1
R1
Ref
(Optional)
Figure 1. Typical Application Circuit
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
6 of 40
REV 1.1.8 12/10/02
www.xicor.com
(R
PU
) in the order of 1M
should be used to ensure that
the charge FET is completely turned OFF when OVP/
LMON=V
CC
.
The capacitors on the V
CELL1
to V
CELL4
inputs are used
in a first order low pass filter configuration, at the battery
cell voltage monitoring inputs (VCELL1VCELL4) of the
X3100 or X3101. This filter is used to block any
unwanted interference signals from being inadvertently
injected into the monitor inputs. These interference
signals may result from:
Transients created at battery contacts when the bat-
tery pack is being connected/disconnected from the
charger or the host.
Electrostatic discharge (ESD) from something/some-
one touching the battery contacts.
Unfiltered noise that exists in the host device.
RF signals which are induced into the battery pack
from the surrounding environment.
Such interference can cause the X3100 or X3101 to
operate in an unpredictable manner, or in extreme
cases, damage the device. As a guide, the capacitor
should be in the order of 0.01F and the resistor, should
be in the order of 10K
.
The capacitors should be of the
ceramic type. In order to minimize interference, PCB
tracks should be made as short and as wide as possible
to reduce their impedance. The battery cells should also
be placed as close to the X3100 or X3101 monitor inputs
as possible.
Resistors R
CB
and the associated n-channel MOSFET's
(Q
6
Q
9
) are used for battery cell voltage balancing. The
X3100 and X3101 provide internal drive circuitry which
allows the user to switch FETs Q
6
Q
9
ON or OFF via
the microcontroller and SPI port (see section "Cell
Voltage Balance Control (CBC1-CBC4)" on page 11).
When any of the these FETs are switched ON, a
current, limited by resistor R
CB
, flows across the
particular battery cell. In doing so, the user can control
the voltage across each individual battery cell. This is
important when using Li-Ion battery cells since
imbalances in cell voltages can, in time, greatly reduce
the usable capacity of the battery pack. Cell voltage
balancing may be implemented in various ways, but is
usually performed towards the end of cell charging
("Top-of-charge method"). Values for R
CB
will vary
according to the specific application.
The internal 4kbit EEPROM memory can be used to
store the cell characteristics for implementing such
functions as gas gauging, battery pack history, charge/
discharge cycles, and minimum/maximum conditions.
Battery pack manufacturing data as well as serial
number information can also be stored in the EEPROM
array. An SPI serial bus provides the communication link
to the EEPROM.
A current sense resistor (R
SENSE
) is used to measure
and monitor the current flowing into/out of the battery
terminals, and is used to protect the pack from over-
current conditions (see section "Over-Current
Protection" on page 18). R
SENSE
is also used to
externally monitor current via a microcontroller (see
section "Current Monitor Function" on page 20).
FETs Q4 and Q5 may be required on general purpose
I/Os of the microcontroller that connect outside of the
package. In some cases, without FETs, pull-up resistors
external to the pack force a voltage on the V
CC
pin of the
microcontroller during a pack sleep condition. This
voltage can affect the proper tuned voltage of the
X3100/X3101 regulator. These FETs should be turned-
on by the microcontroller. (See Figure 1.)
POWER ON SEQUENCE
Initial connection of the Li-Ion cells in the battery pack
will not normally power up the battery pack. Instead, the
X3100 or X3101 enters and remains in the SLEEP
mode. To exit the SLEEP mode, after the initial power up
sequence, or following any other SLEEP MODE, a
minimum of 16V (X3100 V
SLR
) or 12V (X3101 V
SLR
) is
applied to the VCC pin, as would be the case during a
battery charge condition. (See Figure 2.)
When V
SLR
is applied to VCC, the analog select pins
(AS2-AS0) and the SPI communication pins (CS, CLK,
SI, SO) must be low, so the X3100 and X3101 power up
correctly into the normal operating mode. This can be
done by using a power-on reset circuit.
When entering the normal operating mode, either from
initial power up or following the SLEEP MODE, all bits in
the control register are zero. With UVPC and OVPC bits
at zero, the charge and discharge FETs are off. The
microcontroller must turn these on to activate the pack.
The microcontroller would typically check the voltage
and current levels prior to turning on the FETs via the
SPI port. The software should prevent turning on the
FETs throughout an initial measurement/calibration
period. The duration of this period is T
OV
+200ms or
T
UV
+200ms, whichever is longer.
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
7 of 40
REV 1.1.8 12/10/02
www.xicor.com
Figure 2. Power Up Timing (Initial Power Up or after Sleep Mode)
VCC
V
RGO
T
OC
2ms (Typ.)
T
PUR
5V10% (Stable and Repeatable)
0V
0V
V
RGO
Tuned to 5V0.5%
VRGS
Voltage Regulator Output Status
OCDS
Over-current Detection Status
VRGS+OCDS
1 = X3100/1 in Over-Current Protection Mode
0 = X3100/1 NOT in Over-Current Protection Mode
0 = X3100/1 NOT in Over-Current Protection Mode AND VRGO Tuned
1 = X3100/1 in Over-Current Protection Mode OR VRGO Not Yet Tuned
Status Register Bit 0
1
0
5V
V
SLR
1
0
1
AS2_AS0
0
(Internal Signal)
(Internal Signal)
CCES+OVDS
Status Register Bit 2
(SWCEN=0)
OVDS
Status Register Bit 2
(SWCEN=1)
0
0
T
OV
+200ms
1
1
Fr
o
m
SPI PORT
T
OV
+200ms OR T
UV
+200ms (whichever is longer)
0 = V
CELL
> V
CE
OR X3100/1 NOT in Over-charge Protection Mode
1 = V
CELL
< V
CE
OR X3100/1 in Over-charge Protection Mode
0 = X3100/1 NOT in Over-charge Protection Mode
1 = X3100/1 in Over-charge Protection Mode
Microcontroller
Charge, Discharge FETs can be
turned on here.
Any Read or Write Operation, except
turn-on of FETs can start here.
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
8 of 40
REV 1.1.8 12/10/02
www.xicor.com
CONFIGURATION REGISTER
The X3100 and X3101 can be configured for specific
user requirements using the Configuration Register.
Table 1. Configuration Register Functionality
Table 2. Configuration Register--Upper Byte
Table 3. Configuration Register--Lower Byte
Over-charge Voltage Settings
VOV1 and VOV0 control the cell over-charge level. See
section "Over-charge Protection" on page 13.
Table 4.
Over-charge Voltage Threshold Selection
Over-discharge Settings
VUV1 and VUV0 control the cell over-discharge (under
voltage threshold) level. See section "Over-discharge
Protection" on page 15.
Over-current Settings
VOC1 and VOC0 control the pack over-current level.
See section "Over-Current Protection" on page 18.
Table 6.
Over-Current Threshold Voltage Selection.
Cell Charge Enable Settings
VCE1, VCE0 and SWCEN control the pack charge
enable function. SWCEN enables or disables a circuit
that prevents charging if the cells are at too low a
voltage. VCE1 and VCE0 select the voltage that is
recognized as too low. See section "Sleep Mode" on
page 15.
Table 7. Cell Charge Enable Function
Bit(s)
Name
Function
0-5
(don't care)
6
SWCEN
Switch Cell Charge Enable
threshold function ON/OFF
7
CELLN
Set the number of Li-Ion battery
cells used (3 or 4)
8-9
VCE1-VCE0
Select Cell Charge Enable
threshold
10-11
VOC1-VOC0 Select over-current threshold
12-13
VUV1-VUV0
Select over-discharge (under
voltage) threshold
14-15
VOV1-VOV0
Select over-charge voltage
threshold
15
14
13
12
11
10
9
8
VOV1
VOV0
VUV1
VUV0
VOC1
VOC0
VCE1
VCE0
X3100 Default = 30H; X3101 Default = 00H.
7
6
5
4
3
2
1
0
CELLN
SWCEN
x
x
x
x
x
x
X3100 Default = C0H; X3101 Default = 40H.
Configuration Register
Bits
Operation
VOV1
VOV0
0
0
V
OV
= 4.20V (Default)
0
1
V
OV
= 4.25V
1
0
V
OV
= 4.30V
1
1
V
OV
= 4.35V
Table 5. Over-discharge Threshold Selection.
Configuration
Register Bits
Operation
VUV1
VUV0
X3100
X3101
0
0
V
UV
=1.95V
V
UV
=2.25V
(X3101 default)
0
1
V
UV
=2.05V
V
UV
=2.35V
1
0
V
UV
=2.15V
V
UV
=2.45V
1
1
V
UV
=2.25V
(X3100 default)
V
UV
=2.55V
Configuration Register Bits
Operation
VOC1
VOC0
0
0
V
OC
=0.075V (Default)
0
1
V
OC
=0.100V
1
0
V
OC
=0.125V
1
1
V
OC
=0.150V
Configuration
Register Bit
Operation
SWCEN
0
Charge enable function: ON
1
Charge enable function: OFF
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
9 of 40
REV 1.1.8 12/10/02
www.xicor.com
Table 8.
Cell Charging Threshold Voltage Selection.
Cell Number Selection
The X3100 is designed to operate with four (4) Li-Ion
battery cells. The X3101 is designed to operate with
three (3) Li-Ion battery cells. The CELLN bit of the
configuration register (Table 9) sets the number of cells
recognized. For the X3101, the value for CELLN should
always be zero.
Table 9. Selection of Number of Battery Cells
1
The configuration register consists of 16 bits of
NOVRAM memory (Table 2, Table 3). This memory
features a high-speed static RAM (SRAM) overlaid bit-
for-bit with non-volatile "Shadow" EEPROM. An
automatic array recall operation reloads the contents of
the shadow EEPROM into the SRAM configuration
register upon power-up (Figure 3).
Figure 3. Power up of
Configuration Register
The configuration register is designed for unlimited write
operations to SRAM, and a minimum of 1,000,000 store
operations to the EEPROM. Data retention is specified
to be greater than 100 years.
It should be noted that the bits of the shadow EEPROM
are for the dedicated use of the configuration register,
and are NOT part of the general purpose 4kbit
EEPROM array.
T
he WCFIG command writes to the configuration
register, see Table 30 and section "X3100/X3101 SPI
Serial Communication" on page 22.
After writing to this register using a WCFIG instruction,
data will be stored only in the SRAM of the configuration
register. In order to store data in shadow EEPROM, a
WREN instruction, followed by a EEWRITE to any
address of the 4kbit EEPROM memory array must
occur, see Figure 4. This sequence initiates an internal
nonvolatile write cycle which permits data to be stored
in the shadow EEPROM cells. It must be noted that
even though a EEWRITE is made to the general
purpose 4kbit EEPROM array, the value and address to
which it is written, is unimportant. If this procedure is not
followed, the configuration register will power up to the
last previously stored values following a power down
sequence.
Configuration Register Bits
Operation
VCE1
VCE0
0
0
V
CE
= 0.5V
0
1
V
CE
= 0.80V
1
0
V
CE
= 1.10V
1
1
V
CE
= 1.40V
Configuration
Register Bit
Operation
CELLN
1
4 Li-Ion battery cells (X3100 default)
0
3 Li-Ion battery cells (X3100 or X3101)
1.
In the case that the X3100 or X3101 is configured for use with
only three Li-Ion battery cells (i.e. CELLN=0), then VCELL4 (pin
7) MUST be tied to Vss (pin 9) to ensure correct operation.
Configuration Register (SRAM)
Shadow EEPROM
Recall
Recall
Upper Byte
Lower Byte
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
10 of 40
REV 1.1.8 12/10/02
www.xicor.com
Figure 4. Writing to Configuration Register
CONTROL REGISTER
The Control Register is realized as two bytes of volatile
RAM (Table 10, Table 11). This register is written using
the WCNTR instruction, see Table 30 and section "X3100/
X3101 SPI Serial Communication" on page 22.
Table 10. Control Register--Upper Byte
Table 11. Control Register--Lower Byte
Since the control register is volatile, data will be lost
following a power down and power up sequence. The
default value of the control register on initial power up
or when exiting the SLEEP MODE is 00h (for both
upper and lower bytes respectively). The functions that
can be manipulated by the Control Register are shown
in Table 12.
Table 12. Control Register Functionality
Sleep Control (SLP)
Setting the SLP bit to `1' forces the X3100 or X3101 into
the sleep mode, if V
CC
< V
SLP
. See section "Sleep
Mode" on page 15.
Table 13. Sleep Mode Selection
15
14
13
12
11
10
9
8
CBC4
CBC3
CBC2
CBC1
UVPC
OVPC
CSG1
CSG0
7
6
5
4
3
2
1
0
SLP
0
0
x
x
x
x
x
Configuration Register
(SRAM=old value)
Write
Enable
Write to
4kbit EEPROM
Power Down
Power Up
Store
(New Value)
in Shadow
EEPROM
Configuration Register
(SRAM=Old Value)
WCFIG (New Value)
Data Recalled
NO
YES
WREN
EEWRITE
Configuration Register
(SRAM=New Value)
Power Up
Configuration Register
(Sram=New Value)
from Shadow
EEPROM to SRAM
Data Recalled
from Shadow
EEPROM to SRAM
Data Recalled
from Shadow
EEPROM to SRAM
Power Down
Power Up
Bit(s)
Name
Function
0-4
(don't care)
5,6
0, 0
Reserved--write 0 to these locations.
7
SLP
Select sleep mode.
8,9
CSG1,
CSG0
Select current sense voltage gain
10
OVPC
OVP control: switch pin OVP = V
CC
/V
SS
11
UVPC
UVP control: switch pin UVP = V
CC
/V
SS
12
CBC1
CB1 control: switch pin CB1 = V
CC
/V
SS
13
CBC2
CB2 control: switch pin CB2 = V
CC
/V
SS
14
CBC3
CB3 control: switch pin CB3 = V
CC
/V
SS
15
CBC4
CB4 control: switch pin CB4 = V
CC
/V
SS
Control Register Bits
Operation
SLP
0
Normal operation mode
1
Device enters Sleep mode
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
11 of 40
REV 1.1.8 12/10/02
www.xicor.com
Current Sense Gain (CSG1, CSG0)
These bits set the gain of the current sense amplifier.
These are x10, x25, x80 and x160. For more detail, see
section "Current Monitor Function" on page 20.
Table 14. Current Sense Gain Control
Charge/Discharge Control (OVPC, UVPC)
The OVPC and UVPC bits allow control of cell charge
and discharge externally, via the SPI port. These bits
control the OVP/LMON and UVP/OCP pins, which in turn
control the external power FETs.
Using P-channel power FETs ensures that the FET is
on when the pin voltage is low (Vss), and off when the
pin voltage is high (Vcc).
OVP/LMON and UVP/OCP can be controlled by using
the WCNTR Instruction to set bits OVPC and UVPC in
the Control register (See page 10).
Table 15. UVP/OVP Control
It is possible to set/change the values of OVPC and
UVPC during a protection mode. A change in the state
of the pins OVP/LMON and UVP/OCP, however, will not
take place until the device has returned from the
protection mode.
Cell Voltage Balance Control (CBC1-CBC4)
This function can be used to adjust individual battery
cell voltage during charging. Pins CB1CB4 are used to
control external power switching devices. Cell voltage
balancing is achieved via the SPI port.
Table 16. CB1--CB4 Control
CB1CB4 can be controlled by using the WCNTR In-
struction to set bits CBC1CBC4 in the control register
(Table 16).
STATUS REGISTER
The status of the X3100 or X3101 can be verified by
using the RDSTAT command to read the contents of the
Status Register (Table 17).
Table 17. Status Register.
The function of each bit in the status register is shown
in Table 18.
Bit 0 of the status register (VRGS+OCDS) actually
indicates the status of two conditions of the X3100 or
X3101. Voltage Regulator Status (VRGS) is an
internally generated signal which indicates that the
output of the Voltage Regulator (VRGO) has reached an
output of 5VDC 0.5%. In this case, the voltage
regulator is said to be "tuned". Before the signal VRGS
goes low (i.e. before the voltage regulator is tuned), the
voltage at the output of the regulator is nominally 5VDC
10% (See section "Voltage Regulator" on page 21.)
Over-current Detection Status (OCDS) is another
internally generated signal which indicates whether or
not the X3100 or X3101 is in over-current protection
mode.
Signals VRGS and OCDS are logically OR'ed together
(VRGS+OCDS) and written to bit 0 of the status register
(See Table 18, Table 17 and Figure 2).
Control Register Bits
Operation
CSG1
CSG0
0
0
Set current sense gain=x10
0
1
Set current sense gain=x25
1
0
Set current sense gain=x80
1
1
Set current sense gain=x160
Control Register Bits
Operation
OVPC
UVPC
1
x
Pin OVP=V
SS
(FET ON)
0
x
Pin OVP=V
CC
(FET OFF)
x
1
Pin UVP=V
SS
(FET ON)
x
0
Pin UVP=V
CC
(FET OFF)
Control Register Bits
Operation
CBC4
CBC3
CBC2
CBC1
x
x
x
1
Set CB1=V
CC
(ON)
x
x
x
0
Set CB1=V
SS
(OFF)
x
x
1
x
Set CB2=V
CC
(ON)
x
x
0
x
Set CB2=V
SS
(OFF)
x
1
x
x
Set CB3=V
CC
(ON)
x
0
x
x
Set CB3=V
SS
(OFF)
1
x
x
x
Set CB4=V
CC
(ON)
0
x
x
x
Set CB4=V
SS
(OFF)
7
6
5
4
3
2
1
0
0
0
0
0
0
CCES+
OVDS
UVDS
VRGS+
OCDS
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
12 of 40
REV 1.1.8 12/10/02
www.xicor.com
Bit 1 of the status register simply indicates whether or
not the X3100 or X3101 is in over-discharge protection
mode.
Bit 2 of the status register (CCES+OVDS) indicates the
status of two conditions of the X3100 or X3101. Cell
Charge Enable Status (CCES) is an internally generated
signal which indicates the status of any cell voltage
(V
CELL
) with respect to the Cell Charge Enable Voltage
(V
CE
). Over-charge Voltage Detection Status (OVDS) is
an internally generated signal which indicates whether
or not the X3100 or X3101 is in over-charge protection
mode.
When the cell charge enable function is switched ON
(configuration bit SWCEN=0), the signals CCES and
OVDS are logically OR'ed (CCES+OVDS) and written to
bit 2 of the status register. If the cell charge enable
function is switched OFF (configuration bit SWCEN=1),
then bit 2 of the status register effectively only represents
information about the over-charge status (OVDS) of the
X3100 or X3101 (See Table 18, Table 17 and Figure 2).
Table 18. Status Register Functionality.
Notes:
This bit is set in the configuration register.
X3100/X3101 INTERNAL PROTECTION FUNCTIONS
The X3100 and the X3101 provide periodic monitoring
(see section "Periodic Protection Monitoring" on page
12) for over-charge and over-discharge states and
continuous monitoring for an over-current state. It has
automatic shutdown when a protection mode is
encountered, as well as automatic return after the
device is released from a protection mode. When
sampling voltages through the analog port (Monitor
Mode), over-charge and over-discharge protection
monitoring is also performed on a continuous basis.
Voltage thresholds for each of these protection modes
(V
OV
, V
UV
, and V
OC
respectively) can be individually
selected via software and stored in an internal non-
volatile register. This feature allows the user to avoid the
restrictions of mask programmed voltage thresholds, and
is especially useful during prototype/evaluation design
stages or when cells with slightly different
characteristics are used in an existing design.
Delay times for the detection of, and release from
protection modes (T
OV
, T
UV
/T
UVR
, and T
OC
/T
OCR
respectively) can be individually varied by setting the
values of external capacitors connected to pins OVT,
UVT, OCT.
Periodic Protection Monitoring
In normal operation, the analog select pins are set such
that AS2=L, AS1=L, AS0=L. In this mode the X3100 and
X3101 conserve power by sampling the cells for over or
over-discharge conditions.
In this state over-charge and over-discharge protection
circuitry are usually off, but are periodically switched on
by the internal Protection Sample Rate Timer (PSRT). The
Bit(s)
Name
Description
Case
Status
Interpretation
0
VRGS+OCDS
Voltage regulator
status
+
Over-current
detection status
-
1
V
RGO
not yet tuned (V
RGO
=5V 10%) OR
X3100/X3101 in over-current protection mode.
0
V
RGO
tuned (V
RGO
=5V 0.5%) AND
X3100/X3101 NOT in over-current protection mode.
1
UVDS
Over-discharge
detection status
-
1
X3100/X3101 in over-discharge protection mode
0
X3100/X3101 NOT in over-discharge protection mode
2
CCES+OVDS
Cell charge
enable status
+
Over-charge
detection status
SWCEN =0
1
V
CELL
< V
CE
OR
X3100/X3101 in over-charge protection mode
0
V
CELL
> V
CE
AND
X3100/X3101 NOT in over-charge protection mode
SWCEN =1
1
X3100/X3101 in over-charge protection mode
0
X3100/X3101 NOT in over-charge protection mode
37
-
-
0
Not used (always return zero)
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
13 of 40
REV 1.1.8 12/10/02
www.xicor.com
over-charge and over-discharge protection circuitry is on
for approximately 2ms in each 125ms period. Over-
current monitoring is continuous. In monitor mode (see
page 20) over-charge and over-discharge monitoring is
also continuous.
Over-charge Protection
The X3100 and X3101 monitor the voltage on each
battery cell (V
CELL
). If for any cell, V
CELL
> V
OV
for a
time exceeding T
OV
, then the Charge FET will be
switched OFF (OVP/LMON=V
CC
). The device has now
entered Over-charge protection mode (Figure 5). The
status of the discharge FET (via pin UVP) will remain
unaffected.
While in over-charge protection mode, it is possible to
change the state of the OVPC bit in the control register
such that OVP/LMON=Vss (Charge FET=ON).
Although the OVPC bit in the control register can be
changed, the change will not be seen at pin OVP until
the X3100 or X3101 returns from over-charge
protection mode.
The over-charge detection delay T
OV
, is varied using a
capacitor (C
OV
) connected between pin OVT and GND.
A typical delay time is shown in Table 10. The delay T
OV
that results from a particular capacitance C
OV
, can be
approximated by the following linear equation:
T
OV
(s)
10 x C
OV
(F).
Table 19. Typical over-charge detection time
The device further continues to monitor the battery cell
voltages, and is released from over-charge protection
mode when V
CELL
< V
OVR
, for all cells. When the X3100
or X3101 is released from over-charge protection
mode, the charge FET is automatically switched ON
(OVP/LMON=V
SS
). When the device returns from over-
charge protection mode, the status of the discharge
FET (pin UVP/OCP) remains unaffected.
The value of V
OV
can be selected from the values
shown in Table 4 by setting bits VOV1, VOV0. These bits
are set by using the WCFIG instruction to write to the
configuration register.
Figure 5. Over-charge Protection Mode--Event Diagram
Symbol
C
OV
Delay
T
OV
0.1F
1.0s (Typ)
V
CELL
OVP/LMON
Normal Operation Mode
Over-charge
V
OV
V
OVR
T
OV
Protection
Mode
Normal Operation Mode
V
CC
V
SS
Event
0
1
2
3
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
14 of 40
REV 1.1.8 12/10/02
www.xicor.com
Table 20. Over-charge Protection Mode--Event Diagram Description
Event
Event Description
[0,1)
-- Discharge FET is ON (UVP/OCP=V
SS
).
-- Charge FET is ON (OVP/LMON=V
SS
), and hence battery cells are permitted to receive charge.
-- All cell voltages (V
CELL
-V
CELL4
) are below the over-charge voltage threshold (V
OV
).
-- The device is in normal operation mode (i.e. not in a protection mode).
[1]
-- The voltage of one or more of the battery cells (V
CELL
), exceeds V
OV
.
-- The internal over-charge detection delay timer begins counting down.
-- The device is still in normal operation mode
(1,2)
The internal over-charge detection delay timer continues counting for T
OV
seconds.
[2]
The internal over-charge detection delay timer times out
AND
V
CELL
still exceeds V
OV.
-- Therefore, the internal over-charge sense circuitry switches the charge FET OFF (OVP/LMON=Vcc).
-- The device has now entered over-charge protection mode.
(2,3)
While in over-charge protection mode:
-- The battery cells are permitted to discharge via the discharge FET, and diode D
2
across the charge FET
-- The X3100 or X3101 monitors the voltages V
CELL1
-V
CELL4
to determine whether or not they have all fallen
below the "Return from over-charge threshold" (V
OVR
).
-- (It is possible to change the status of UVP/OCP or OVP/LMON using the control register)
[3]
-- All cell voltages fall below V
OVR
--The device is now in normal operation mode.
-- The X3100/X3101 automatically switches charge FET=ON (OVP/LMON=Vss)
-- The status of the discharge FET remains unaffected.
-- Charging of the battery cells can now resume.
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
15 of 40
REV 1.1.8 12/10/02
www.xicor.com
Over-discharge Protection
If V
CELL
< V
UV
, for a time exceeding T
UV
, the cells are
said to be in a over-discharge state (Figure 6). In this
instance, the X3100 and X3101 automatically switch
the discharge FET OFF (UVP/OCP=Vcc), and then
enter sleep mode.
The over-discharge (under-voltage) value, V
UV
, can be
selected from the values shown in Table 5 by setting
bits VUV1, VUV0 in the configuration register. These
bits are set using the WCFIG command. Once in the
sleep mode, the following steps must occur before the
X3100 or X3101 allows the battery cells to discharge:
The X3100 and X3101 must wake from sleep mode
(see section "Voltage Regulator" on page 21).
The charge FET must be switched ON by the micro-
controller (OVP/LMON=V
SS
), via the control register
(see section "Control Register Functionality" on page
10).
All battery cells must satisfy the condition: V
CELL
>
V
UVR
for a time exceeding T
UVR
.
The discharge FET must be switched ON by the micro-
controller (UVP/OCP=V
SS
), via the control register
(see section "Control Register Functionality" on page
10)
The times T
UV
/T
UVR
are varied using a capacitor (C
UV
)
connected between pin UVT and GND (Table 13). The
delay T
UV
that results from a particular capacitance C
UV
,
can be approximated by the following linear equation:
T
UV
(s)
10 x C
UV
(F)
T
UVR
(ms)
70 x C
UV
(F)
Sleep Mode
The X3100 or X3101 can enter sleep mode in two
ways:
i) The device enters the over-discharge protection mode.
ii) The user sends the device into sleep mode using the
control register.
A sleep mode can be induced by the user, by setting
the SLP bit in the control register (Table 13) using the
WCNTR Instruction.
In sleep mode, power to all internal circuitry is switched
off, minimizing the current drawn by the device to 1A
(max). In this state, the discharge FET and the charge
FET are switched OFF (OVP/LMON=V
CC
and UVP/
OCP=V
CC
), and the 5VDC regulated output (V
RGO
) is
0V. Control of UVP/OCP and OVP/LMON via bits UVPC
and OVPC in the control register is also prohibited.
The device returns from sleep mode when V
CC
V
SLR
.
(e.g. when the battery terminals are connected to a
battery charger). In this case, the X3100 or the X3101
restores the 5VDC regulated output (section "Voltage
Regulator" on page 21), and communication via the SPI
port resumes.
If the Cell Charge Enable function is enabled when V
CC
rises above V
SLR
, the X3100 and X3101 internally
verifies that the individual battery cell voltages (V
CELL
)
are larger than the
cell charge enable voltage (V
CE
)
before allowing the FETs to be turned on. The value
of V
CE
is selected by using the WCFIG command to set
bits VCE1VCE0 in the configuration register.
Only if the condition "V
CELL
>
V
CE
" is satisfied can
the state of charge and discharge FETs be changed
via the control register
. Otherwise, if V
CELL
<
V
CE
for
any battery cell then both the Charge FET and the
discharge FET are OFF (OVP/LMON=Vcc and UVP/
OCP=V
CC
). Thus both charge and discharge of the
battery cells via terminals P+ / P- is prohibited
1
.
The cell charging threshold function can be switched
ON or OFF by the user, by setting bit SWCEN in the
configuration register (Table 7) using the WCFIG
command. In the case that this cell charge enable
function is switched OFF, then
V
CE
is effectively set to
0V.
Neither the X3100 nor the X3101 enter sleep mode
(automatically or manually, by setting the SLP bit) if V
CC
V
SLR
. This is to ensure that the device does not go
into a sleep mode while the battery cells are at a high
voltage (e.g. during cell charging).
Table 21. Typical Over-discharge Delay Times
Symbol
Description
C
UV
Delay
T
UV
Over-discharge
detection delay
0.1F
1.0s (Typ)
T
UVR
Over-discharge
release time
0.1F
7ms (Typ)
1.
In this case, charging of the battery may resume ONLY if the cell
charge enable function is switched OFF by setting bit SWCEN =
1 in the configuration register (See Above, "Configuration
Register Functionality" on page 8).
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
16 of 40
REV 1.1.8 12/10/02
www.xicor.com
Figure 6. Over-discharge Protection Mode--Event Diagram
T
UVR
V
CE
VCELL
UVP/OCP
RGO
Over-discharge Protection Mode
Sleep Mode
0V
5V
T
UV
V
UVR
V
UV
Event
0
1
2
3
4
VCC
5
V
SLR
V
CC
V
SS
Cell Charge Prohibited if SWCEN=0
AND V
CELL
< V
CE
Note 1: If SWEN=0 and V
CELL
< V
CE
, then OVP/LMON stays high and charging is prohibited.
OVP/LMON
Note 1, 2
V
SS
V
CC
Note 2: OVP/LMON stays high until the microcontroller writes a "1" to the OVPC bit in the control register. This sets the signal low, which turns on the
charge FET. It cannot be turned on prior to this time.
Note 3: UVP/OCP stays high until the microcontroller writes a "1" to the UVPC bit in the control register. This sets the signal low, which turns on the
discharge FET. The FET cannot be turned on prior to this time.
Note 3
The Longer of TOV+200ms OR TUV+200ms
0.7V
Table 22. Over-discharge Protection Mode--Event Diagram Description
Event
Event Description
[0,1)
-- Charge FET is ON (OVP/LMON=V
SS
)
-- Discharge FET is ON (UVP/OCP=V
SS
), and hence battery cells are permitted to discharge.
-- All cell voltages (VCELL
1
-VCELL
4
) are above the Over-discharge threshold voltage (V
UV
).
-- The device is in normal operation mode (i.e. not in a protection mode).
[1]
-- The voltage of one or more of the battery cells (V
CELL
), falls below V
UV
.
-- The internal over-discharge detection delay timer begins counting down.
-- The device is still in normal operation mode
(1,2)
The internal over-discharge detection delay timer continues counting for T
UV
seconds.
[2]
-- The internal over-discharge detection delay timer times out, AND V
CELL
is still below V
UV.
-- The internal over-discharge sense circuitry switches the discharge FET OFF (UVP/OCP=Vcc).
-- The charge FET is switched OFF (OVP/LMON=V
CC
).
-- The device has now entered over-discharge protection mode.
-- At the same time, the device enters sleep mode (See section "Voltage Regulator" on page 21).
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
17 of 40
REV 1.1.8 12/10/02
www.xicor.com
(2,3)
While device is in sleep (in over-discharge protection) mode:
-- The power to ALL internal circuits is switched OFF limiting power consumption to less than 1A.
-- The output of the 5VDC voltage regulator (RGO) is 0V.
-- Access to the X3100/X3101 via the SPI port is NOT possible.
[3]
Return from sleep mode (but still in over-discharge protection mode):
-- Vcc rises above the "Return from Sleep mode threshold Voltage" (V
SLR
)--This would normally occur in the
case that the battery pack was connected to a charger. The X3100/X3101 is now powered via P+/P-, and
not the battery pack cells.
-- Power is returned to ALL internal circuitry
-- 5VDC output is returned to the regulator output (RGO).
-- Access is enabled to the X3100/X3101 via the SPI port.
-- The status of the discharge FET remains OFF (It is possible to change the status of UVPC in the control reg-
ister, although it will have no effect at this time).
(3,4)
If the cell charge enable func-
tion is switched ON
AND V
CELL
> V
CE
OR
Charge enable function is
switched OFF
-- The X3100/X3101 initiates a reset operation that takes the longer of
T
OV
+200ms or T
UV
+200ms to complete. Do not write to the FET control bits
during this time.
-- The charge FET is switched On (OVP/LMON=Vss) by the microcontroller by
writing a "1" to the OVPC bit in the control register.
-- The battery cells now receive charge via the charge FET and diode D1 across
the discharge FET (which is OFF).
-- The X3100/X3101 monitors the V
CELL
voltage to determine whether or not it
has risen above V
UVR
.
If the cell charge enable func-
tion is switched ON
AND
V
CELL
< V
CE
-- Charge/discharge of the battery cells via P+ is no longer permitted (Charge
FET and discharge FET are held OFF).
-- (Charging may re-commence only when the Cell Charge Enable function is
switched OFF - See Sections: "Configuration Register" page 4, and "Sleep
mode" page 17.)
[4]
-- The voltage of all of the battery cells (V
CELL
), have risen above V
UVR
.
-- The internal Over-discharge release timer begins counting down.
-- The X3100/X3101 is still in over-discharge protection mode.
(4,5)
-- The internal over-discharge release timer continues counting for t
UVR
seconds.
-- The X3100/X3101 should be in monitor mode (AS2:AS0 not all low) for recovery time based on t
UVR
. Other-
wise recovery is based on two successive samples about 120ms apart.
[5]
-- The internal over-discharge release timer times out, AND V
CELL
is still above V
UVR.
-- The device returns from over-discharge protection mode, and is now in normal operation mode.
-- The Charger voltage can now drop below VSLR and the X3100/X3101 will not go back to sleep.
-- The discharge FET is can now be switched ON (UVP/OCP=V
SS
) by the microcontroller by writing a "1" to
the UVPC bit of the control register.
-- The status of the charge FET remains unaffected (ON)
-- The battery cells continue to receive charge via the charge FET and discharge FET (both ON).
Table 22. Over-discharge Protection Mode--Event Diagram Description (Continued)
Event
Event Description
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
18 of 40
REV 1.1.8 12/10/02
www.xicor.com
Over-Current Protection
In addition to monitoring the battery cell voltages, the
X3100 and X3101 continually monitor the voltage VCS
21
(VCS
2
VCS
1
) across the current sense resistor
(R
SENSE
). If VCS
21
> V
OC
for a time exceeding T
OC
,
then the device enters over-current protection mode
(Figure 7). In this mode, the X3100 and X3101
automatically switch the discharge FET OFF (UVP/
OCP=Vcc) and hence prevent current from flowing
through the terminals P+ and P-.
Figure 7. Over-Current Protection
The 5VDC voltage regulator output (V
RGO
) is always
active during an over-current protection mode.
Once the device enters over-current protection mode,
the X3100 and X3101 begin a load monitor state. In the
load monitor state, a small current (I
LMON
=7.5A typ.) is
passed out of pin OVP/LMON in order to determine the
load resistance. The load resistance is the impedance
seen looking out of pin OVP/LMON, between terminal
P+ and pin VSS (See Figure 7.)
If the load resistance >
150k
(I
LMON
=0A) for a time
exceeding T
OCR
, then the X3100 or X3101 is released
from over-current protection mode. The discharge FET
is then automatically switched ON (UVP/OCP=Vss) by
the X3100 or X3101, unless the status of UVP/OCP has
been changed in control register (by manipulating bit
UVPC) during the over-current protection mode.
T
OC
/T
OCR
are varied using a capacitor (C
OC
) connected
between pin OCT and VSS. A list of typical delay times
is shown in Table 23. Note that the value C
OC
should be
larger than 1nF.
The delay T
OC
and T
OCR
that results from a particular
capacitance C
OC
can be approximated by the following
equations:
T
OC
(ms)
10,000 x C
OC
(F)
T
OCR
(ms)
10,000 x C
OC
(F)
Table 23. Typical Over-Current Delay Times
The value of V
OC
can be selected from the values
shown in Table 6, by setting bits VOC1, VOC0 in the
configuration register using the WCFIG command.
Note: If the Charge FET is turned off, due to an
overcharge condition or by direct command from the
microcontroller, the cells are not in an undervoltage
condition and the pack has a load, then excessive
current may flow through Q10 and diode D1. To
eliminate this effect, the gate of Q10 can be turned off by
the microcontroller through an unused X3101 cell
balance output, or directly from a microcontroller port
instead of connecting to V
RGO
.
FET Control
Circuitry
OVP/LMON
Q2
D1
I
LMON
X3100/X3101
P+
P-
Load
VCS1
VCS2
VSS
R
SENSE
V
RGO
Q10
Symbol
Description
C
OC
Delay
T
OC
Over-current
detection delay
0.001
F
10ms (Typ)
T
OCR
Over-current
release time
0.001
F
10ms (Typ)
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
19 of 40
REV 1.1.8 12/10/02
www.xicor.com
Figure 8. Over-Current Protection Mode--Event Diagram
P+
VCS
2
UVP/OCP
T
OCR
V
SS
Over-Current Protection Mode
T
OC
Voc
Normal Operation Mode
P+ = (RLOAD+RSENSE) x ILMON
V
OC
Normal Operation Mode
Event
0
1
3
4
2
V
SS
V
CC
B+
Table 24. Over-Current Protection Mode--Event Diagram Description
Event
Event Description
[0,1)
-- Discharge FET is ON (OCP=Vss). Battery cells are permitted to discharge.
-- VCS
21
(VCS
2
VCS
1
) is less than the over-current threshold voltage (V
OC
).
-- The device is in normal operation mode (i.e. not in a protection mode).
[1]
-- Excessive current flows through the battery terminals P+, dropping the voltage. (See Figure 8.).
-- The positive battery terminal voltage (P+) falls, and VCS
21
exceeds V
OC
.
-- The internal over-current detection delay timer begins counting down.
-- The device is still in Normal Operation Mode
(1,2)
The internal Over-current detection delay timer continues counting for T
OC
seconds.
[2]
-- The internal over-current detection delay timer times out, AND VCS
21
is still above V
OC.
-- The internal over-current sense circuitry switches the discharge FET OFF (UVP/OCP=Vcc).
-- The device now begins a load monitor state by passing a small test current (I
LMON
=7.5A) out of pin
OVP/LMON. This senses if an over-current condition (i.e. if the load resistance < 150k
) still exists
across P+/P-.
-- The device has now entered over-current protection mode.
-- It is possible to change the status of UVPC and OVPC in the control register, although the status of pins
UVP/OCP and OVP/LMON will not change until the device has returned from over-current protection
mode.
(2,3)
-- The X3100/X3101 now continuously monitors the load resistance to detect whether or not an over-
current condition is still present across the battery terminals P+/P-.
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
20 of 40
REV 1.1.8 12/10/02
www.xicor.com
MONITOR MODE
Analog Multiplexer Selection
The X3100 and X3101 can be used to externally monitor
individual battery cell voltages, and battery current.
Each quantity can be monitored at the analog output pin
(AO), and is selected using the analog select (AS0AS2)
pins (Table 25). Also, see Figure 9.
Current Monitor Function
The voltages monitored at pins
VCS
1
and VCS
2
can be
used to calculate current flowing through the battery
terminals, using an off-board microcontroller with an A/D.
Since the value of the sense resistor (R
SENSE
) is small
(typically in the order of tens of m
),
and since the
resolution of various A/D converters may vary, the
voltage across R
SENSE
(
VCS
1
and VCS
2
) is amplified
internally with a gain of between 10 and 160, and output
to pin AO (Figure 9).
Figure 9. X3100/X3101 Monitor Circuit
The internal gain of the X3100 or X3101 current sense
voltage amplifier can be selected by using the WCNTR
Instruction to set bits CSG1 and CSG0 in the control
register (Table 14). The CSG1 and CSG0 bits select one
[3]
-- The device detects the load resistance has risen above 250k
.
-- Voltages P+ and VCS
21
return to their normal levels.
-- The test current from pin OVP/LMON is stopped (I
LMON
=0A)
-- The device has now returned from the load monitor state
-- The internal over-current release time timer begins counting down.
-- Device is still in over-current protection mode.
(3,4)
The internal over-current release timer continues counting for T
OCR
seconds.
[4]
-- The internal over-current release timer times out, and VCS
21
is still below V
OC.
-- The device returns from over-current protection mode, and is now in normal operation mode.
-- The discharge FET is automatically switched ON (UVP/OCP=Vss)--unless the status of UVPC has
been changed in the control register during the over-current protection mode.
-- The status of the charge FET remains unaffected.
-- Discharge of the battery cells is once again possible.
Table 24. Over-Current Protection Mode--Event Diagram Description (Continued)
Event
Event Description
Table 25. AO Selection Map
AS2
AS1 AS0
AO output
L
L
L
V
SS
(1)
L
L
H
VCELL
1
VCELL
2
(VCELL
12
)
L
H
L
VCELL
2
VCELL
3
(VCELL
23
)
L
H
H
VCELL
3
VCELL
4
(VCELL
34
)
H
L
L
VCELL
4
Vss (VCELL
4
)
H
L
H
VCS
1
VCS
2
(VCS
12
)
(2)
H
H
L
VCS2VCS
1
(VCS
21
)
(2)
H
H
H
V
SS
Notes: (1) This is the normal state of the X3100 or X3101. While in
this state Over-charge and Over-discharge Protection
conditions are periodically monitored (See "Periodic Pro-
tection Monitoring" on page 12.)
(2) VCS
1
, VCS
2
are read at AO with respect to a DC bias
voltage of 2.5V (See section "Current Monitor Function"
on page 20).
Over-Current
Protection
VCS
1
VCS
2
+
-
CSG1 CSG0
Config
Register
A
nalog
MUX
AS0
AS1
AS2
AO
SPI
I/F
S0
SCL
CS
SI
R
SENSE
Gain
Setting
Cross-Bar
Switch
X3100/X3101
OP1
Voltage
Level
Shifters
Cell 1 Voltage
Cell 2 Voltage
Cell 3 Voltage
Cell 4 Voltage
2.5V
P-
R2
R2
R1
R1
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
21 of 40
REV 1.1.8 12/10/02
www.xicor.com
of four input resistors to Op Amp OP1. The feedback
resistors remain constant. This ratio of input to feedback
resistors determines the gain. Putting external resistors
in series with the inputs reduces the gain of the amplifier.
VCS
1
and VCS
2
are read at AO with respect to a DC
bias voltage of 2.5V. Therefore, the voltage range of
VCS
12
and VCS
21
changes depending upon the
direction of current flow (i.e. battery cells are in Charge
or Discharge--Table 21).
Table 26. AO Voltage Range for VCS
12
and VCS
21
By calculating the difference of VCS
12
and VCS
21
the
offset voltage of the internal op-amp circuitry is
cancelled. This allows for the accurate calculation of
current flow into and out of the battery cells.
Pack current is calculated using the following formula:
VOLTAGE REGULATOR
The X3100 and X3101 are able to supply peripheral
devices with a regulated 5VDC0.5% output at pin
RGO. The voltage regulator should be configured
externally as shown in Figure 10.
The non-inverting input of OP1 is fed with a high
precision 5VDC supply. The voltage at the output of the
voltage regulator (V
RGO
) is compared to this 5V
reference via the inverting input of OP1. The output of
OP1 in turn drives the regulator pnp transistor (Q1). The
negative feedback at the regulator output maintains the
voltage at 5VDC0.5% (including ripple) despite
changes in load, and differences in regulator transistors.
When power is applied to pin VCC of the X3100 or
X3101, V
RGO
is regulated to 5VDC10% for a nominal
time of T
OC
+2ms. During this time period, V
RGO
is
"tuned" to attain a final value of 5VDC0.5% (Figure 2).
The maximum current that can flow from the voltage
regulator (I
LMT
) is controlled by the current limiting
resistor (R
LMT
) connected between RGP and VCC. When
the voltage across VCC and RGP reaches a nominal
2.5V (i.e. the threshold voltage for the FET), Q2 switches
ON, shorting VCC to the base of Q1. Since the base
voltage of Q1 is now higher than the emitter voltage, Q1
switches OFF, and hence the supply current goes to zero.
Typical values for R
LMT
and I
LMT
are shown in Table 27.
In order to protect the voltage regulator circuitry from
damage in case of a short-circuit, R
LMT
10 should
always be used.
Table 27. Typical Values for R
LMT
and I
LMT
When choosing the value of R
LMT
, the drive limitations
of the PNP transistor used should also be taken into
consideration. The transistor should have a gain of at
least 100 to support an output current of 250mA.
Figure 10. Voltage Regulator Operation
4KBIT EEPROM MEMORY
The X3100 and X3101 contain a CMOS 4k-bit serial
EEPROM, internally organized as 512 x 8 bits. This
memory is accessible via the SPI port, and features the
IDLock function.
The 4kbit EEPROM array can be accessed by the SPI
port at any time, even during a protection mode, except
during sleep mode. After power is applied to VCC of the
X3100 or X3101, EEREAD and EEWRITE Instructions
AO
Cell State
AO Voltage Range
VCS
12
Charge
2.5V
AO
5.0V
VCS
12
Discharge
0V
AO
2.5V
VCS
21
Charge
0V
AO
2.5V
VCS
21
Discharge
2.5V
AO
5.0V
Pack Current
VCS
12
VCS
21
(
)
2
( ) gain setting
(
)(current sense resistor)
----------------------------------------------------------------------------------------------------------
=
R
LMT
Voltage Regulator Current Limit (I
LMT
)
10
250mA 50% (Typical)
25
100mA 50% (Typical)
50
50mA 50% (Typical)
VCC
RGC
RGP
RGO
Voltage
Reference
_
+
To Internal Voltage
Regulating Circuitry
Regulated
5VDC Output
R
LMT
Q1
Un-Regulated
Input
Voltage
I
LMT
Precision
X3100/X3101
OP1
5VDC
Q2
Tuning
V
RGO
0.1
F
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
22 of 40
REV 1.1.8 12/10/02
www.xicor.com
can be executed only after times t
PUR
(power up to read
time) and t
PUW
(power up to write time) respectively.
IDLock is a programmable locking mechanism which
allows the user to lock data in different portions of the
EEPROM memory space, ranging from as little as one
page to as much as 1/2 of the total array. This is useful
for storing information such as battery pack serial
number, manufacturing codes, battery cell chemistry
data, or cell characteristics.
EEPROM Write Enable Latch
The X3100 and X3101 contain an EEPROM "Write
Enable" latch. This latch must be SET before a write to
EEPROM operation is initiated. The WREN instruction
will set the latch and the WRDI instruction will reset the
latch (Figure 11). This latch is automatically reset upon a
power-up condition and after the completion of a byte or
page write cycle.
IDLock Memory
Xicor's IDLock memory provides a flexible mechanism to
store and lock battery cell/pack information. There are
seven distinct IDLock memory areas within the array
which vary in size from one page to as much as half of
the entire array.
Prior to any attempt to perform an IDLock operation, the
WREN instruction must first be issued. This instruction
sets the "Write Enable" latch and allows the part to
respond to an IDLock sequence. The EEPROM memory
may then be IDLocked by writing the
SET IDL
instruction
(Table 30 and Figure 19), followed by the IDLock
protection byte.
Table 28. IDLock Partition Byte Definition
The IDLock protection byte contains the IDLock bits
IDL2-IDL0, which defines the particular partition to be
locked (Table 28). The rest of the bits [7:3] are unused
and must be written as zeroes. Bringing CS HIGH after
the two byte IDLock instruction initiates a nonvolatile write
to the status register. Writing more than one byte to the
status register will overwrite the previously written
IDLock byte.
Once an IDLock instruction has been completed, that
IDLock setup is held in a nonvolatile IDLock Register
(Table 29) until the next IDLock instruction is issued. The
sections of the memory array that are IDLocked can be
read but not written until IDLock is removed or changed.
Table 29. IDLock Register
X3100/X3101 SPI SERIAL COMMUNICATION
The X3100 and X3101 are designed to interface directly
with the synchronous Serial Peripheral Interface (SPI) of
many popular microcontroller families. This interface
uses four signals, CS, SCK, SI and SO. The signal CS
when low, enables communications with the device. The
SI pin carries the input signal and SO provides the
output signal. SCK clocks data in or out. The X3100 and
X3101 operate in SPI mode 0 which requires SCK to be
normally low when not transferring data. It also specifies
that the rising edge of SCK clocks data into the device,
while the falling edge of SCK clocks data out.
This SPI port is used to set the various internal registers,
write to the EEPROM array, and select various device
functions.
The X3100 and X3101 contain an 8-bit instruction
register. It is accessed by clocking data into the SI input.
CS must be LOW during the entire operation. Table 30
contains a list of the instructions and their opcodes. All
instructions, addresses and data are transferred MSB
first.
Data input is sampled on the first rising edge of SCK
after CS goes LOW. SCK is static, allowing the user to
stop the clock, and then start it again to resume
operations where left off.
IDLock Protection
Bytes
EEPROM Memory Address
IDLocked
0000 0000
None
0000 0001
000h07Fh
0000 0010
080h0FFh
0000 0011
100h17Fh
0000 0100
180h1FFh
0000 0101
000h0FFh
0000 0110
000h00Fh
0000 0111
1F0h1FFh
7
6
5
4
3
2
1
0
0
0
0
0
0
IDL2
IDL1
IDL0
Note:
Bits [7:3] specified to be "0's"
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
23 of 40
REV 1.1.8 12/10/02
www.xicor.com
Write Enable/Write Disable (WREN/WRDI)
Any write to a nonvolatile array or register, requires the
WREN command be sent prior to the write command.
This command sets an internal latch allowing the write
operation to proceed. The WRDI command resets the
internal latch if the system decides to abort a write
operation. See Figure 11.
Figure 11. EEPROM Write Enable Latch (WREN/WRDI) Operation Sequence
Table 30. X3100/X3101 Instruction Set
Instruction
Name
Instruction
Format*
Description
WREN
0000 0110
Set the write enable latch (write enable operation)--Figure 11
WRDI
0000 0100
Reset the write enable latch (write disable operation)--Figure 11
EEWRITE
0000 0010
Write command followed by address/data (4kbit EEPROM)--Figure 12, Figure 13
EEREAD STAT
0000 0101
Reads IDLock settings & status of EEPROM EEWRITE instruction--Figure 14
EEREAD
0000 0011
Read operation followed by address (for 4kbit EEPROM)--Figure 15
WCFIG
0000 1001
Write to configuration register followed by two bytes of data--Figure 4, Figure 16.
Data stored in SRAM only and will power-up to previous settings--Figure 3
WCNTR
0000 1010
Write to control register, followed by two bytes of data--Figure 17
RDSTAT
0000 1011
Read contents of status register--Figure 18
SET IDL
0000 0001
Set EEPROM ID lock partition followed by partition byte--Figure 19
*Instructions have the MSB in leftmost position and are transferred MSB first.
0
1
2
3
4
5
6
7
CS
SI
SCK
High Imped
ance
SO
Instruction
(1 Byte)
WREN
WRDI
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
24 of 40
REV 1.1.8 12/10/02
www.xicor.com
EEPROM Write Sequence (EEWRITE)
Prior to any attempt to write data into the EEPROM of
the X3100 or X3101, the "Write Enable" latch must first
be set by issuing the WREN instruction (See Table 30
and Figure 11). CS is first taken LOW. Then the WREN
instruction is clocked into the X3100 or X3101. After all
eight bits of the instruction are transmitted, CS must
then be taken HIGH. If the user continues the write
operation without taking CS HIGH after issuing the
WREN instruction, the write operation will be ignored.
To write data to the EEPROM memory array, the user
issues the EEWRITE instruction, followed by the 16 bit
address and the data to be written. Only the last 9 bits of
the address are used and bits [15:9] are specified to be
zeroes. This is minimally a thirty-two clock operation. CS
must go LOW and remain LOW for the duration of the
operation. The host may continue to write up to 16 bytes
of data to the X3100 or X3101. The only restriction is the
16 bytes must reside on the same page. If the address
counter reaches the end of the page and the clock
continues, the counter will "roll over" to the first address
of the page and overwrite any data that may have been
previously written.
For a byte or page write operation to be completed, CS
can only be brought HIGH after bit 0 of the last data byte
to be written is clocked in. If it is brought HIGH at any
other time, the write operation will not be completed.
Refer to Figure 12 and Figure 13 for detailed illustration
of the write sequences and time frames in which CS
going HIGH are valid.
EEPROM Read Status Operation (EEREAD STAT)
If there is not a nonvolatile write in progress, the
EEREAD STAT instruction returns the IDLock byte from
the IDLock register which contains the IDLock bits IDL2-
IDL0 (Table 29). The IDLock bits define the IDLock
condition (Table 28). The other bits are reserved and will
return `0' when read.
If a nonvolatile write to the EEPROM (i.e. EEWRITE
instruction) is in progress, the EEREAD STAT returns a
HIGH on SO. When the nonvolatile write cycle in the
EEPROM is completed, the status register data is read
out.
Clocking SCK is valid during a nonvolatile write in
progress, but is not necessary. If the SCK line is clocked,
the pointer to the status register is also clocked, even
though the SO pin shows the status of the nonvolatile
write operation (See Figure 14).
Figure 12. EEPROM Byte Write (EEWRITE) Operation Sequence
0
1
2
3
4
5
6
7
8
9
CS
SCK
SI
SO
High Impedance
EEWRITE Instruction
(1 Byte)
Byte Address (2 Byte)
Data Byte
15 14
3
2
1
0
20 21 22 23 24 25 26 27 28 29 30 31
7
6
5
4
3
2
1
0
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
25 of 40
REV 1.1.8 12/10/02
www.xicor.com
Figure 13. EEPROM Page Write (EEWRITE) Operation Sequence
Figure 14. EEPROM Read Status (EEREAD STAT) Operation Sequence
32 33 34 35 36 37 38 39
SCK
SI
CS
0
1
2
3
4
5
6
7
8
9
10
SCK
SI
EEWRITE
Instruction
Byte Address
(2 Byte)
7
6
5
4
3
2
1
0
CS
40 41 42 43 44 45 46 47
Data Byte 2
7
6
5
4
3
2
1
0
Data Byte 3
7
6
5
4
3
2
1
0
15 14 13
3
2
1
0
20 21 22 23 24 25 26 27 28 29 30 31
6
5
4
3
2
1
0
Data Byte 16
Data Byte 1
146
145
147
149
148
150
151
0
1
2
3
4
5
6
7
CS
SCK
SI
SO
Nonvolatile EEWRITE in Progress
EEREAD STAT
Instruction
I
SO High During
Nonvolatile
EEWRITE Cycle
SO=Status Reg Bit
When No Nonvolatile
EEWRITE Cycle
...
...
...
D
L
2
I
D
L
1
I
D
L
0
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
26 of 40
REV 1.1.8 12/10/02
www.xicor.com
EEPROM Read Sequence (EEREAD)
When reading from the X3100 or X3101 EEPROM
memory, CS is first pulled LOW to select the device. The 8-
bit EEREAD instruction is transmitted to the X3100 or
X3101, followed by the 16-bit address, of which the last
9 bits are used (bits [15:9] specified to be zeroes). After
the EEREAD opcode and address are sent, the data
stored in the memory at the selected address is shifted
out on the SO line. The data stored in memory at the next
address can be read sequentially by continuing to provide
clock pulses. The address is automatically incremented to
the next higher address after each byte of data is shifted
out. When the highest address is reached (01FFh), the
address counter rolls over to address 0000h, allowing
the read cycle to be continued indefinitely. The read
operation is terminated by taking CS HIGH. Refer to the
EEPROM Read (EEREAD) operation sequence
illustrated in Figure 15.
Figure 15. EEPROM (EEREAD) Read Operation Sequence
0
1
2
3
4
5
6
7
8
9
CS
SCK
SI
SO
High Impedance
EEREAD Instruction
(1 Byte)
Byte Address (2 Byte)
Data Out
15 14
3
2
1
0
20 21 22 23 24 25 26 27 28 29 30
7
6
5
4
3
2
1
0
31
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
27 of 40
REV 1.1.8 12/10/02
www.xicor.com
Write Configuration Register (WCFIG)
The Write Configuration Register (WCFIG) instruction
updates the static part of the Configuration Register.
These new values take effect immediately, for example
writing a new Over-discharge voltage limit. However, to
make these changes permanent, so they remain if the
cell voltages are removed, an EEWRITE operation to
the EEPROM array is required following the WCFIG
command. This command is shown in Figure 16.
Write Control Register (WCNTRL)
The Write Control Register (WCNTRL) instruction
updates the contents of the volatile Control Register.
This command sets the status of the FET control pins,
the cell balancing outputs, the current sense gain and
external entry to the sleep mode. Since this instruction
controls a volatile register, no other commands are
required and there is no delay time needed after the
instruction, before subsequent commands. The
operation of the WCNTRL command is shown in
Figure 17.
Figure 16. Write Configuration Register (WCFIG) Operation Sequence
Figure 17. Write Control Register (WCNTR) Operation Sequence
0
1
2
3
4
5
6
7
8
9
CS
SCK
SI
SO
High Impedance
WCFIG Instruction
(1 BYTE)
Configuration
15 14
3
2
1
0
20 21 22 23
Register Data
(2 BYTE)
0
1
2
3
4
5
6
7
8
9
CS
SCK
SI
SO
High Impedance
WCNTR Instruction
(1 Byte)
Control
15 14
5
4
3
2
18 19 20 21
Register Data
(2 Byte)
22
23
1
0
Old Control Bits
New Control Bits
Control
Bits
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
28 of 40
REV 1.1.8 12/10/02
www.xicor.com
Read Status Register (RDSTAT)
The Read Status Register (RDSTAT) command returns
the status of the X3100 or X3101. The Status Register
contains three bits that indicate whether the voltage
regulator is stabilized, and if there are any protection
failure conditions. The operation of the RDSTAT
instruction is shown in Figure 18.
Set ID Lock (SET IDL)
The contents of the EEPROM memory array in the
X3100 or X3101 can be locked in one of eight
configurations using the SET ID lock command. When a
section of the EEPROM array is locked, the contents
cannot be changed, even when a valid write operation
attempts a write to that area. The SET IDL command
operation is shown in Figure 19.
Figure 18. Read Status Register (RDSTAT) Operation Sequence
Figure 19. EEPROM IDLock (SET IDL) Operation Sequence
0
1
2
3
4
5
6
7
8
CS
SCK
SI
SO
High Impedance
Instruction
(1 Byte)
9
10
11
12
13
14
15
2
1
0
RDSTAT
Status Register Output
0
1
2
3
4
5
6
7
8
9
CS
SCK
SI
SO
High Impedance
Set IDL
10 11 12 13 14 15
IDLock
Byte
Instruction
I
D
L
2
I
D
L
1
I
D
L
0
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
29 of 40
REV 1.1.8 12/10/02
www.xicor.com
ABSOLUTE MAXIMUM RATINGS
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is
a stress rating only; the functional operation of the device (at these or any other conditions above those indicated in
the operational sections of this specification) is not implied. Exposure to absolute maximum rating conditions for
extended periods may affect device reliability.
RECOMMENDED OPERATING CONDITIONS
D.C. OPERATING CHARACTERISTICS
(Over the recommended operating conditions, unless otherwise specified.)
Symbol
Parameter
Min.
Max.
Unit
Storage temperature
-55
125
C
Operating temperature
-40
85
C
DC output current
5
mA
Lead temperature (soldering 10 seconds)
300
C
VCC
Power supply voltage
V
SS
-0.5
V
SS
+27.0
V
VCELL
Cell voltage
-0.5
6.75
V
V
TERM1
Terminal voltage (Pins: SCK, SI, SO, CS, AS0, AS1, AS2, VCS1,
VCS2, OVT, UVT, OCT, AO)
V
SS
-0.5
V
RGO
+ 0.5
V
V
TERM2
Terminal voltage (VCELL1)
V
SS
-0.5
V
CC
+ 1.0
V
V
TERM3
Terminal voltage (all other pins)
V
SS
-0.5
V
CC
+ 0.5
V
Temperature
Min.
Max.
Supply Voltage
Limits
Commercial
-20C
+70C
X3100/X3101
6V to 24V
Symbol
Parameter
Limits
Units
Test Conditions
Min.
Max.
I
LI
Input leakage current (SCK, SI, CS,
ASO, AS1, AS2)
10
A
I
LO
Output leakage current (SO)
10
A
V
IL
(1)
Input LOW voltage
(SCK, SI, CS, AS0, AS1, AS2)
- 0.3
V
RGO
x 0.3
V
V
IH
(1)
Input HIGH voltage
(SCK, SI, CS, AS0, AS1, AS2)
V
RGO
x 0.7 V
RGO
+ 0.3
V
VOL1
Output LOW voltage (SO)
0.4
V
I
OL
= 1.0mA
VOH1
Output HIGH voltage (SO)
V
RGO
- 0.8
V
I
OH
= -0.4mA
VOL2
Output LOW voltage
(UVP/OCP, OVP/LMON, CB1-CB4)
0.4
V
I
OL
= 100uA
VOH2
Output HIGH voltage
(UVP/OCP, OVP/LMON, CB1-CB4)
V
CC
-0.4
V
I
OH
= -20uA
VOL3
Output LOW voltage (RGC)
0.4
V
I
OL
= 2mA, RGP = V
CC
,
RGO = 5V
VOH3
Output HIGH voltage (RGC)
V
CC
-4.0
V
I
OH
= -20A, RGP = V
CC
- 4V,
RGO = 5V
Note:
(1) V
IL
min. and V
IH
max. are for reference only and are not 100% tested.
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
30 of 40
REV 1.1.8 12/10/02
www.xicor.com
OPERATING CHARACTERISTICS X3100 (Over the recommended operating conditions unless otherwise specified)
Description
Sym
Condition
Min
Typ
(2)
Max
Unit
5V regulated voltage
V
RGO
On power up or at wake-up
4.5
5.5
V
After self-tuning
(@10mA V
RGO
current; 25
o
C)
4.98
4.99
5.00
After self-tuning
(@10mA V
RGO
current; 0 - 50
o
C)
(5)
4.95
5.02
After self-tuning
(@50mA V
RGO
current)
(5)
4.90
5.00
V
5VDC voltage regulator current
limit
I
LMT
(3)
R
LMT
=10
250
mA
V
CC
supply current (1)
Icc1
Normal operation
85
250
A
V
CC
supply current (2)
Icc2
during nonvolatile EEPROM write
1.3
2.5
mA
V
CC
supply current (3)
Icc3
During EEPROM read
SCK=3.3MHz
0.9
1.2
mA
V
CC
supply current (4)
Icc4
Sleep mode
1
A
V
CC
supply current (5)
Icc5
Monitor mode
AN2, AN1, AN0 not equal to 0.
365
600
A
Cell over-charge protection mode
voltage threshold
(Default in Boldface)
V
OV
(4)
V
OV
= 4.20V (VOV1, VOV0 = 0,0)
0
o
C to 50
o
C
4.10
4.15
4.275
4.25
V
V
OV
= 4.25V (VOV1, VOV0 = 0,1)
0
o
C to 50
o
C
4.15
4.20
4.325
4.30
V
V
OV
= 4.30V (VOV1, VOV0 = 1,0)
0
o
C to 50
o
C
4.2
4.25
4.375
4.35
V
V
OV
= 4.35V (VOV1, VOV0 = 1,1)
0
o
C to 50
o
C
4.25
4.425
V
4.30
4.40
Cell over-charge protection mode
release voltage threshold
(Default in Boldface)
V
OVR
V
OV
-
0.25
V
OV
-
0.20
V
OV
-
0.15
V
Cell over-charge detection time
T
OV
(5)
C
OV
=0.1uF
0.5
1
1.5
s
Cell over-discharge protection
mode (SLEEP) threshold.
(Default in Boldface)
V
UV
(4)
V
UV
= 1.95V (VUV1, VUV0 = 0,0)
1.85
2.05
V
V
UV
= 2.05V (VUV1, VUV0 = 0,1)
1.95
2.15
V
V
UV
= 2.15V (VUV1, VUV0 = 1,0)
2.05
2.25
V
V
UV
= 2.25V (VUV1, VUV0 = 1,1)
2.15
2.35
V
Cell over-discharge protection
mode release threshold
(Default in Boldface)
V
UVR
V
UV
+
0.65
V
UV
+
0.7
V
UV
+
0.75
V
Cell over-discharge detection time
T
UV
C
UV
=0.1F
(5)
C
UV
=200pF
0.5
1
1
2
1.5
3
s
ms
Cell over-discharge release time
T
UVR
C
UV
=0.1F
(5)
C
UV
=200pF
3.5
80
7
100
10.5
120
ms
s
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
31 of 40
REV 1.1.8 12/10/02
www.xicor.com
Notes: (2) Typical at 25C.
(3) See Figure 10 on page 21.
(4) The default setting is set at the time of shipping, but may be changed by the user via changes in the configuration register.
(5) For reference only, this parameter is not 100% tested.
Over-current mode detection
voltage
(Default in Boldface)
V
OC
(4)
V
OC
= 0.075V (VOC1, VOC0 = 0,0)
0
o
C to 50
o
C
0.050
0.060
0.100
0.090
V
V
OC
= 0.100V (VOC1, VOC0 = 0,1)
0
o
C to 50
o
C
0.075
0.085
0.125
0.115
V
V
OC
= 0.125V (VOC1, VOC0 = 1,0)
0
o
C to 50
o
C
0.100
0.110
0.150
0.140
V
V
OC
= 0.150V (VOC1, VOC0 = 1,1)
0
o
C to 50
o
C
0.125
0.135
0.175
0.165
V
Over-current mode detection time
T
OC
C
OC
=0.001
F
(5)
C
OC
=200pF
5
1
10
2
15
3
ms
Over-current mode release time
T
OCR
C
OC
=0.001
F
(5)
C
OC
=200pF
5
1
10
2
15
3
ms
Load resistance over-current mode
release condition
Releases when OVP/LMON pin >
2.5V
200
250
k
Cell charge threshold voltage
V
CE
V
CE
=1.4V (Default)
(5)
1.30
1.40
1.50
V
X3100 wake-up voltage
(For Vcc above this voltage, the device
wakes up)
V
SLR
See Wake-up test circuit
12.5
15.5
V
X3100 sleep voltage
(For Vcc above this voltage, the device
cannot go to sleep)
V
SLP
See Sleep test circuit
11.5
14.5
V
Description
Sym
Condition
Min
Typ
(2)
Max
Unit
Wake-up test circuit (X3100)
Sleep test circuit (X3100)
Vcc
Vcc
VCELL1
VCELL2
VCELL3
VCELL4
Vss
RGP
RGC
RGO
Increase Vcc until V
RGO
turns on
V
RGO
Vcc
Vcc
VCELL1
VCELL2
VCELL3
VCELL4
Vss
RGP
RGC
RGO
1V
1V
1V
1V
Decrease Vcc until V
RGO
turns off
V
RGO
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
32 of 40
REV 1.1.8 12/10/02
www.xicor.com
OPERATING CHARACTERISTICS X3101 (Over the recommended operating conditions unless otherwise specified)
Description
Sym
Condition
Min
Typ
(2)
Max
Unit
5V regulated voltage
V
RGO
On power up or at wake-up
4.5
5.5
V
After self-tuning
(@10mA V
RGO
current; 25
o
C)
4.98
4.99
5.00
After self-tuning
(@10mA V
RGO
current; 0 - 50
o
C)
(5)
4.95
5.02
After self-tuning
(@50mA V
RGO
current)
(5)
4.90
5.00
V
5VDC voltage regulator current limit I
LMT
(3)
R
LMT
=10
250
mA
V
CC
supply current (1)
Icc1
Normal operation
85
250
A
V
CC
supply current (2)
Icc2
during nonvolatile EEPROM write
1.3
2.5
mA
V
CC
supply current (3)
Icc3
During EEPROM read
SCK=3.3MHz
0.9
1.2
mA
V
CC
supply current (4)
Icc4
Sleep mode
1
A
V
CC
supply current (5)
Icc5
Monitor mode
AN2, AN1, AN0 not equal to 0.
365
600
A
Cell over-charge protection mode
voltage threshold
(Default in Boldface)
V
OV
(4)
V
OV
= 4.20V (VOV1, VOV0 = 0,0)
0
o
C to 50
o
C
4.10
4.15
4.275
4.25
V
V
OV
= 4.25V (VOV1, VOV0 = 0,1)
0
o
C to 50
o
C
4.15
4.20
4.325
4.30
V
V
OV
= 4.30V (VOV1, VOV0 = 1,0)
0
o
C to 50
o
C
4.2
4.25
4.375
4.35
V
V
OV
= 4.35V (VOV1, VOV0 = 1,1)
0
o
C to 50
o
C
4.25
4.425
V
4.30
4.40
Cell over-charge protection mode
release voltage threshold
(Default in Boldface)
V
OVR
V
OV
-
0.25
V
OV
-
0.20
V
OV
-
0.15
V
Cell over-charge detection time
T
OV
(5)
C
OV
=0.1uF
0.5
1
1.5
s
Cell over-discharge protection
mode (SLEEP) threshold.
(Default in Boldface)
V
UV
(4)
V
UV
= 2.25V (VUV1, VUV0 = 0,0)
2.15
2.35
V
V
UV
= 2.35V (VUV1, VUV0 = 0,1)
2.25
2.45
V
V
UV
= 2.45V (VUV1, VUV0 = 1,0)
2.35
2.55
V
V
UV
= 2.55V (VUV1, VUV0 = 1,1)
2.45
2.65
V
Cell over-discharge protection
mode release threshold
(Default in Boldface)
V
UVR
V
UV
+
0.65
V
UV
+
0.7
V
UV
+
0.75
V
Cell over-discharge detection time
T
UV
C
UV
=0.1F
(5)
C
UV
=200pF
0.5
1
1
2
1.5
3
s
ms
Cell over-discharge release time
T
UVR
C
UV
=0.1F
(5)
C
UV
=200pF
3.5
80
7
100
10.5
120
ms
s
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
33 of 40
REV 1.1.8 12/10/02
www.xicor.com
Notes: (2) Typical at 25C.
(3) See Figure 10 on page 21.
(4) The default setting is set at the time of shipping, but may be changed by the user via changes in the configuration register.
(5) For reference only, this parameter is not 100% tested.
Over-current mode detection
voltage
(Default in Boldface)
V
OC
(4)
V
OC
= 0.075V (VOC1, VOC0 = 0,0)
0
o
C to 50
o
C
0.050
0.060
0.100
0.090
V
V
OC
= 0.100V (VOC1, VOC0 = 0,1)
0
o
C to 50
o
C
0.075
0.085
0.125
0.115
V
V
OC
= 0.125V (VOC1, VOC0 = 1,0)
0
o
C to 50
o
C
0.100
0.110
0.150
0.140
V
V
OC
= 0.150V (VOC1, VOC0 = 1,1)
0
o
C to 50
o
C
0.125
0.135
0.175
0.165
V
Over-current mode detection time
T
OC
C
OC
=0.001
F
(5)
C
OC
=200pF
5
1
10
2
15
3
ms
Over-current mode release time
T
OCR
C
OC
=0.001
F
(5)
C
OC
=200pF
5
1
10
2
15
3
ms
Load resistance over-current mode
release condition
Releases when OVP/LMON pin >
2.5V
200
250
k
Cell charge threshold voltage
V
CE
V
CE
=1.4V (Default)
(5)
1.30
1.50
V
X3100 wake-up voltage
(For Vcc above this voltage, the device
wakes up)
V
SLR
See Wake-up test circuit
10.5
12.5
V
X3100 sleep voltage
(For Vcc above this voltage, the device
cannot go to sleep)
V
SLP
See Sleep test circuit
9.5
11.5
V
Description
Sym
Condition
Min
Typ
(2)
Max
Unit
Wake-up test circuit (X3101)
Sleep test circuit (X3101)
Increase Vcc until V
RGO
turns on
Vcc
V
RGO
Vcc
VCELL1
VCELL2
VCELL3
VCELL4
Vss
RGP
RGC
RGO
Vcc
Vcc
VCELL1
VCELL2
VCELL3
VCELL4
Vss
RGP
RGC
RGO
1V
1V
1V
Decrease Vcc until V
RGO
turns off
V
RGO
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
34 of 40
REV 1.1.8 12/10/02
www.xicor.com
POWER-UP TIMING
Notes: (6) t
PUR
, t
PUW1
and t
PUW2
are the delays required from the time V
CC
is stable until a read or write can be initiated. These parameters
are not 100% tested.
(7) Whichever is longer.
CAPACITANCE T
A
=+25C, f= 1 MHz, V
RGO
=5V
Equivalent A.C. Load Circuit
A.C. TEST CONDITIONS
Symbol
Parameter
Min.
Max.
t
PUR
(6)
Power-up to SPI read operation (RDSTAT, EEREAD STAT)
T
OC
+2ms
t
PUW1
(6)
Power-up to SPI write operation (WREN, WRDI, EEWRITE, WCFIG, SET IDL, WCNTR)
T
OC
+2ms
t
PUW2
(6)
Power-up to SPI write operation (WCNTR - bits 10 and 11)
T
OV
+200ms
or
T
UV
+200ms
(7)
Symbol
Parameter
Max.
Units
Conditions
C
OUT
(8)
Output capacitance (SO)
8
pF
V
OUT
=0V
C
IN
(8)
Input capacitance (SCK, SI, CS)
6
pF
V
IN
=0V
Notes: (8) This parameter is not 100% tested.
SO
5V
2061
3025
30pF
Input pulse levels
0.5 4.5V
Input rise and fall times
10ns
Input and output timing level
2.5V
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
35 of 40
REV 1.1.8 12/10/02
www.xicor.com
A.C. CHARACTERISTICS (Over the recommended operating conditions, unless otherwise specified.)
SERIAL INPUT TIMING
Notes: (9) This parameter is not 100% tested
(10)t
WC
is the time from the rising edge of CS after a valid write sequence has been sent to the end of the self-timed internal nonvolatile
write cycle.
Serial Input Timing
Symbol
Parameter
Voltage
Min.
Max.
Units
f
SCK
Clock frequency
0
3.3
MHz
t
CYC
Cycle time
300
ns
t
LEAD
CS lead time
150
ns
t
LAG
CS lag time
150
ns
t
WH
Clock HIGH time
130
ns
t
WL
Clock LOW time
130
ns
t
SU
Data setup time
20
ns
t
H
Data hold time
20
ns
t
RI
(9)
Data in rise time
2
s
t
FI
(9)
Data in fall time
2
s
t
CS
CS deselect time
100
ns
t
WC
(10)
Write cycle time
5
ms
SCK
CS
SI
SO
MSB IN
t
SU
t
RI
t
LAG
t
LEAD
t
H
LSB IN
t
CS
t
FI
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
36 of 40
REV 1.1.8 12/10/02
www.xicor.com
Serial Output Timing
Notes: (11)This parameter is not 100% tested.
Serial Output Timing
SYMBOL TABLE
Symbol
Parameter
Voltage
Min.
Max.
Units
f
SCK
Clock Frequency
0
3.3
MHz
t
DIS
Output Disable Time
150
ns
t
V
Output Valid from Clock LOW
130
ns
t
HO
Output Hold Time
0
ns
t
RO
(11)
Output Rise Time
50
ns
t
FO
(11)
Output Fall Time
50
ns
SCK
CS
SO
SI
MSB Out
MSB1 Out
LSB Out
ADDR
LSB In
t
CYC
t
V
t
HO
t
WL
t
WH
t
DIS
t
LAG
WAVEFORM
INPUTS
OUTPUTS
Must be
steady
Will be
steady
May change
from LOW
to HIGH
Will change
from LOW
to HIGH
May change
from HIGH
to LOW
Will change
from HIGH
to LOW
Don't Care:
Changes
Allowed
Changing:
State Not
Known
N/A
Center Line
is High
Impedance
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
37 of 40
REV 1.1.8 12/10/02
www.xicor.com
Analog Output Response Time
ANALOG OUTPUT RESPONSE TIME
Change in Voltage Source
Change in Current Sense Gain Amplification and Control Bits
Symbol
Parameter
Min.
Typ.
Max.
Units
t
VSC
AO Output Stabilization Time (Voltage Source Change)
1.0
ms
t
CSGO
AO Output Stabilization Time (Current Sense Gain Change)
1.0
ms
t
CO
Control Outputs Response Time (UVP/OCP, OVP/MON, CB4,
CB3, CB2, CB1, RGC)
-1.0
s
AS2:AS0
AO
t
VSC
t
VSC
Old Gain
New Gain
OVPC
CSG1 CSG0
SLP
0
0
x
C S
SCK
DI
Control Reg
AO
Gain Change
UVP/OCP
Control
On
Off
Outputs
OVP/LMON
CB4:CB1
RGC
Bit10
Bit9
Bit8
Bit7
Bit6
Bit5
Current Sense
t
CSGO
t
CO
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
38 of 40
REV 1.1.8 12/10/02
www.xicor.com
TYPICAL OPERATING CHARACTERISTICS
X3100/X3101 Over Charge Trip Voltage (Typical)
4.15
4.20
4.25
4.30
4.35
4.40
-25
25
75
Temperature (Deg C)
Voltage (V)
4.2V Setting
4.25V Setting
4.3V Setting
4.35V Setting
X3100 Over Discharge Trip Voltage (Typical)
1.95
2.00
2.05
2.10
2.15
2.20
2.25
2.30
-25
25
75
Temperature (Deg C)
Voltage (V)
1.95V Setting
2.05V Setting
2.15V Setting
2.25V Setting
Voltage Regulator Output (Typical)
Vcc = 10.8V to 16V R
lim
= 15 Ohm (I
lim
= 200mA)
4.880
4.900
4.920
4.940
4.960
4.980
5.000
5.020
1
10
50
100
Load (mA)
Regulator Voltage (V)
-25 degC
25 degC
75 degC
Voltage Regulator Output (Typical)
Vcc = 10.8V to 16V R
lim
= 15 Ohm (I
lim
= 200mA)
4.880
4.900
4.920
4.940
4.960
4.980
5.000
5.020
-25
25
75
Temperature
Regulated Voltage
1mA Load
10mA Load
50mA Load
100 mA Load
X3101 Over Discharge Trip Voltage (Typical)
2.25
2.30
2.35
2.40
2.45
2.50
2.55
2.60
-25
25
75
Temperature (Deg C)
Voltage (V)
2.25V Setting
2.35V Setting
2.45V Setting
2.55V Setting
Norm al Operating Current
50
75
100
125
150
-20
25
80
Tem perature
Current (uA)
Monitor Mode Current
300
350
400
450
-20
25
80
Tem perature
Current (uA)
For typical performance of current and voltage monitoring circuits, please refer to Application Note AN142 and AN143
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
39 of 40
REV 1.1.8 12/10/02
www.xicor.com
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)
.169 (4.3)
.177 (4.5)
.252 (6.4) BSC
.026 (.65) BSC
.377 (9.60)
.385 (9.80)
.002 (.06)
.005 (.15)
.047 (1.20)
.0075 (.19)
.0118 (.30)
See Detail "A"
.031 (.80)
.041 (1.05)
0 8
.010 (.25)
.020 (.50)
.030 (.75)
Gage Plane
Seating Plane
Detail A (20X)
(4.16) (7.72)
(1.78)
(0.42)
(0.65)
All Measurements are Typical
28-Lead Plastic, TSSOP, Package Code V28
X3100/X3101 Preliminary Information
Characteristics subject to change without notice.
40 of 40
REV 1.1.8 12/10/02
www.xicor.com
LIMITED WARRANTY
Devices sold by Xicor, Inc. are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale only. Xicor, Inc. makes no warranty, express,
statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. Xicor, Inc. makes
no warranty of merchantability or fitness for any purpose. Xicor, Inc. reserves the right to discontinue production and change specifications and prices at any time and
without notice.
Xicor, Inc. assumes no responsibility for the use of any circuitry other than circuitry embodied in a Xicor, Inc. product. No other circuits, patents, or licenses are implied.
TRADEMARK DISCLAIMER:
Xicor and the Xicor logo are registered trademarks of Xicor, Inc. AutoStore, Direct Write, Block Lock, SerialFlash, MPS, and XDCP are also trademarks of Xicor, Inc. All
others belong to their respective owners.
U.S. PATENTS
Xicor products are covered by one or more of the following U.S. Patents: 4,326,134; 4,393,481; 4,404,475; 4,450,402; 4,486,769; 4,488,060; 4,520,461; 4,533,846;
4,599,706; 4,617,652; 4,668,932; 4,752,912; 4,829,482; 4,874,967; 4,883,976; 4,980,859; 5,012,132; 5,003,197; 5,023,694; 5,084,667; 5,153,880; 5,153,691; 5,161,137;
5,219,774; 5,270,927; 5,324,676; 5,434,396; 5,544,103; 5,587,573; 5,835,409; 5,977,585. Foreign patents and additional patents pending.
LIFE RELATED POLICY
In situations where semiconductor component failure may endanger life, system designers using this product should design the system with appropriate error detection and
correction, redundancy and back-up features to prevent such an occurence.
Xicor's products are not authorized for use in critical components in life support devices or systems.
1.
Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to
perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2.
A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
Xicor, Inc. 2000 Patents Pending
ORDERING INFORMATION
Device
X3100
T
Temperature Range
Blank=Commercial= -20C to +70C
Package
V
VCC Limits
Blank=6V to 24V
P
V28 = 28-Lead TSSOP
X3101