ChipFind - документация

Электронный компонент: MT8981D

Скачать:  PDF   ZIP
2-17
Features
Zarlink ST-BUS compatible
4-line x 32-channel inputs
4-line x 32-channel outputs
128 ports non-blocking switch
Single power supply (+5 V)
Low power consumption: 30 mW Typ.
Microprocessor-control interface
Three-state serial outputs
Description
This VLSI ISO-CMOS device is designed for
switching PCM-encoded voice or data, under
microprocessor control, in a modern digital
exchange, PBX or Central Office. It provides
simultaneous connections for up to 128 64 kbit/s
channels. Each of the four serial inputs and outputs
consist of 32 64 kbit/s channels multiplexed to form a
2048 kbit/s ST-BUS stream. In addition, the MT8981
provides microprocessor read and write access to
individual ST-BUS channels.
Figure 1 - Functional Block Diagram
STo0
STo1
STo2
STo3
Serial
to
Parallel
Converter
Data
Memory
Frame
Counter
Control Register
Control Interface
Output
MUX
Connection
Memory
Parallel
to
Serial
Converter
CS R/W A5/
A0
DTA D7/
D0
C4i
F0i
V
DD
V
SS
ODE
STi0
STi1
STi2
STi3
DS
ISSUE8
March 1997
MT8981D
Digital Switch
ISO-CMOS ST-BUS
FAMILY
Ordering Information
MT8981DE
40 Pin Plastic DIP
MT8981DP
44 PLCC
-40
C to +85
C
MT8981D
ISO-CMOS
2-18
Figure 2 - Pin Connections
Pin Description
Pin #
Name
Description
40
DIP
44
PLCC
1
2
DTA
Data Acknowledgement (Open Drain Output).
This is the data acknowledgement on the
microprocessor interface. This pin is pulled low to signal that the chip has processed the
data. A 909
, 1/4W, resistor is recommended to be used as a pullup.
2-4
3-5
STi0-
STi2
ST-BUS Input 0 to 2 (Inputs).
These are the inputs for the 2048 kbit/s ST-BUS input
streams.
5
7
STi3
ST-BUS Input 3 (Input).
These are the inputs for the 2048 kbit/s ST-BUS input streams.
6-9
8-11
IC
Internal Connections.
Must be connected to V
DD
.
10
12
V
DD
Power Input.
Positive Supply.
11
13
F0i
Framing 0-Type (Input).
This is the input for the frame synchronization pulse for the
2048 kbit/s ST-BUS streams. A low on this input causes the internal counter to reset on
the next negative transition of C4i.
12
14
C4i
4.096 MHz Clock (Input).
ST-BUS bit cell boundaries lie on the alternate falling edges of this
clock.
13-
15
15-
17
A0-A2
Address 0 to 2 (Inputs).
These are the inputs for the address lines on the microprocessor
interface.
16-
18
19-
21
A3-A5
Address 3 to 5 (Inputs).
These are the inputs for the address lines on the microprocessor
interface
19
22
DS
Data Strobe (Input).
This is the input for the active high data strobe on the microprocessor
interface.
20
23
R/W
Read or Write (Input).
This is the input for the read/write signal on the microprocessor
interface - high for read, low for write.
21
24
CS
Chip Select (Input).
This is the input for the active low chip select on the microprocessor
interface.
1
6
5
4
3
2
44
43
42
41
40
7
8
9
10
11
12
13
14
15
16
39
38
37
36
35
34
33
32
31
30
23
18
19
20
21
22
24
25
26
27
28
17
29
STi3
IC
IC
IC
IC
VDD
F0i
C4i
A0
A1
A2
STo3
IC
IC
IC
IC
VSS
D0
D1
D2
D3
D4
NC
STi1
D
T
A
ODE
STo1
NC
NC
A4
DS
C
S
D6
NC
A3
A5
R/W
D7
D5
44 PIN PLCC
DTA
STi0
STi1
STi2
STi3
IC
IC
IC
IC
VDD
F0i
C4i
A0
A1
A2
A3
A4
A5
DS
IC
ODE
STo0
STo1
STo2
STo3
IC
IC
IC
IC
VSS
D0
D1
D2
D3
D4
D5
D6
D7
CS
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
1
R/W
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
40 PIN PLASTIC DIP
STi2
STi0
IC
STo0
STo2
ISO-CMOS
MT8981D
2-19
22-
24
25-
27
D7-D5
Data 7 to 5 (Three-state I/O Pins).
These are the bidirectional data pins on the
microprocessor interface.
25-
29
29-
33
D4-D0
Data 4 to 0 (Three-state I/O Pins).
These are the bidirectional data pins on the
microprocessor interface.
30
34
V
SS
Power Input.
Negative Supply (Ground).
31-
34
35-
38
IC
Internal Connections.
Leave pins disconnected.
35
39
STo3
ST-BUS Output 3 (Three-state Outputs).
These are the pins for the four 2048 kbit/s ST-
BUS output streams.
36-
38
41-
43
STo2-
STo0
ST-BUS Output 2 to 0 (Three-state Outputs).
These are the pins for the four 2048
kbit/s ST-BUS output streams.
39
44
ODE
Output Drive Enable (Input).
If this input is held high, the STo0-STo3 output drivers function
normally. If this input is low, the STo0-STo3 output drivers go into their high impedance state.
NB:
Even when ODE is high, channels on the STo0-STo3 outputs can go high impedance
under software control.
40
1
IC
Internal Connection.
Leave pin disconnected.
Pin Description (continued)
Pin #
Name
Description
40
DIP
44
PLCC
MT8981D
ISO-CMOS
2-20
Functional Description
In recent years, there has been a trend in telephony
towards digital switching, particularly in association
with software control. Simultaneously, there has
been a trend in system architectures towards
distributed processing or multi-processor systems.
In accordance with these trends, Zarlink has devised
the ST-BUS (Serial Telecom Bus). This bus
architecture can be used both in software-controlled
digital voice and data switching, and for
interprocessor communications. The uses in
switching and in interprocessor communications are
completely integrated to allow for a simple general
purpose architecture appropriate for the systems of
the future.
The serial streams of the ST-BUS operate
continuously at 2048 kbit/s and are arranged in 125
s wide frames which contain 32 8-bit channels.
Zarlink manufactures a number of devices which
interface to the ST-BUS; a key device being the
MT8981 chip.
The MT8981 can switch data from channels on ST-
BUS inputs to channels on ST-BUS outputs, and
simultaneously allows its controlling microprocessor
to read channels on ST-BUS inputs or write to
channels on ST-BUS outputs (Message Mode). To
the microprocessor, the MT8981 looks like a memory
peripheral. The microprocessor can write to the
MT8981 to establish switched connections between
input ST-BUS channels and output ST-BUS
channels, or to transmit messages on output ST-BUS
channels. By reading from the MT8981, the
microprocessor can receive messages from ST-BUS
input channels or check which switched connections
have already been established.
By integrating both switching and interprocessor
communications, the MT8981 allows systems to use
distributed processing and to switch voice or data in
an ST-BUS architecture.
Hardware Description
Serial data at 2048 kbit/s is received at the four ST-
BUS inputs (STi0 to STi3), and serial data is
transmitted at the four ST-BUS outputs (STo0 to
STo3). Each serial input accepts 32 channels of
digital data, each channel containing an 8-bit word
which may represent a PCM-encoded analog/voice
sample as provided by a codec (e.g., Zarlink's
MT8964).
This serial input word is converted into parallel data
and stored in the 128 X 8 Data Memory. Locations in
the Data Memory are associated with particular
channels on particular ST-BUS input streams. These
locations can be read by the microprocessor which
controls the chip.
Locations in the Connection Memory, which is split
into high and low parts, are associated with
particular ST-BUS output streams. When a channel
is due to be transmitted on an ST-BUS output, the
data for the channel can either be switched from an
ST-BUS input or it can originate from the
microprocessor. If the data is switched from an
input, then the contents of the Connection Memory
Low location associated with the output channel is
used to address the Data Memory. This Data
Memory address corresponds to the channel on the
input ST-BUS stream on which the data for switching
arrived. If the data for the output channel originates
from the microprocessor (Message Mode), then the
contents of the Connection Memory Low location
associated with the output channel are output
directly, and this data is output repetitively on the
channel once every frame until the microprocessor
intervenes.
The Connection Memory data is received, via the
Control Interface, at D7 to D0. The Control Interface
also receives address information at A5 to A0 and
handles the microprocessor control signals CS,
DTA, R/W and DS. There are two parts to any
address in the Data Memory or Connection Memory.
The higher order bits come from the
Figure 3 - Address Memory Map
A5
A4
A3
A2
A1
A0
HEX ADDRESS
LOCATION
0
1
1


1
X
0
0


1
X
0
0


1
X
0
0


1
X
0
0


1
X
0
1


1
00 - 1F
20
21


3F
Control Register *
Channel 0
Channel 1


Channel 31
* Writing to the Control Register is the only fast transaction.
Memory and stream are specified by the contents of the Control Register.
ISO-CMOS
MT8981D
2-21
Control Register, which may be written to or read
from via the Control Interface. The lower order bits
come from the address lines directly.
The Control Register also allows the chip to
broadcast messages on all ST-BUS outputs (i.e., to
put every channel into Message Mode), or to split the
memory so that reads are from the Data Memory
and writes are to the Connection Memory Low. The
Connection Memory High determines whether
individual output channels are in Message Mode,
and allows individual output channels to go into a
high-impedance state, which enables arrays of
MT8981s to be constructed. It also controls the
CSTo pin.
All ST-BUS timing is derived from the two
signals C4i and F0i.
Software Control
The address lines on the Control Interface give
access to the Control Register directly or, depending
on the contents of the Control Register, to the High
or Low sections of the Connection Memory or to the
Data Memory.
If address line A5 is low, then the Control Register is
addressed regardless of the other address lines (see
Fig. 3). If A5 is high, then the address lines A4-A0
select the memory location corresponding to channel
0-31 for the memory and stream selected in the
Control Register.
The data in the Control Register consists of mode
control bits, memory select bits, and stream address
bits (see Fig. 4). The memory select bits allow the
Connection Memory High or Low or the Data
Memory to be chosen, and the stream address bits
define one of the ST-BUS input or output streams.
Bit 7 of the Control Register allows split memory
operation - reads are from the Data Memory and
writes are to the Connection Memory Low.
The other mode control bit, bit 6, puts every output
channel on every output stream into active Message
Mode; i.e., the contents of the Connection Memory
Low are output on the ST-BUS output streams once
every frame unless the ODE pin is low. In this mode
the chip behaves as if bits 2 and 0 of every
Connection Memory High location were 1,
regardless of the actual values.
Figure 4 - Control Register Bits
BIT
NAME
DESCRIPTION
7
Split
Memory
When 1, all subsequent reads are from the Data Memory and writes are to the Connection
Memory Low, except when the Control Register is accessed again. When 0, the Memory
Select bits specify the memory for subsequent operations. In either case, the Stream
Address Bits select the subsection of the memory which is made available.
6
Message
Mode
When 1, the contents of the Connection Memory Low are output on the Serial Output
streams except when the ODE pin is low. When 0, the Connection Memory bits for each
channel determine what is output.
5
(unused)
4-3
Memory
Select Bits
0-0 - Not to be used
0-1 - Data Memory (read only from the microprocessor port)
1-0 - Connection Memory Low
1-1 - Connection Memory High
2
(unused)
Must be a 0.
1-0
Stream
Address
Bits
The number expressed in binary notation on these bits refers to the input or output ST-BUS
stream which corresponds to the subsection of memory made accessible for subsequent
operations.
7
6
5
4
3
2
1
0
Mode
Control
Bits
(unused)
Memory
Select
Bits
Stream
Address
Bits
(unused)