ChipFind - документация

Электронный компонент: SP8853AC

Скачать:  PDF   ZIP
SP8853
1.3 GHz Professional Synthesiser
The SP8853 is a low power single chip synthesiser
intended for professional radio applications, containing all the
elements (apart from the loop amplifier) required to build a PLL
frequency synthesis loop
The device is serially programmable by a three-wire data
highway and contains three independent buffers to store one
reference divider word and two local oscillator divider words.
A digital phase detector with two charge pumps,
programmable in phase and gain, are provided to improve
lock-up performance. The preset operation of the charge
pumps can be overwritten or the comparison frequencies
switched to output ports under control of the divider word. The
dual modulus ratio and so operating range is also
programmable through the same word.
A power down mode is incorporated as a battery economy
feature.
The SP8853 is specified at 1.3GHz at -55C to +125C (mil
temp) and -40C to +85C (ind. temp).
June 2003
FEATURES
s
Improved Digital Phase Detector Eliminates
`Dead Band' Effects
s
Low Operating Power, Typically 175mW
s
13GHz Operating Frequency
s
Complete Phase Locked Loop
s
High Input Sensitivity
s
Programmed throughThree-Wire Bus
s
Wide Range of Reference Division Ratios
s
Local Storage for Two Frequency Words, giving
Rapid Frequency Toggling
s
Programmable Phase Detector Gain
s
Power Down Mode
ABSOLUTE MAXIMUM RATINGS
Supply voltage
Storage temperature
Prescaler input voltage
2
03V to 17V
2
55
C to 1150
C
25V p-p
Fig. 1 Pin identification diagram (top view)
ORDERING INFORMATION
SP8853/A/DG, SP8853/A/HC Industrial temperature versions
SP8853/AC/DG, SP8853/AC/HC Military temperature versions
4
3
2
1
28
27
26
12
13
14
15
16
17
18
5
6
7
8
9
10
11
25
24
23
22
21
20
19
PD2 OUTPUT
RPD
V
CC
3
GROUND
XTAL 1
XTAL2
V
EE
2
F
REF
*
POWER DOWN
V
EE
4
V
CC
4
V
CC
1
RF INPUT
RF INPUT
F
PD
*
PD1 OUTPUT
V
EE
3
IC
Cd
LOCK DETECT
NC
V
EE
1
F1/F2
D
ATA
CLOCK
ENABLE
NC
V
CC
2
SP8853
HC28
*F
PD
and F
REF
outputs are reversed by the phase
detector sense bit in the F1/F2 programming word. The
above diagram is correct when the sense bit is low. See
Table 2 and Fig. 7.
V
CC
1, V
EE
1 preamplifier and prescaler supplies
V
CC
2, V
EE
2 oscillator supplies
V
CC
3, V
EE
3 charge pump 2 supplies
V
CC
4, V
EE
4 ECL supplies
Data Sheet
SP8853
1.3 GHz Professional Synthesiser
2
SP8853
Fig. 2 SP8853 block diagram
Fig. 3 Detailed block diagram of lock detect circuit
f
PD
11
15 BIT
M COUNT
1
LOGIC
4 BIT
A COUNT
1
LOGIC
2 BIT
1 BIT
DUAL
F1/F2
DATA
BUFFER
N0
N3
N4
N18
N19
N20
N21
22 BIT SHIFT REGISTER
1 BIT
13 BIT
2 BIT
N0
N12
N14
N15
N13
SINGLE
REFERENCE
BUFFER
LOGIC
2-BIT
SR
DATA
INPUT
16/17 OR 8/9
CONTROL
f
REF
PHASE
DETECTOR
LOGIC
R
COUNT
OUTPUT
INTERFACE
CHARGE
PUMP 1
CHARGE
PUMP 2
PD1
3
LOCK
DETECT
RF INPUT
10
F1/F2
DATA
CLOCK
ENABLE
POWER
DOWN
13
14
15
16
6
PD2
25
27
Cd
28
RPD
24
20
21
CRYSTAL
F
REF
*
5
4
F
PD
*
*
F
REF
and F
PD
outputs are reversed by the phase detector
sense bit in the F1/F2 programming word. The pin allocations
shown are correct when the sense bit is low (see Table 2 and Fig. 7).
RF INPUT
REFERENCE
DIVIDER
-
+
V
CC
PHASE
DETECTOR
f
PD
f
REF
CHARGE
PUMP 2
TRANSCONDUCTANCE
AMPLIFIER
3
1
CHARGE
PUMP 1
-
+
-
+
3
1
3
1 BUFFER
10k
45k
45k
DUAL VOLTAGE
COMPARATOR
PD1
3
CHARGE PUMP 1 DISABLE
(SEE TABLE 4)
RPD
24
PD2
25
Cd
28
LOCK DETECT
27
Output current at pin 27 is proportional to
voltage difference between pins 25 and 28,
I
MAX
=
6
25
A
Data Sheet
3
SP8853
t
S
1
t
CH
2V
t
S
t
CH
t
CL
t
REP
2V
2V
t
E
LAST DATA BIT
FIRST DATA BIT
DATA
CLOCK
ENABLE
t
REP
= 1
s min., t
S
= 50ns min., t
CH
= 50ns min., t
CL
= 100ns min., t
E
= 50ns min.
FREQUENCY (MHz)
400
350
300
250
200
150
100
50
0
0
INPUT VOL
T
AGE (mV RMS)
25
500
650
750
1000
1300
1500
150
80
GUARANTEED
OPERATING
WINDOW
4
16/17 MODE
GUARANTEED
OPERATING
WINDOW
4
8/9 MODE
TYPICAL OVERLOAD
TYPICAL SENSITIVITY
Fig. 4 Typical input characteristics and input drive requirements for SP8853 A and B
Fig. 5 Data and clock timing requirements
Data Sheet
4
SP8853
ELECTRICAL CHARACTERISTICS
These characteristics are guaranteed over the following range of operating conditions unless otherwise stated:
Supply voltage V
CC
=
1
475V to
1
525V. T
AMB
=
2
55
C to
1
125
C (A Grade),
2
40
C to
1
85
C (B Grade)
Characteristic
Conditions
Supply current
Supply current in power down mode
Input sensitivity
Input overload
RF input division ratio
Comparison frequency
Reference oscillator input frequency
External reference input voltage
Reference division ratio
Data clock repetition rate, t
REP
Minimum setup time, t
S
DATA input high
DATA input low
CLOCK input high
CLOCK input low
Data ENABLE high
Data ENABLE low
F1/F2 input high
F1/F2 input low
POWER DOWN input high
POWER DOWN input low
F1/F2 input current
POWER DOWN input current
RDP external resistance
LOCK DETECT output voltage when in lock
LOCKDETECT switching voltage high
LOCK DETECT switching voltage low
F
PD
and F
REF
output voltage swing
256
56
4
10
1
50
06V
CC
V
EE
06V
CC
V
EE
06V
CC
V
EE
06V
CC
V
EE
06V
CC
V
EE
68
27
40
75
524287
262143
5
20
500
8191
1
V
CC
03V
CC
V
CC
03V
CC
V
CC
03V
CC
V
CC
03V
CC
09V
CC
03V
CC
5
5
330
1
23
33
45
09
Pin
8,9,18,23
8
10,11
10,11
10,11,4
4,5
20,21
20
20,5
15
14,15
14
14
15
15
16
16
13
13
6
6
13
6
24
27
25
25
Typ.
Max.
Min.
mA
mA
MHz
MHz
mVrms
s
ns
V
V
V
V
V
V
V
V
V
V
A
A
k
V
V
V
V
Units
Value
See Fig. 4
See Fig. 4
With
4
16/17 selected
With
4
8/9 selected
See Fig. 5
See Fig. 5
F1 buffer selected
F2 buffer selected
V pin 13 = 50V
V pin 6 = 45V
I pin 27 = 1mA
V
CC
= 5V
V
CC
= 5V
V
CC
= 5V, external pulldown
may be required
Data Sheet
5
SP8853
DESCRIPTION
Prescaler and AM Counter
The programmable divider chain is of
AM counter design
and therefore contains a dual modulus front end prescaler, an
A counter which controls the dual modulus ratio and an M
counter which controls the bulk multi-modulus division.
A programmable divider of this type has a division ratio of
MN
1
A and a minimum integer steppable division ratio
of
N(N
2
1).
In the SP8853, the dual modulus front end prescaler is a
dual
N ratio device, capable of being statically switched
between
4
16/17 and
4
8/9 ratios. The controlling
A counter is
of four-bit design, allowing a maximum count sequence of 15
(2
4
2
1), which begins with the start of the
M counter sequence
and stops when it has counted by the pre-loaded number of
cycles. While the A counter is counting, the dual modulus
prescaler is held in the
N
1
1 mode then reverts to the
N mode
at the completion of the sequence.
The
M counter is a 15-bit asynchronous divider which
counts with a ratio set by a control word. In both
A and M
counters the controlling data from the F1/F2 buffer is loaded
in sequence with every
M count cycle. The N ratio of the dual
modulus prescaler is selected by a one-bit word in the
reference divider buffer and, when when a ratio of
4
8/9 is
selected, the A counter requires only three programming bits,
having an impact on the frequency bit allocation as described
in the data entry section.
Reference Source and Divider
The reference source in the SP8853 is obtained from an
on-chip oscillator which is frequency controlled by an external
crystal. The oscillator can also function as a buffer amplifier to
allow the use of an external reference source. In this mode, the
source is simply AC-coupled into the oscillator transistor base
on pin 20.
The oscillator output is coupled to a programmable reference
counter (
R) whose output is the reference for the phase
detector. The reference divider is a fully programmable 13-bit
asynchronous design and can be set to any division ratio
between 1 and 8191. The actual division ratio is controlled by
a data word stored in the internal reference buffer.
Phase Detector
The SP8853 contains a digital phase detector which feeds
two charge pump circuits. Charge pump 1 has preset currents
which are programmble as shown in Table 1. Charge pump 2
has a current level set by an external resistor RPD; the current
is multiplied by a factor which is determined by bits G1 and G2
of the F1 or F2 word (see Table 1). Note that charge pump 2
current is pin 24 current
3
muliplication factor, where
I pin 24 =
A lock detect circuit is connected to the output of charge
pump 2. when the voltage level at pin 25 is between
approximately 225V and 275V, LOCK DETECT (pin 27) will
be low and charge pump 1 disabled, depending on the PD1
and PD2 programming bits as shown in Table 4.
The output signals from the
R and M counters are available
on pins 4 and 5 (F
PD
and F
REF
) when programmed by the
reference programming word; the various options are shown
in Table 4. An external phase detector may be connected to
pins 4 and 5 and may be used independently or in conjunction
with the on-chip phase detector.
To allow for control direction changes introduced by the
design of the control loop, a control bit in the F1/F2 programming
word interchanges the inputs to the on-chip phase detector
and reverses the functions on pins 4 and 5 (see Table 2).
V
CC
2
15V
RPD
F1 or F2 word
G2 G1
Charge pump 1
current (
A)
Charge pump 2
multiplier
0
1
Current source
Current sink
F
PD
F
REF
F1/F2 sense bit
Pins 3 and 25
Pin 4
Output for RF phase lag
F
REF
F
PD
Pin 5
0
1
0
1
0
0
1
1
50
75
125
200
1
15
25
4
Table 1 Charge pump currents
Table 2
Data Entry and Storage
The data section of the SP8853 consists of a data input
interface, a data shift register and three data buffers.
Data is entered to the data input interface via a three-wire
highway, with DATA (pin 24), CLOCK (pin 15) and ENABLE
(pin16) inputs. The input interface routes the data into a 24-
bit shift register with bus connections to three data buffers.
Data entered via the serial bus is transferred to the appropriate
data buffer on the negative transition of the data enable input
according to the two final data bits C1 and C2 as shown in
Table 3. The MSB of the data is entered first.
2-bit SR contents
C2 C1
0
1
0
1
F1
F2
Transfer A counter bits (N0:N3)
into 4-bit buffer (see Figs. 2 and 7)
Reference
0
0
1
1
Buffer loaded
Table 3
The dual F1/F2 buffer can receive two 22-bit words and
controls the programmable divider A and M counters using 19
bits, the phase detector gain with two bits and the phase
detector sense with one bit. A fourth input from the synthesiser
control system selects the active buffer.
The third buffer contains only 16 bits, 13 being used to set
the reference divider division ratio and 2 to control the phase
detector enable logic. The remaining bit sets the dual modulus
prescaler
N ratio.
The data words may be entered in any individual multiple
sequence and the shift register can be updated whils the data
buffers retain control of the synthesiser with the previously
loaded data. This enables four unique data words to be stored
in the device, with three in the data buffers and a fourth in the
shift register, while the chip is enabled. The F1 word may also
be updated while F2 is controlling the programmable divider
and vice-versa.
The dual F1/F2 buffer enables allows the device to be
toggled between two frequencies using the F1/F2 select input
at a rate determined by the comparison frequency and also
permits random frequency hopping at a rate determined by a
btye load period; this is possible because the loop can be
locked to F1 while F2 is updated by entering new data via the
shift register. The F1/F2 input is high to select F1.
Data Sheet