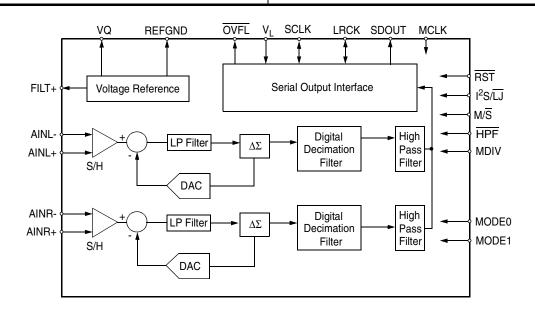


114 dB, 192 kHz, Multi-Bit Audio A/D Converter

Features

- Advanced Multi-bit Delta-Sigma Architecture
- 24-Bit Conversion
- 114 dB Dynamic Range
- ●-105 dB THD+N
- System Sampling Rates up to 192 kHz
- 135 mW Power Consumption
- High Pass Filter and DC Offset Calibration
- Supports Logic Levels Between 5 and 2.5 V
- Differential Analog Architecture
- Linear Phase Digital Anti-Alias Filtering
- Overflow Detection

General Description


The CS5361 is a complete analog-to-digital converter for digital audio systems. It performs sampling, analog-to-digital conversion and anti-alias filtering, generating 24-bit values for both left and right inputs in serial form at sample rates up to 192 kHz per channel.

The CS5361 uses a 5th-order, multi-bit delta-sigma modulator followed by digital filtering and decimation, which removes the need for an external anti-alias filter. The ADC uses a differential architecture which provides excellent noise rejection.

The CS5361 is ideal for audio systems requiring wide dynamic range, negligible distortion and low noise, such as A/V receivers, DVD-R, CD-R, digital mixing consoles, and effects processors.

ORDERING INFORMATION

CS5361-KS -10° to 70°C 24-pin SOIC CS5361-KZ -10° to 70°C 24-pin TSSOP CS5361-BZ -40° to 85°C 24-pin TSSOP CS5361-DZ -40° to 85°C 24-pin TSSOP CDB5361 Evaluation Board

Preliminary Product Information

This document contains information for a new product. Cirrus Logic reserves the right to modify this product without notice.

TABLE OF CONTENTS

1.0) CHARACTERISTICS AND SPECIFICATIONS	4
	SPECIFIED OPERATING CONDITIONS	
	ABSOLUTE MAXIMUM RATINGS	
	ANALOG CHARACTERISTICS (CS5361-KS/KZ)	5
	ANALOG CHARACTERISTICS (CS5361-BZ/DZ)	
	DIGITAL FILTER CHARACTERISTICS	
	DC ELECTRICAL CHARACTERISTICS	10
	DIGITAL CHARACTERISTICS	
	THERMAL CHARACTERISTICS	
	SWITCHING CHARACTERISTICS - SERIAL AUDIO PORT	11
	PIN DESCRIPTIONS	
	TYPICAL CONNECTION DIAGRAM	
4.0	APPLICATIONS	_
	4.1 Operational Mode/Sample Rate Range Select	
	4.2 System Clocking	
	4.2.1 Slave Mode	
	4.2.2 Master Mode	
	4.3 Power-up Sequence	
	4.4 Analog Connections	
	4.5 High Pass Filter and DC Offset Calibration	
	4.6 Overflow Detection	
	4.6.1 OVFL Output Timing	
	4.7 Grounding and Power Supply Decoupling	
	4.8 Synchronization of Multiple Devices	
	PARAMETER DEFINITIONS	
6.0	PACKAGE DIMENSIONS	22

Contacting Cirrus Logic Support

For all product questions and inquiries contact a Cirrus Logic Sales Representative. To find one nearest you go to www.cirrus.com

IMPORTANT NOTICE

"Preliminary" product information describes products that are in production, but for which full characterization data is not yet available. Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other parts of Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for

An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in this material and controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan. An export license and/or quota needs to be obtained from the competent authorities of the Chinese Government if any of the products or technologies described in this material is subject to the PRC Foreign Trade Law and is to be exported or taken out of the PRC.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANT-ED FOR USE IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS (INCLUDING MEDICAL DEVICES, AIRCRAFT SYSTEMS OR COMPONENTS AND PERSONAL OR AUTOMOTIVE SAFETY OR SECURITY DEVICES). INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOM-ER'S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.

Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners.

LIST OF FIGURES

	Figure 1. Single Speed Mode Stopband Rejection	8
	Figure 2. Single Speed Mode Transition Band	8
	Figure 3. Single Speed Mode Transition Band (Detail)	
	Figure 4. Single Speed Mode Passband Ripple	
	Figure 5. Double Speed Mode Stopband Rejection	
	Figure 6. Double Speed Mode Transition Band	8
	Figure 7. Double Speed Mode Transition Band (Detail)	9
	Figure 8. Double Speed Mode Passband Ripple	
	Figure 9. Quad Speed Mode Stopband Rejection	9
	Figure 10. Quad Speed Mode Transition Band	
	Figure 11. Quad Speed Mode Transition Band (Detail)	9
	Figure 12. Quad Speed Mode Passband Ripple	
	Figure 13. Master Mode, Left Justified SAI	12
	Figure 14. Slave Mode, Left Justified SAI	
	Figure 15. Master Mode, I ² S SAI	
	Figure 16. Slave Mode, I ² S SAI	12
	Figure 17. OVFL Output Timing	
	Figure 18. Left Justified Serial Audio Interface	
	Figure 19. I ² S Serial Audio Interface	
	Figure 20. OVFL Output Timing, I2S Format	
	Figure 21. OVFL Output Timing, Left-Justified Format	13
	Figure 22. Typical Connection Diagram	
	Figure 23. CS5361 Master Mode Clocking	
	Figure 24. CS5361 Recommended Analog Input Buffer	18
LIST OF	TABLES	
LIST OF	-	
	Table 1. CS5361 Mode Control	
	Table 2. CS5361 Slave Mode Clock Ratios	16
	Table 3 CS5361 Common Master Clock Frequencies	17

1.0 CHARACTERISTICS AND SPECIFICATIONS

(All Min/Max characteristics and specifications are guaranteed over the Specified Operating Conditions. Typical performance characteristics and specifications are derived from measurements taken at typical supply voltages and $T_A = 25$ °C.)

SPECIFIED OPERATING CONDITIONS

(GND = 0 V, all voltages with respect to 0 V.)

Parameter	Symbol	Min	Тур	Max	Unit	
DC Power Supplies:	Positive Analog	VA	4.75	5.0	5.25	V
	Positive Digital	VD	3.1	3.3	5.25	V
	Positive Logic	VL	2.37	3.3	5.25	V
Ambient Operating Temperature	Commercial (-KS/-KZ)	T _{AC}	-10	-	70	°C
	Industrial (-BZ)		-40	-	85	°C
	Automotive (-DZ)		-40	-	85	°C

ABSOLUTE MAXIMUM RATINGS (GND = 0 V, All voltages with respect to ground.) (Note 1)

Parameter		Symbol	Min	Max	Units
DC Power Supplies:	Analog	VA	-0.3	+6.0	V
	Logic	VL	-0.3	+6.0	V
	Digital	VD	-0.3	+6.0	V
Input Current	(Note 2)	I _{in}	-	±10	mA
Analog Input Voltage	(Note 3)	V _{IN}	GND - 0.7	VA + 0.7	V
Digital Input Voltage	(Note 3)	V _{IND}	-0.7	VL + 0.7	V
Ambient Operating Temperature (Power Applied)		T _A	-50	+95	°C
Storage Temperature		T _{stg}	-65	+150	°C

Notes: 1. Operation beyond these limits may result in permanent damage to the device.

Normal operation is not guaranteed at these extremes.

- 2. Any pin except supplies. Transient currents of up to ±100 mA on the analog input pins will not cause SCR latch-up.
- 3. The maximum over/under voltage is limited by the input current.

ANALOG CHARACTERISTICS (CS5361-KS/KZ) (Test conditions (unless otherwise specified): Input test signal is a 1 kHz sine wave; measurement bandwidth is 10 Hz to 20 kHz.)

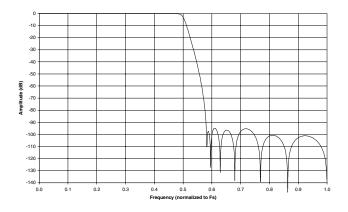
Para	ameter		Symbol	Min	Тур	Max	Unit
Single Speed Mode	Fs = 4	8 kHz		JI.			•
Dynamic Range		A-weighted		108	114	-	dB
		unweighted		105	111	-	dB
Total Harmonic Distor	tion + Noise	(Note 4)	THD+N				
		-1 dB		-	-105	-99	dB
		-20 dB		-	-91	-	dB
		-60 dB		-	-51	-	dB
Double Speed Mode	Fs = 9						
Dynamic Range		A-weighted		108	114	-	dB
		unweighted		105	111	-	dB
	kHz bandwidtl	h unweighted		-	108	-	dB
Total Harmonic Distor	tion + Noise	(Note 4)	THD+N				
		-1 dB		-	-105	-99	dB
		-20 dB		-	-91	-	dB
		-60 dB		-	-51	-	dB
	kHz bandwidth			-	-102	-	dB
Quad Speed Mode	Fs = 1	92 kHz					
Dynamic Range		A-weighted		108	114	-	dB
		unweighted		105	111	-	dB
	kHz bandwidtl			-	108	-	dB
Total Harmonic Distor	tion + Noise	(Note 4)	THD+N				
		-1 dB		-	-105	-99	dB
		-20 dB		-	-91	-	dB
		-60 dB		-	-51	-	dB
	kHz bandwidth	n -1 dB		-	-102	-	dB
Dynamic Performance	for All Modes			1	1	1	1
Interchannel Isolation				-	110	-	dB
Interchannel Phase Devia	ation			-	0.0001	-	Degree
DC Accuracy							
Interchannel Gain Misma	tch			-	0.1	-	dB
Gain Error					-	±5	%
Gain Drift				-	±100	-	ppm/°C
Offset Error		HPF enabled		-	0	-	LSB
	ŀ	HPF disabled		-	100	-	LSB
Analog Input Character	ristics	<u>'</u>			•		ı
Full-scale Input Voltage (at VA = 5 V)			1.9	2.0	2.1	Vrms
Input Impedance (Differe	ntial)	(Note 5)		37	-	-	kΩ
Common Mode Rejection	n Ratio	. ,	CMRR	-	82	-	dB
,				1	1	1	I

Notes: 4. Referred to the typical full-scale input voltage.

5. Measured between AIN+ and AIN-

ANALOG CHARACTERISTICS (CS5361-BZ/DZ) (Test conditions (unless otherwise specified): Input test signal is a 1 kHz sine wave; measurement bandwidth is 10 Hz to 20 kHz.)

Parameter		Symbol	Min	Тур	Max	Unit
Single Speed Mode Fs = 4	48 kHz	-				
Dynamic Range	A-weighted		106	114	_	dB
, ,	unweighted		103	111	-	dB
Total Harmonic Distortion + Noise		THD+N				
	-1 dB		-	-105	-97	dB
	-20 dB		-	-91	-	dB
	-60 dB		-	-51	-	dB
Double Speed Mode Fs =	96 kHz					
Dynamic Range	A-weighted		106	114	-	dB
	unweighted		103	111	-	dB
40 kHz bandwi	dth unweighted		-	108	-	dB
Total Harmonic Distortion + Noise	(Note 4)	THD+N				
	-1 dB		-	-105	-97	dB
	-20 dB		-	-91	-	dB
	-60 dB		-	-51	-	dB
40 kHz bandwi			-	-102	-	dB
Quad Speed Mode Fs =	192 kHz					
Dynamic Range	A-weighted		106	114	-	dB
	unweighted		103	111	-	dB
	dth unweighted		-	108	-	dB
Total Harmonic Distortion + Noise	(Note 4)	THD+N				
	-1 dB		-	-105	-97	dB
	-20 dB		-	-91	-	dB
	-60 dB		-	-51	-	dB
40 kHz bandwi	dth -1 dB		-	-102	-	dB
Dynamic Performance for All Modes					,	ı
Interchannel Isolation			-	110	-	dB
Interchannel Phase Deviation			-	0.0001	-	Degree
DC Accuracy						
Interchannel Gain Mismatch			-	0.1	-	dB
Gain Error				-	±5	%
Gain Drift			-	±100	-	ppm/°C
Offset Error	HPF enabled		-	0	-	LSB
	HPF disabled		-	100	-	LSB
Analog Input Characteristics	-				•	•
Full-scale Input Voltage (at VA = 5 V)			1.8	2.0	2.2	Vrms
Input Impedance (Differential)	(Note 5)		37	-	-	kΩ
Common Mode Rejection Ratio		CMRR	-	82	-	dB


DIGITAL FILTER CHARACTERISTICS

Parameter		Symbol	Min	Тур	Max	Unit
Single Speed Mode (2 kHz to 50 kHz sample rates)					•	
Passband (-0.1 dB)	(Note 6)		0	-	0.47	Fs
Passband Ripple				-	±0.035	dB
Stopband	(Note 6)		0.58	-	-	Fs
Stopband Attenuation			-95	-	-	dB
Total Group Delay (Fs = Output Sample Rate)		t _{gd}	-	12/Fs	-	s
Group Delay Variation vs. Frequency		$\Delta t_{\sf gd}$	-	-	0.0	μs
Double Speed Mode (50 kHz to 100 kHz sample rates)						
Passband (-0.1 dB)	(Note 6)		0	-	0.45	Fs
Passband Ripple			-	-	±0.035	dB
Stopband	(Note 6)		0.68	-	-	Fs
Stopband Attenuation			-92	-	-	dB
Total Group Delay (Fs = Output Sample Rate)		t _{gd}	-	9/Fs	-	s
Group Delay Variation vs. Frequency		$\Delta t_{\sf gd}$	-	-	0.0	μs
Quad Speed Mode (100 kHz to 200 kHz sample rates)						
Passband (-0.1 dB)	(Note 6)		0	-	0.24	Fs
Passband Ripple			-	-	±0.035	dB
Stopband	(Note 6)		0.78	-	-	Fs
Stopband Attenuation			-97	-	-	dB
Total Group Delay (Fs = Output Sample Rate)		t _{gd}	-	5/Fs	-	s
Group Delay Variation vs. Frequency		$\Delta t_{\sf gd}$	-	-	0.0	μs
High Pass Filter Characteristics						
Frequency Response -3.0 dB			-	1	-	Hz
-0.13 dB	(Note 7)			20	-	Hz
Phase Deviation @ 20 Hz	(Note 7)		-	10	-	Deg
Passband Ripple			-	-	0	dB
Filter Settling Time				10 ⁵ /Fs		S

Notes: 6. The filter frequency response scales precisely with Fs.

7. Response shown is for Fs equal to 48 kHz. Filter characteristics scale with Fs.

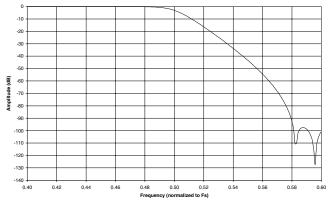
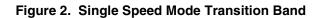
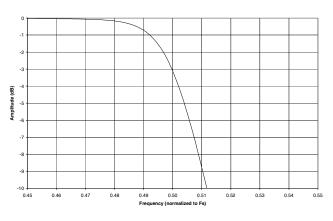




Figure 1. Single Speed Mode Stopband Rejection

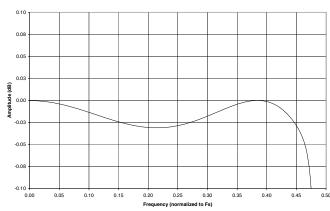
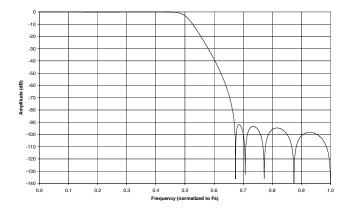



Figure 3. Single Speed Mode Transition Band (Detail)

Figure 4. Single Speed Mode Passband Ripple

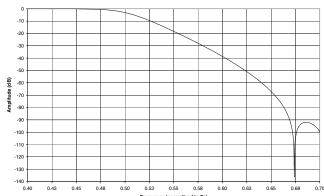
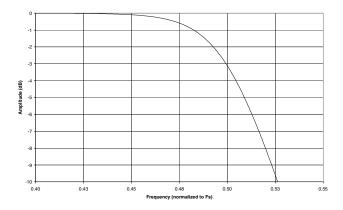



Figure 5. Double Speed Mode Stopband Rejection

Figure 6. Double Speed Mode Transition Band

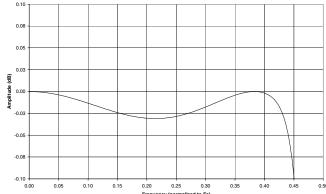
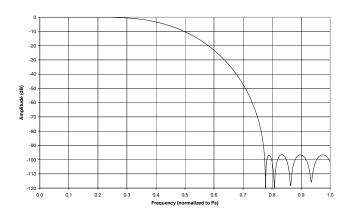



Figure 7. Double Speed Mode Transition Band (Detail)

Figure 8. Double Speed Mode Passband Ripple

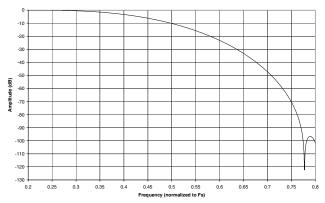
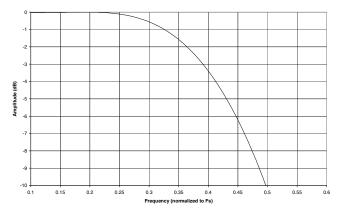



Figure 9. Quad Speed Mode Stopband Rejection

Figure 10. Quad Speed Mode Transition Band

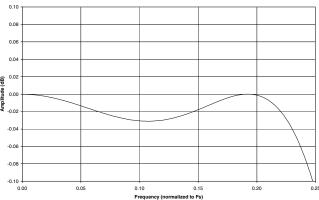


Figure 11. Quad Speed Mode Transition Band (Detail)

Figure 12. Quad Speed Mode Passband Ripple

DC ELECTRICAL CHARACTERISTICS (GND = 0 V, all voltages with respect to ground.

MCLK=12.288 MHz; Master Mode)

Paramete	er	Symbol	Min	Тур	Max	Unit
Power Supply Current	VA	I _A	-	17.5	21	mA
(Normal Operation)	VL,VD = 5 V	ΙD	-	22	26	mA
	VL,VD = 3.3 V	I_{D}^{-}	-	14.5	17	mA
Power Supply Current	VA	Ι _Α	-	2	-	mA
(Power-Down Mode) (Note 8)	VL,VD=5 V	I_{D}	-	2	-	mA
Power Consumption						
(Normal Operation)	VL, VD=5 V	-	-	198	235	mW
	VL, $VD = 3.3 V$	-	-	135	161	mW
	(Power-Down Mode)	-	-	20	-	mW
Power Supply Rejection Ratio	(1 kHz) (Note 9)	PSRR	-	65	-	dB
V _O Nominal Voltage			-	2.5	-	V
Output Impedance			-	25	-	kΩ
Maximum allowable DC current	source/sink		-	0.01	-	mA
Filt+ Nominal Voltage			-	5	-	V
Output Impedance		-	18	-	$k\Omega$	
Maximum allowable DC current	source/sink		-	0.01	-	mA

Notes: 8. Power Down Mode is defined as \overline{RST} = Low with all clocks and data lines held static.

9. Valid with the recommended capacitor values on FILT+ and VQ as shown in the Typical Connection Diagram.

DIGITAL CHARACTERISTICS

Parameter		Symbol	Min	Тур	Max	Units
High-Level Input Voltage	(% of VL)	V _{IH}	70%	-	-	V
Low-Level Input Voltage	(% of VL)	V_{IL}	-	-	30%	V
High-Level Output Voltage at $I_0 = 100 \mu A$	(% of VL)	V _{OH}	70%	-	-	V
Low-Level Output Voltage at I _o = 100 μA	(% of VL)	V _{OL}	-	-	15%	V
OVFL Current Sink		l _{ovfl}	-	-	4.0	mA
Input Leakage Current		l _{in}	-	-	±10	μΑ

THERMAL CHARACTERISTICS

Parameter	Symbol	Min	Тур	Max	Unit
Allowable Junction Temperature		-	-	135	°C
Junction to Ambient Thermal Impedance	θ_{JA}	-	70	-	°C/W



SWITCHING CHARACTERISTICS - SERIAL AUDIO PORT (Logic "0" = GND = 0 V;

Logic "1" = VL, $C_L = 20 \text{ pF}$)

Input Sample Rate	Parameter	Symbol	Min	Тур	Max	Unit	
Quad Speed Mode			_	-			
OVFL to LRCK edge setup time t _{setup} 16/t _{sclk} - - s OVFL to LRCK edge hold time t _{hold} 1/t _{sclk} - - s OVFL time-out on overrange condition Fs = 44.1, 88.2, 176.4 kHz Fs = 48, 96, 192 kHz 740 - ms MCLK Specifications MCLK Period t _{clkw} 40 - 1953 ns MCLK Pulse Width High t _{clkh} 16 - - ns MCLK Pulse Width Low t _{clkh} 16 - - ns Master Mode **** **** **** **** ns SCLK falling to SDOUT valid t _{sol} 0 - 32 ns SCLK Duty Cycle ****** ******* ******** ********** *************** ******************* ************************************				-			
ÖVFL to LRCK edge hold time thold 1/f _{sdk} - - s ÖVFL time-out on overrange condition	<u> </u>			-	200		
OVFL time-out on overrange condition Fs = 44.1, 88.2, 176.4 kHz Fs = 48, 96, 192 kHz - 740 680 - ms - ms MCLK Specifications MCLK Period t _{clkw} 40 - 1953 ns ns MCLK Pulse Width High t_clkh 16 ns ns MCLK Pulse Width Low t_clkl 16 ns ns MCLK Pulse Width Low t_clkl 16 ns ns Master Mode SCLK falling to LRCK t_mslr -20 - 20 ns ns SCLK falling to SDOUT valid t_sdo 0 - 32 ns ns SCLK Duty Cycle - 50 - 96 96 96 Single Speed Single Speed 90 - 96 96 96 Output Sample Rate Fs 2 - 50 kHz LRCK Duty Cycle 40 50 60 % 96 SCLK Period t_sclkw 163 ns ns ns SCLK falling to SDOUT valid t_dss - 32 ns ns Dubble Speed - 100 kHz - 100 kHz LRCK Duty Cycle 40 50 60 % 96 SCLK Falling to SDOUT valid t_sclkn 163	<u> </u>	t _{setup}		•	-	S	
Fs = 44.1, 88.2, 176.4 kHz Fs = 48, 96, 192 kHz	OVFL to LRCK edge hold time	t _{hold}	1/f _{sclk}	•	-	S	
FS = 48, 96, 192 kHz - 680 - ms MCLK Specifications MCLK Period t _{clkw} 40 - 1953 ns MCLK Pulse Width High t _{clkh} 16 - - ns MCLK Pulse Width Low t _{clkl} 16 - - ns MCLK Pulse Width Low t _{clkl} 16 - - ns Master Mode SCLK falling to LRCK t _{msir} -20 - 20 ns SCLK falling to SDOUT valid t _{sdo} 0 - 32 ns SCLK Duty Cycle 50 - 50 - % SLE Reriod 40 50 60 % SCLK Period t _{sclkw} 163 - - ns SCLK falling to SDOUT valid t _{dss} - - 32 ns SCLK falling to LRCK edge t _{slrd} -20 - 20 ns Double Speed 0utput Sampl							
MCLK Specifications total total 40 - 1953 ns MCLK Period t _{clk} 40 - 1953 ns MCLK Pulse Width High t _{clk} 16 - - ns MCLK Pulse Width Low t _{clk} 16 - - ns Master Mode SCLK falling to SDOUT valid t _{sdo} 0 - 32 ns SCLK Duty Cycle - 50 - % Slave Mode Single Speed Output Sample Rate Fs 2 - 50 kHz LRCK Duty Cycle 40 50 60 % SCLK Period t _{sclk} 163 - - ns SCLK falling to SDOUT valid t _{dss} - - 32 ns SCLK falling to LRCK edge t _{slk} - - 20 ns Double Speed - - <t< td=""><td></td><td></td><td>-</td><td></td><td>-</td><td>_</td></t<>			-		-	_	
MCLK Period t _{clkw} 40 - 1953 ns MCLK Pulse Width High tclkh 16 - - ns MCLK Pulse Width Low tclkl 16 - - ns Master Mode SCLK falling to LRCK t _{mslr} -20 - 20 ns SCLK falling to SDOUT valid t _{sdo} 0 - 32 ns SCLK Duty Cycle - 50 - % SIngle Speed Output Sample Rate Fs 2 - 50 kHz LRCK Duty Cycle 40 50 60 % SCLK Period t _{sclkw} 163 - - ns SCLK falling to SDOUT valid t _{dss} - - 32 ns SCLK falling to LRCK edge t _{sll} -20 - 20 ns Double Speed - - 32 ns Doubl		2 kHz	-	680	-	ms	
MCLK Pulse Width High tclkh 16 - ns MCLK Pulse Width Low tclkl 16 - - ns Master Mode SCLK falling to LRCK tmslr -20 - 20 ns SCLK falling to SDOUT valid tmslr -20 - 20 ns SCLK falling to SDOUT valid tmslr -20 - 32 ns SCLK Duty Cycle - 50 - % Slave Mode Single Speed Output Sample Rate Fs 2 - 50 kHz LRCK Duty Cycle 40 50 60 % SCLK Falling to LRCK edge tmsl - - ns SCLK falling to LRCK edge tmsl - - 20 ns Double Speed - - 20 - 20 ns Output Sample Rate Fs 50 - 100 kHz LRCK Duty Cycle		,	1				
MCLK Pulse Width Low tclkl 16 - - ns Master Mode SCLK falling to LRCK tmsir -20 - 20 ns SCLK falling to SDOUT valid tsdo 0 - 32 ns SCLK Duty Cycle - 50 - % Siave Mode Siave Mode <td colspan<="" td=""><td></td><td>t_{clkw}</td><td></td><td>-</td><td>1953</td><td>ns</td></td>	<td></td> <td>t_{clkw}</td> <td></td> <td>-</td> <td>1953</td> <td>ns</td>		t _{clkw}		-	1953	ns
Master Mode SCLK falling to LRCK tmslr -20 - 20 ns SCLK falling to SDOUT valid tsdo 0 - 32 ns SCLK Duty Cycle - 50 - % Slave Mode Single Speed	G	tclkh		-	-	ns	
SCLK falling to LRCK tmslr -20 - 20 ns SCLK falling to SDOUT valid tsdo 0 - 32 ns SCLK Duty Cycle - 50 - % Single Speed Output Sample Rate Fs 2 - 50 kHz LRCK Duty Cycle 40 50 60 % SCLK Period tsclkw 163 - - ns SCLK High/Low tsclkhl 20 - - ns SCLK falling to SDOUT valid tdss - - 32 ns SCLK falling to LRCK edge tslrd -20 - - ns Double Speed - 40 50 60 % Double Speed - 40 50 60 % SCLK Period tsclkw 163 - - ns SCLK High/Low tsclkhl 20 - - ns		tclkl	16	-	-	ns	
SCLK falling to SDOUT valid t sdo 0 - 32 ns SCLK Duty Cycle - 50 - % Single Speed Output Sample Rate Fs 2 - 50 kHz LRCK Duty Cycle 40 50 60 % SCLK Period t _{sclkw} 163 - - ns SCLK High/Low t _{sclkhl} 20 - - ns SCLK falling to SDOUT valid t _{dss} - - 32 ns SCLK falling to LRCK edge t _{slrd} -20 - 20 ns Double Speed - 100 kHz kHz LRCK Duty Cycle 40 50 60 % SCLK Period t _{sclkw} 163 - - ns SCLK falling to SDOUT valid t _{dss} - - 32 ns SCLK falling to LRCK edge t _{slrd} -20 - 20 ns <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
SCLK Duty Cycle	_	t _{mslr}	-20	•	20	ns	
Slave Mode Single Speed	SCLK falling to SDOUT valid	t _{sdo}	0	-	32	ns	
Single Speed Fs 2 - 50 kHz LRCK Duty Cycle 40 50 60 % SCLK Period t _{sclkw} 163 - - ns SCLK High/Low t _{sclkhl} 20 - - ns SCLK falling to SDOUT valid t _{dss} - - 32 ns SCLK falling to LRCK edge t _{slrd} -20 - 20 ns Double Speed Double Speed - 100 kHz LRCK Duty Cycle 40 50 60 % SCLK Period t _{sclkw} 163 - - ns SCLK High/Low t _{sclkhl} 20 - - ns SCLK falling to SDOUT valid t _{dss} - - 32 ns SCLK falling to SDOUT valid t _{slrd} -20 - 20 ns Quad Speed - - 200 kHz LRCK Duty Cycle 40 50	SCLK Duty Cycle		-	50	-	%	
Output Sample Rate Fs 2 - 50 kHz LRCK Duty Cycle 40 50 60 % SCLK Period t _{sclkw} 163 - - ns SCLK High/Low t _{sclkhl} 20 - - ns SCLK falling to SDOUT valid t _{dss} - - 32 ns SCLK falling to LRCK edge t _{slrd} -20 - 20 ns Double Speed Total Color of the scikw - - 20 ns Double Speed Total Color of the scikw - - 20 ns Dutput Sample Rate Total Color of the scikw - - - ns SCLK falling to SDOUT valid t _{slrd} -20 - - ns SCLK falling to Smple Rate Fs 100 - 200 kHz LRCK Duty Cycle 40 50 60 % SCLK Period t _{sclkw} 81 - - ns	Slave Mode	·					
LRCK Duty Cycle 40 50 60 % SCLK Period t _{sclkw} 163 - - ns SCLK High/Low t _{sclkhl} 20 - - ns SCLK falling to SDOUT valid t _{dss} - - 32 ns SCLK falling to LRCK edge t _{slrd} -20 - 20 ns Double Speed Output Sample Rate Fs 50 - 100 kHz LRCK Duty Cycle 40 50 60 % SCLK Period t _{sclkw} 163 - - ns SCLK High/Low t _{sclkhl} 20 - - ns SCLK falling to SDOUT valid t _{dss} - - 32 ns SCLK falling to LRCK edge t _{slrd} -20 - 20 ns Quad Speed - - 200 kHz LRCK Duty Cycle 40 50 60 % SCLK Period t _{sclkw} 81 - - ns SCLK P	Single Speed						
SCLK Period t _{sclkw} 163 - - ns SCLK High/Low t _{sclkhl} 20 - - ns SCLK falling to SDOUT valid t _{dss} - - 32 ns SCLK falling to LRCK edge t _{slrd} -20 - 20 ns Double Speed Output Sample Rate Fs 50 - 100 kHz LRCK Duty Cycle 40 50 60 % SCLK Period t _{sclkhl} 20 - - ns SCLK falling to SDOUT valid t _{dss} - - 32 ns SCLK falling to LRCK edge t _{slrd} -20 - 20 ns Quad Speed 0 - 20 kHz LRCK Duty Cycle 40 50 60 % SCLK Period t _{sclkw} 81 - - ns SCLK High/Low t _{sclkhl} 20 - - ns SCL	Output Sample Rate	Fs	2	-	50	kHz	
SCLK High/Low t _{sclkhl} 20 - - ns SCLK falling to SDOUT valid t _{dss} - - 32 ns SCLK falling to LRCK edge t _{slrd} -20 - 20 ns Double Speed Output Sample Rate Fs 50 - 100 kHz LRCK Duty Cycle 40 50 60 % SCLK Period t _{sclkw} 163 - - ns SCLK High/Low t _{sclkhl} 20 - - ns SCLK falling to SDOUT valid t _{dss} - - 20 ns Quad Speed - - 20 ns Quad Speed - - 200 kHz LRCK Duty Cycle 40 50 60 % SCLK Period t _{sclkw} 81 - - ns SCLK High/Low t _{sclkhl} 20 - - ns SCLK falling to SDOUT v	LRCK Duty Cycle		40	50	60	%	
SCLK falling to SDOUT valid t _{dss} - - 32 ns SCLK falling to LRCK edge t _{sird} -20 - 20 ns Double Speed Output Sample Rate Fs 50 - 100 kHz LRCK Duty Cycle 40 50 60 % SCLK Period t _{sclkw} 163 - - ns SCLK High/Low t _{sclknl} 20 - - ns SCLK falling to SDOUT valid t _{dss} - - 32 ns SCLK falling to LRCK edge t _{slrd} -20 - 20 ns Quad Speed Output Sample Rate Fs 100 - 200 kHz LRCK Duty Cycle 40 50 60 % SCLK Period t _{sclkw} 81 - - ns SCLK High/Low t _{sclkhl} 20 - - ns SCLK falling to SDOUT valid t _{sclkhl} 20	SCLK Period	t _{sclkw}	163	-	-	ns	
SCLK falling to LRCK edge t _{slrd} -20 - 20 ns Double Speed - 20 ns Output Sample Rate Fs 50 - 100 kHz LRCK Duty Cycle 40 50 60 % SCLK Period t _{sclkw} 163 - - ns SCLK High/Low t _{sclkhl} 20 - - ns SCLK falling to SDOUT valid t _{dss} - - 32 ns SCLK falling to LRCK edge t _{slrd} -20 - 20 ns Quad Speed - - 20 kHz LRCK Duty Cycle 40 50 60 % SCLK Period t _{sclkw} 81 - - ns SCLK High/Low t _{sclkhl} 20 - - ns SCLK falling to SDOUT valid t _{dss} - - 32 ns	SCLK High/Low	t _{sclkhl}	20	-	-	ns	
Double Speed Fs 50 - 100 kHz LRCK Duty Cycle 40 50 60 % SCLK Period t _{sclkw} 163 - - ns SCLK High/Low t _{sclkhl} 20 - - ns SCLK falling to SDOUT valid t _{dss} - - 32 ns SCLK falling to LRCK edge t _{slrd} -20 - 20 ns Quad Speed Tes 100 - 200 kHz LRCK Duty Cycle 40 50 60 % SCLK Period t _{sclkw} 81 - - ns SCLK High/Low t _{sclkhl} 20 - - ns SCLK falling to SDOUT valid t _{dss} - - 32 ns	SCLK falling to SDOUT valid	t _{dss}	-	-	32	ns	
Double Speed Fs 50 - 100 kHz LRCK Duty Cycle 40 50 60 % SCLK Period t _{sclkw} 163 - - ns SCLK High/Low t _{sclkhl} 20 - - ns SCLK falling to SDOUT valid t _{dss} - - 32 ns SCLK falling to LRCK edge t _{slrd} -20 - 20 ns Quad Speed Tes 100 - 200 kHz LRCK Duty Cycle 40 50 60 % SCLK Period t _{sclkw} 81 - - ns SCLK High/Low t _{sclkhl} 20 - - ns SCLK falling to SDOUT valid t _{dss} - - 32 ns	SCLK falling to LRCK edge	t _{slrd}	-20	-	20	ns	
LRCK Duty Cycle 40 50 60 % SCLK Period t _{sclkw} 163 - - ns SCLK High/Low t _{sclkhl} 20 - - ns SCLK falling to SDOUT valid t _{dss} - - 32 ns SCLK falling to LRCK edge t _{slrd} -20 - 20 ns Quad Speed Fs 100 - 200 kHz LRCK Duty Sample Rate Fs 100 - 200 kHz LRCK Duty Cycle 40 50 60 % SCLK Period t _{sclkw} 81 - - ns SCLK High/Low t _{sclkhl} 20 - - ns SCLK falling to SDOUT valid t _{dss} - - 32 ns	Double Speed						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Sample Rate	Fs	50	-	100	kHz	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LRCK Duty Cycle		40	50	60	%	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SCLK Period	t _{sclkw}	163	-	-	ns	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SCLK High/Low		20	-	-	ns	
SCLK falling to LRCK edge t _{slrd} -20 - 20 ns Quad Speed Cutput Sample Rate Fs 100 - 200 kHz LRCK Duty Cycle 40 50 60 % SCLK Period t _{sclkw} 81 - - ns SCLK High/Low t _{sclkhl} 20 - - ns SCLK falling to SDOUT valid t _{dss} - - 32 ns	SCLK falling to SDOUT valid		-	-	32	ns	
Quad Speed Fs 100 - 200 kHz LRCK Duty Cycle 40 50 60 % SCLK Period t _{sclkw} 81 - - ns SCLK High/Low t _{sclkhl} 20 - - ns SCLK falling to SDOUT valid t _{dss} - - 32 ns	SCLK falling to LRCK edge		-20	-	20	ns	
Output Sample Rate Fs 100 - 200 kHz LRCK Duty Cycle 40 50 60 % SCLK Period t _{sclkw} 81 - - ns SCLK High/Low t _{sclkhl} 20 - - ns SCLK falling to SDOUT valid t _{dss} - - 32 ns	Quad Speed	55					
LRCK Duty Cycle 40 50 60 % SCLK Period t _{sclkw} 81 - - ns SCLK High/Low t _{sclkhl} 20 - - ns SCLK falling to SDOUT valid t _{dss} - - 32 ns	<u>-</u>	Fs	100	-	200	kHz	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			40	50	60	%	
SCLK High/Low t _{sclkhl} 20 ns SCLK falling to SDOUT valid t _{dss} 32 ns		teckw	81	-	-	ns	
SCLK falling to SDOUT valid t _{dss} 32 ns	SCLK High/Low			-	-	ns	
			-	-	32	ns	
, · · · · · · · · · · · · · · · ·	SCLK falling to LRCK edge	t _{slrd}	-10	-	10	ns	

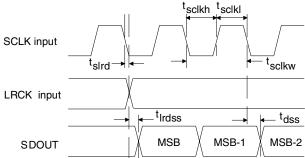
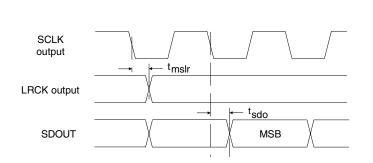



Figure 13. Master Mode, Left Justified SAI

Figure 14. Slave Mode, Left Justified SAI

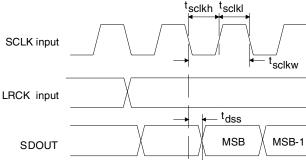


Figure 15. Master Mode, I²S SAI

Figure 16. Slave Mode, I²S SAI

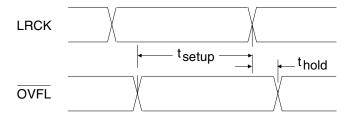


Figure 17. OVFL Output Timing

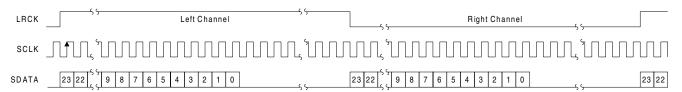


Figure 18. Left Justified Serial Audio Interface

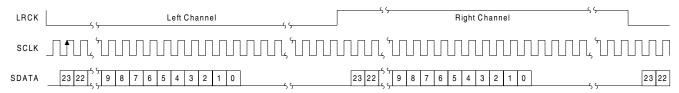


Figure 19. I²S Serial Audio Interface

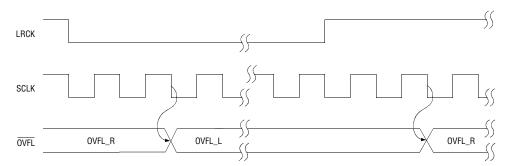


Figure 20. OVFL Output Timing, I²S Format

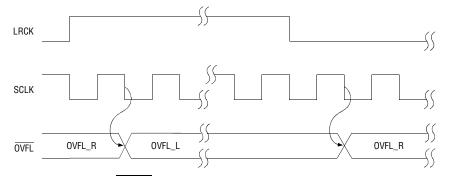
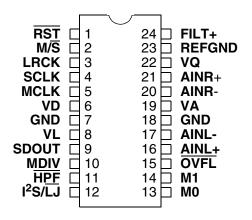



Figure 21. OVFL Output Timing, Left-Justified Format

2.0 PIN DESCRIPTIONS

Pin Name	#	Pin Description
RST	1	Reset (Input) - The device enters a low power mode when low.
M/S	2	Master/Slave Mode (Input) - Selects operation as either clock master or slave.
LRCK	3	Left Right Clock (<i>Input/Output</i>) - Determines which channel, Left or Right, is currently active on the serial audio data line.
SCLK	4	Serial Clock (Input/Output) - Serial clock for the serial audio interface.
MCLK	5	Master Clock (Input) - Clock source for the delta-sigma modulator and digital filters.
VD	6	Digital Power (Input) - Positive power supply for the digital section.
GND	7,18	Ground (Input) - Ground reference. Must be connected to analog ground.
VL	8	Logic Power (Input) - Positive power for the digital input/output.
SDOUT	9	Serial Audio Data Output (Output) - Output for two's complement serial audio data.
MDIV	10	MCLK Divider (Input) - Enables a master clock divide by two function.
HPF	11	High Pass Filter Enable (Input) - Enables the Digital High-Pass Filter.
I ² S/LJ	12	Serial Audio Interface Format Select (Input) -Selects either the left-justified or I ² S format for the SAI.
M0 M1	13, 14	Mode Selection (Input) - Determines the operational mode of the device.
OVFL	15	Overflow (Output, open drain) - Detects an overflow condition on both left and right channels.
AINL+ AINL-	16, 17	Differential Left Channel Analog Input (<i>Input</i>) - Signals are presented differentially to the delta-sigma modulators via the AINL+/- pins.
VA	19	Analog Power (Input) - Positive power supply for the analog section.
AINR- AINR+	20, 21	Differential Right Channel Analog Input (<i>Input</i>) -Signals are presented differentially to the delta-sigma modulators via the AINR+/- pins.
VQ	22	Quiescent Voltage (Output) - Filter connection for the internal quiescent reference voltage.
REF_GND	23	Reference Ground (Input) - Ground reference for the internal sampling circuits.
FILT+	24	Positive Voltage Reference (Output) - Positive reference voltage for the internal sampling circuits.
		_

3.0 TYPICAL CONNECTION DIAGRAM

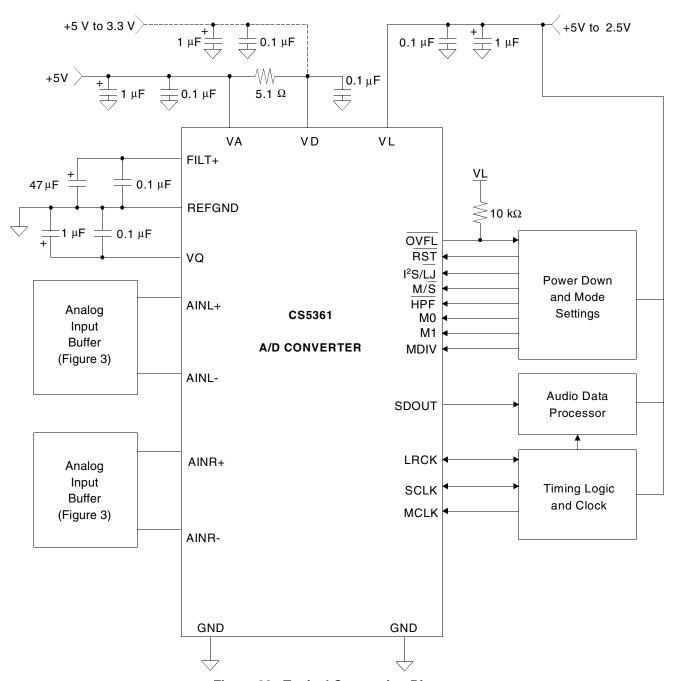


Figure 22. Typical Connection Diagram

4.0 APPLICATIONS

4.1 Operational Mode/Sample Rate Range Select

The output sample rate, Fs, can be adjusted from 2 kHz to 200 kHz. The CS5361 must be set to the proper speed mode via the mode pins, M1 and M0. Refer to Table 1.

M1 (Pin 14)	M0 (Pin 13)	MODE	Output Sample Rate (Fs)
0	0	Single Speed Mode	2 kHz - 50 kHz
0	1	Double Speed Mode	50 kHz - 100 kHz
1	0	Quad Speed Mode	100 kHz - 200 kHz
1	1	Reserved	

Table 1, CS5361 Mode Control

4.2 System Clocking

The device supports operation in either Master Mode, where the left/right and serial clocks are synchronously generated on-chip, or Slave Mode, which requires external generation of the left/right and serial clocks. The device also includes a master clock divider in Master Mode where the master clock will be internally divided prior to any other internal circuitry when MDIV is enabled, set to logic 1. In Slave Mode, the MDIV pin needs to be disabled, set to logic 0.

4.2.1 Slave Mode

LRCK and SCLK operate as inputs in Slave mode. The left/right clock must be synchronously derived from the master clock and be equal to Fs. It is also recommended that the serial clock be synchronously derived from the master clock and be equal to 64x Fs to maximize system performance. Refer to Table 2 for required clock ratios.

	Single Speed Mode Fs = 2 kHz to 50 kHz	Double Speed Mode Fs = 50 kHz to 100 kHz	Quad Speed Mode Fs = 100 kHz to 200 kHz
MCLK/LRCK Ratio	256x, 512x	128x, 256x	128x
SCLK/LRCK Ratio	32x, 64x, 128x	32x, 64x	64x

Table 2. CS5361 Slave Mode Clock Ratios

4.2.2 Master Mode

In Master mode, LRCK and SCLK operate as outputs. The left/right and serial clocks are internally derived from the master clock with the left/right clock equal to Fs and the serial clock equal to 64x Fs, as shown in Figure 2. Refer to Table 3 for common master clock frequencies.

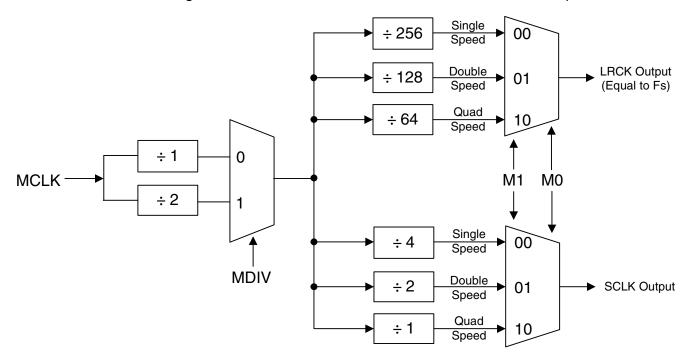


Figure 23. CS5361 Master Mode Clocking

SAMPLE RATE (kHz)	MDIV = 0 MCLK (MHz)	MDIV = 1 MCLK (MHz)
32	8.192	16.384
44.1	11.2896	22.5792
48	12.288	24.576
64	8.192	16.384
88.2	11.2896	22.5792
96	12.288	24.576
176.4	11.2896	22.5792
192	12.288	24.576

Table 3. CS5361 Common Master Clock Frequencies

4.3 Power-up Sequence

Reliable power-up can be accomplished by keeping the device in reset until the power supplies, clocks and configuration pins are stable. It is also recommended that reset be enabled if the analog or digital supplies drop below the minimum specified operating voltages to prevent power glitch related issues.

The internal reference voltage must be stable for the device to produce valid data. Therefore, there is a delay between the release of reset and the generation of valid output, due to the finite output impedance of FILT+ and the presence of the external capacitance.

4.4 Analog Connections

The analog modulator samples the input at 6.144 MHz (MCLK=12.288 MHz). The digital filter will reject signals within the stopband of the filter. However, there is no rejection for input signals which are ($n \times 6.144$ MHz) the digital passband frequency, where n=0,1,2,...Refer to Figure 3 which shows the suggested filter that will attenuate any noise energy at 6.144 MHz, in addition to providing the optimum source impedance for the modulators. The use of capacitors which have a large voltage coefficient (such as general purpose ceramics) must be avoided since these can degrade signal linearity.

Please see the Addendum at the end of the data sheet for an analog input buffer that can be used with both the CS5351 as well as the CS5361 with a simple change in the bill of materials.

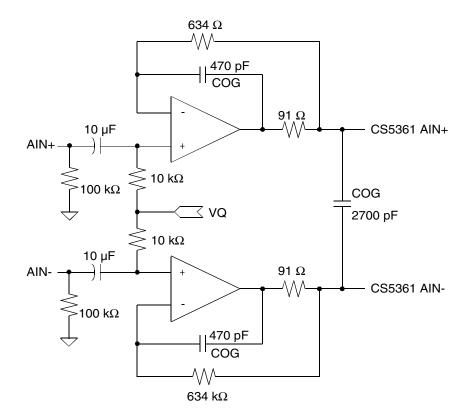


Figure 24. CS5361 Recommended Analog Input Buffer

4.5 High Pass Filter and DC Offset Calibration

The operational amplifiers in the input circuitry driving the CS5361 may generate a small DC offset into the A/D converter. The CS5361 includes a high pass filter after the decimator to remove any DC offset which could result in recording a DC level, possibly yielding "clicks" when switching between devices in a multichannel system.

The high pass filter continuously subtracts a measure of the DC offset from the output of the decimation filter. If the HPF pin is taken high during normal operation, the current value of the DC offset register is frozen and this DC offset will continue to be subtracted from the conversion result. This feature makes it possible to perform a system DC offset calibration by:

- 1) Running the CS5361 with the high pass filter enabled until the filter settles. See the Digital Filter Characteristics for filter settling time.
- 2) Disabling the high pass filter and freezing the stored DC offset.

A system calibration performed in this way will eliminate offsets anywhere in the signal path between the calibration point and the CS5361.

4.6 Overflow Detection

The CS5361 includes overflow detection on both the left and right channels. This time multiplexed information is presented as open drain, active low on pin 15, $\overline{\text{OVFL}}$. The OVFL_L and OVFL_R data will go to a logical low as soon as an overrange condition in either channel is detected. The data will remain low as specified in the Switching Characteristics - Serial Audio Port section. This ensures sufficient time to detect an overrange condition regardless of the speed mode. After the timeout, the OVFL_L and OVFL_R data will return to a logical high if there has not been any other overrange condition detected. Please note that an overrange condition on either channel will restart the timeout period for both channels.

4.6.1 OVFL Output Timing

In left-justified format, the OVFL pin is updated one SCLK period after an LRCK transition. In I²S format, the OVFL pin is updated two SCLK periods after an LRCK transition. Refer to Figures 23 and 24. In both cases the OVFL data can be easily demultiplexed by using the LRCK to latch the data. In left-justified format, the rising edge of LRCK would latch the right channel overflow status, and the falling edge of LRCK would latch the left channel overflow status. In I²S format, the falling edge of LRCK would latch the right channel overflow status and the rising edge of LRCK would latch the left channel overflow status.

4.7 Grounding and Power Supply Decoupling

As with any high resolution converter, the CS5361 requires careful attention to power supply and grounding arrangements if its potential performance is to be realized. Figure 22 shows the recommended power arrangements, with VA and VL connected to clean supplies. VD, which powers the digital filter, may be run from the system logic supply or may be powered from the analog supply via a resistor. In this case, no additional devices should be powered from VD. Decoupling capacitors should be as near to the ADC as possible, with the low value ceramic capacitor being the nearest. All signals, especially clocks, should be kept away from the FILT+ and VQ pins in

order to avoid unwanted coupling into the modulators. The FILT+ and VQ decoupling capacitors, particularly the 0.1 μ F, must be positioned to minimize the electrical path from FILT+ and REF-GND. The CDB5361 evaluation board demonstrates the optimum layout and power supply arrangements. To minimize digital noise, connect the ADC digital outputs only to CMOS inputs.

4.8 Synchronization of Multiple Devices

In systems where multiple ADCs are required, care must be taken to achieve simultaneous sampling. To ensure synchronous sampling, the MCLK and LRCK must be the same for all of the CS5361's in the system. If only one master clock source is needed, one solution is to place one CS5361 in Master mode, and slave all of the other CS5361's to the one master. If multiple master clock sources are needed, a possible solution would be to supply all clocks from the same external source and time the CS5361 reset with the inactive edge of MCLK. This will ensure that all converters begin sampling on the same clock edge.

5.0 PARAMETER DEFINITIONS

Dynamic Range

The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified bandwidth. Dynamic Range is a signal-to-noise ratio measurement over the specified bandwidth made with a -60 dBFS signal. 60 dB is added to resulting measurement to refer the measurement to full-scale. This technique ensures that the distortion components are below the noise level and do not affect the measurement. This measurement technique has been accepted by the Audio Engineering Society, AES17-1991, and the Electronic Industries Association of Japan, EIAJ CP-307. Expressed in decibels.

Total Harmonic Distortion + Noise

The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified bandwidth (typically 10 Hz to 20 kHz), including distortion components. Expressed in decibels. Measured at -1 and -20 dBFS as suggested in AES17-1991 Annex A.

Frequency Response

A measure of the amplitude response variation from 10 Hz to 20 kHz relative to the amplitude response at 1 kHz. Units in decibels.

Interchannel Isolation

A measure of crosstalk between the left and right channels. Measured for each channel at the converter's output with no signal to the input under test and a full-scale signal applied to the other channel. Units in decibels.

Interchannel Gain Mismatch

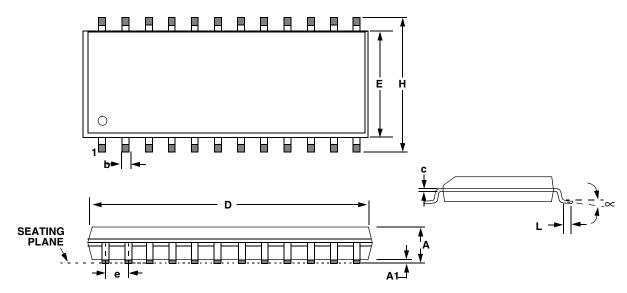
The gain difference between left and right channels. Units in decibels.

Gain Error

The deviation from the nominal full-scale analog output for a full-scale digital input.

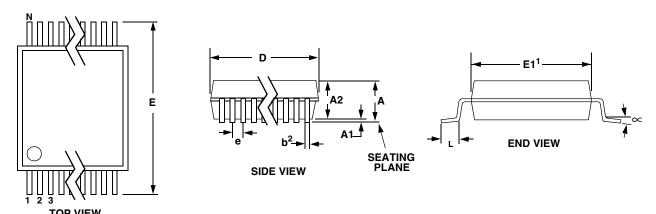
Gain Drift

The change in gain value with temperature. Units in ppm/°C.


Offset Error

The deviation of the mid-scale transition (111...111 to 000...000) from the ideal. Units in mV.

6.0 PACKAGE DIMENSIONS


24L SOIC (300 MIL BODY) PACKAGE DRAWING

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.093	0.104	2.35	2.65	
A1	0.004	0.012	0.10	0.30	
В	0.013	0.020	0.33	0.51	
С	0.009	0.013	0.23	0.32	
D	0.598	0.614	15.20	15.60	
Е	0.291	0.299	7.40	7.60	
е	0.040	0.060	1.02	1.52	
Н	0.394	0.419	10.00	10.65	
L	0.016	0.050	0.40	1.27	
∞	0°	8°	0°	8°	

24L TSSOP (4.4 mm BODY) PACKAGE DRAWING

	INCHES			MILLIMETERS			NOTE
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α			0.043			1.10	
A1	0.002	0.004	0.006	0.05		0.15	
A2	0.03346	0.0354	0.037	0.85	0.90	0.95	
b	0.00748	0.0096	0.012	0.19	0.245	0.30	2,3
D	0.303	0.307	0.311	7.70	7.80	7.90	1
Е	0.248	0.2519	0.256	6.30	6.40	6.50	
E1	0.169	0.1732	0.177	4.30	4.40	4.50	1
е		0.026 BSC			0.65 BSC		
L	0.020	0.024	0.028	0.50	0.60	0.70	
×	0°	4°	8°	0°	4°	8°	

JEDEC #: MO-153
Controlling Dimension is Millimeters.

- Notes: 1."D" and "E1" are reference datums and do not included mold flash or protrusions, but do include mold mismatch and are measured at the parting line, mold flash or protrusions shall not exceed 0.20 mm per side.
 - 2.Dimension "b" does not include dambar protrusion/intrusion. Allowable dambar protrusion shall be 0.13 mm total in excess of "b" dimension at maximum material condition. Dambar intrusion shall not reduce dimension "b" by more than 0.07 mm at least material condition.
 - 3. These dimensions apply to the flat section of the lead between 0.10 and 0.25 mm from lead tips.

