

STAR250 Radiation HardCMOS image sensor

Datasheets

12-Dec-02 15:47 p. 1/33

STAR250 Radiation Hard CMOS APS

Table of contents

1	Image Sensor Description		
1.1	Features		
1.2	Electrical symbol		
1.3	Pin configuration		
1.4	Image sensor architecture		
1.5	Integrating imager operation principles		
1.6	Operation	10	
1.7	Timing and control sequences		
2	Absolute maximum ratings	18	
3	Specifications		
3.1	DC operating conditions		
3.2	Resistor biases: power vs. speed	19	
3.3	AC operating conditions	19	
3.4	Electro-optical characteristics		
4	Environmental characteristics		
4.1	Temperature		
4.2	Radiation tolerance		
5	Pin configuration		
6	Mechanical data		
6.1	Package drawing	31	
6.2	Die alignment	32	
6.3	Window specifications	32	

Purpose

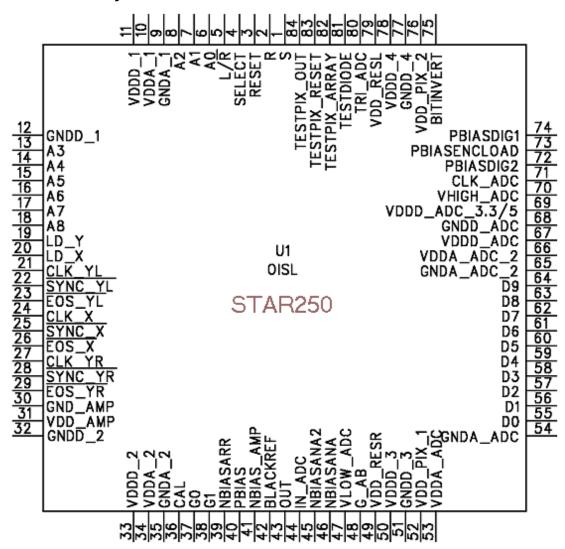
This document is the data sheet of a Radiation-Hard CMOS active pixel. The specifications are based upon the results of the electro-optical measurements.

1 Image Sensor Description

The STAR250-sensor is a CMOS Active Pixel Sensor that is designed for application in Optical Inter-Satellite Link beam trackers. Apart from this, the design also envisaged a broader range of applications in space-borne systems like sun sensing and star tracking.

The sensor has an outstanding radiation tolerance that has been obtained by using proprietary technology modifications and design techniques.

1.1 Features


The STAR250 sensor has the following characteristics:

- Integrating 3-transistor Active Pixel Sensor
- 0.5 μm CMOS technology
- 512 by 512 pixels on 25 μm pitch
- 4 diodes per pixel for improved MTF and PRNU
- Radiation tolerant design
- On-chip double sampling circuit to cancel Fixed Pattern Noise
- Electronic shutter
- Readout rate: up to 30 full frames per second
- ROI windowing through pre-settable start point of read-out
- On-chip 10-bit ADC
- Ceramic JLCC-84 package

12-Dec-02 15:47 p. 3/33

1.2 Electrical symbol

12-Dec-02 15:47 p. 4/33

1.3 Pin configuration

Table 1: STAR250 sensor pin configuration

Pin	Name	Pin	Name	Pin	Name	Pin	Name	
1	S	22	SYNC_YL	43	OUT	64	D9	
2	R	23	EOS_YL	44	IN_ADC	65	GND_ADC_ANA	
3	RESET	24	CLK_X	45	NBIASANA2	66	VDD_ADC_ANA	
4	SELECT	25	SYNC_X	46	NBIASANA	67	VDD_ADC_DIG	
5	L/R	26	EOS_X	47	VLOW_ADC	68	GND_ADC_DIG	
6	A0	27	CLK_YR	48	G_AB	69	VDD_ADC_DIG_3.3/5	
7	A1	28	SYNC_YR	49	VDD_RESR	70	VHIGH_ADC	
8	A2	29	EOS_YR	50	VDD_DIG	71	CLK_ADC	
9	GND_ANA	30	GND_AMP	51	GND_DIG	72	PBIASDIG2	
10	VDD_ANA	31	VDD_AMP	52	VDD_PIX	73	PBIASENCLOAD	
11	VDD_DIG	32	GND_DIG	53	VDD_ADC_ANA	74	PBIASDIG1	
12	GND_DIG	33	VDD_DIG	54	GND_ADC_ANA	75	BITINVERT	
13	A3	34	VDD_ANA	55	D0	76	VDD_PIX	
14	A4	35	GND_ANA	56	D1	77	GND_DIG	
15	A5	36	CAL	57	D2	78	VDD_DIG	
16	A6	37	G0	58	D3	79	VDD_RESL	
17	A7	38	G1	59	D4	80	TRI_ADC	
18	A8	39	NBIASARR	60	D5	81	TESTDIODE	
19	LD_Y	40	PBIAS	61	D6	82	TESTPIXELARRAY	
20	LD_X	41	NBIAS_AMP	62	D7	83	TESTPIXEL_RESET	
21	CLK_YL	42	BLACKREF	63	D8	84	TESTPIXEL_OUT	

12-Dec-02 15:47 p. 5/33

1.4 Image sensor architecture

The base line of the STAR250 sensor design consists of an imager with a 512 by 512 array of active pixels at 25 µm pitch. The detector contains on-chip correction for Fixed Pattern Noise (FPN) in the column amplifiers, a programmable gain output amplifier and a 10-bit Analog to Digital Converter (ADC). Through additional preset registers the start position of a window can be programmed to enable fast read out of only part of the detector array.

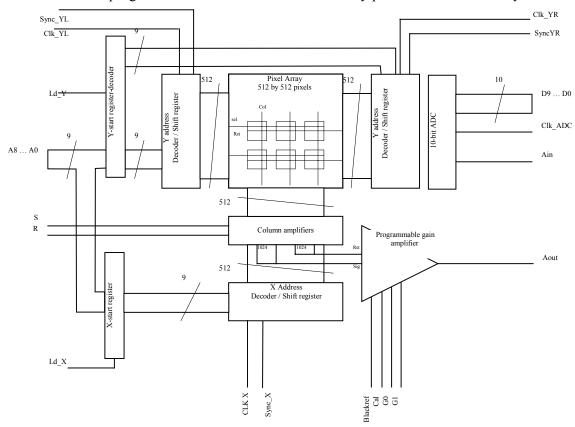


Fig. Star250 schematic

Electrical signal path

The image sensor consists of several building blocks as outlined in Figure 1. The central element is a 512 by 512 pixel array with square pixels at 25 µm pitch. Unlike in classical designs the pixels of this sensor contain four photodiodes. This configuration enhances the MTF and reduces the PRNU. Figure 2 shows an electrical diagram of the pixel structure. The four photodiodes are connected in parallel to the reset transistor (T1). Transistor T2 converts the charge, collected on the photo diode node to a voltage signal that can be connected to the column bus by T3. The "Reset"- and the "Read"- entrance of the pixel are connected to one of the Y shift registers each.

12-Dec-02 15:47 p. 6/33

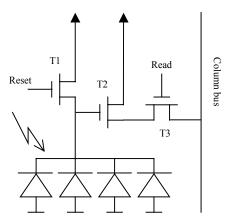


Fig. Pixel schematic

These shift registers are located next to the pixel array and contain as many outputs as there are rows in the pixel array. They are designed as "1-hot" registers (YL and YR shift register) each allowing selection of one row of pixels at a time. A clock pulse moves the pointer one position down the register resulting in the subsequent selection of every individual row for either reset or for read-out. The spatial offset between the two selected rows determines the integration time. A synchronisation pulse to the shift registers loads the value from a preset register into the shift register forcing the pointer to a pre-determined position. Windowing in the vertical (Y-) direction is achieved by presetting the registers to a row that is not the first row and by clocking out only the required number of rows.

All pixel outputs are connected to a column bus and each column bus feeds the pixel signal to a column amplifier. Using a double sampling technique these amplifiers can subtract the remaining pixel offset from the signal. To serialise the output signal from the column amplifiers an identical shift/preset technique is used as for the vertical (Y-) direction. Windowing is thus also possible in the X-direction.

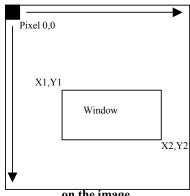
The signal from the column amplifiers is then fed to an output amplifier with four presettable gains. The offset correction of this amplifier is done through a black-reference procedure. The signal from the output amplifier is externally available on the analogue output terminator of the device.

The on-chip 10-bit ADC is electrically separated from the other circuits of the device and can be used if required. Alternatively an external ADC can be used and the internal ADC can be powered down.

12-Dec-02 15:47 p. 7/33

Functional specification

Integrating imager operation principles


The STAR250 is a line-scan based integrating imager with provisions for versatile readout (windowing, electronic shuttering...). This combination results in certain timing relations and dependencies that are relevant to the end-user. These relations are defined and explained in the following paragraphs.

1.5.1 Image definitions

The following definitions concern the STAR250 image plane dimensions, and the format of the resulting pictures.

Image coordinates are defined with respect to an absolute origin 1 (0,0). Figure 3a shows the coordinate system projected on the image, as it can be seen on a computer display or a printout. Figure 3b shows the coordinate system on the physical die.

This origin is at the *top-left corner* of the image, corresponding to the top-right corner on the actual STAR250 chip. The imager Xaxis runs horizontally towards the right from the origin; the Y-axis runs vertically and downwards from the origin. In the resulting image reference frame, windows are scanned line by line, from top to bottom. Lines are scanned pixel by pixel, from the left to the right.

on the image.

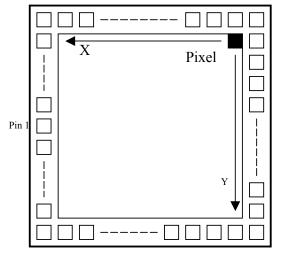


Figure 2b: Coordinate system on the physical die.

12-Dec-02 15:47 p. 8/33

Table 2: terms and definitions

Term	Definition	Value	
Matrix	Full-size picture, 512 x 512 pixels		
Window	Region-of-interest, portion of a matrix under readout, a rectangular area of less than 512 x 512 pixels, at a user-defined position in the matrix plane		
Frame	Synonym to window, including the special case of a matrix		
H _{frame}	Effective frame height	(Y2-Y1+1)	
W _{frame}	Effective frame width	(X2-X1+1)	
H _{matrix}	Matrix height	512 lines	
W _{matrix}	Matrix width	512 pixels	
X1	Top-left X coordinate of a frame		
Y1	Top-left Y coordinate of a frame		
X2	Bottom-right X coordinate of a frame		
Y2	Bottom-right Y coordinate of a frame		
X rd	X coordinate of pixel currently under readout		
Y _{rd}	Y coordinate of line currently under readout (YL)		
Y _{rst}	Y coordinate of line currently under reset (YR)		
Delay Lines	Number of lines equivalent to the integration time	SYNC_YL-SYNC_YR	

12-Dec-02 15:47 p. 9/33

1.6 Operation

1.6.1 Integrating imager operation

In a line-scan integrating imager with electronic shutter, two continuous processes take care of image gathering. The first process resets lines in a progressive scan. At line reset, all of the pixels in a line are drained from any photocharges collected since their last reset or readout. After reset, a new exposure cycle starts for that particular line.

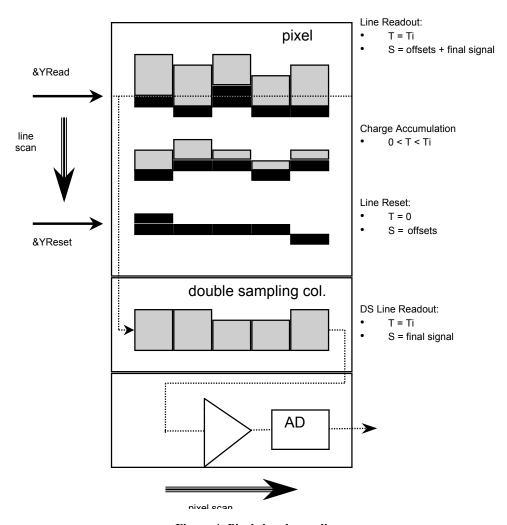


Figure 4: Pixel signal sampling

12-Dec-02 15:47 p. 10/33

STAR250 Radiation Hard CMOS APS

The second process is the actual readout, which also happens ins an equally fast line-wise progressive scan.

During readout, photo charges collected since the previous reset, are converted into an output voltage, which is then passed on - pixel by pixel - to the imager's pixel-serial output and ADC. Readout is destructive, i.e. the accumulation of charges from successive exposure phases is not possible in the present architecture.

Three internal address pointers control the processes of line and pixel readout and line reset. These pointers indicate the current line under readout (Y_{rd}) , the current line under reset (Y_{rst}) , and the current pixel under readout (X_{rd}) , also see Figure 4. The progress rate of line resets is equal to the progress rate of line readouts. Physically the Yread and Yrst register are located at left and right sides of the imager, and therefore named YL (the readout register) and YR (the reset register). The control of the row signals can be given to each of them, by the pin named L/R.

The actual line readout process starts with addressing the line to read. This can be done either by initialising the Y_{rd} pointer with a new value, or by shifting it one position beyond its previous value. (Addressing the line to be reset, Yrst is done in an analogous fashion). During the "blanking time", after the new line is addressed on the sensor, the built-in column-parallel double sampling amplifiers are operated, which renders offset-corrected values of the line under readout.

After the blanking time, the pixels of the row addressed by YL, are read by multiplexing all of the pixels one by one to the serial output chain. The pixel is selected by the X_{rd} pointer, and that pointer can either be initialised with a new value, or be an increment of the previous position. The analog chain has further a track&hold stage, output buffer, followed by an (electrically separate) ADC.

The time between row resets and their corresponding row readouts is the effective exposure time (or integration time). This time is proportional to the number of lines, (DelayLines) between the line currently under reset and the line currently under readout: $DelayLines = (Y_{rst} - Y_{rd} + 1)$. This time is thus also equal to the delay between the SYNC_YR pulse and the subsequent SYNC_YR.

The effective integration time t_{int} is thus calculated as (*delaylines * line time*). The line time itself is a function of four terms: the time to output the desired number of pixels in the line (W_{frame}), and the overhead ("blanking") time that is needed to select an new line and perform the double sampling and reset operations.

12-Dec-02 15:47 p. 11/33

1.6.2 Variable integration time (electronic shuttering)

Figure 5 illustrates the variable integration time, for the case of t_{int} equal to the frame read time $t_{rd,frame}$, the case of under-exposure, and the case of over-exposure.

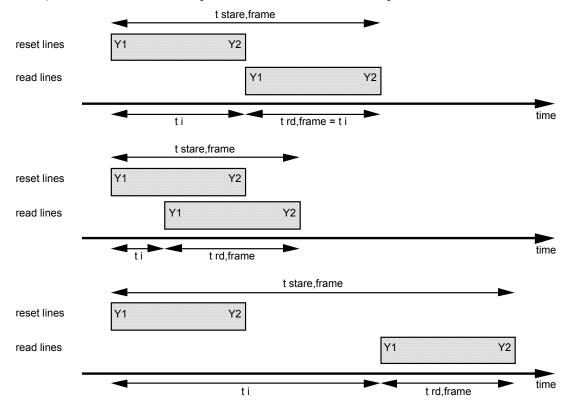


figure 5: Variable integration time: nominal exposure, under-exposure and over-exposure. A new reset or reset cycle (not shown) may start whitel the previous read is still going on. Note that a read cycle also resets, thus in principle a reset cycle is only neede in underexposure.

Image readout procedure

The procedure to read out a windowed image, characterized with the coordinates (X1, Y1) and (X2, Y2), and with an integration time equivalent to DelayLines lines, is:

A pre-amble or initialisation phase is not considered relevant. The sensor is read out continuously. The first frame – as there was no preceding reset of each pixel – is generally saturated and useless.

Image readout

In an infinite uninterrupted loop, do, line-by-line:

12-Dec-02 15:47 p. 12/33

Synchronise the read (YL) and/or reset (YR) registers, IN THIS CASES:

-SYNC YL to re-initiate the readout sequence to row position Y1

-SYNC_YR to re-initiate the reset pointer to row position Y1

for all other lines do not pulse one of these SYNC Y*.

Operate the double sampling column amplifiers, with two RESETs. Apply one to reset the line that is currently selected to produce the reset reference level for the double sampling column amplifiers. Apply the other reset to another line, depending on the required integration time reduction.

Perform a line-readout:

Reset the X read address shift register to the value in its shadow register (X1).

For (X2-X1+1) pixels do:

Perform a pixel readout operation, operating the track/hold and the ADC

Shift the X read address shift register one position further.

Shift the Y read and reset address shift registers one position further; note: if either of Y read or reset address shift register comes at a position equivalent to Y2, wrap it around to position Y1 by pulsing SYNC YL.

1.7 Timing and control sequences

The following paragraphs describe the timing of the digital control signals to be applied to the sensor. The given information is based upon simulations and must be confirmed by practical experiments after fabrication of test samples.

1.7.1 Basic timing

Figure 6 and Figure 7 show the basic timing diagram of the STAR250 image sensor and Table 3 shows the timing specifications of the clocking scheme.

12-Dec-02 15:47 p. 13/33

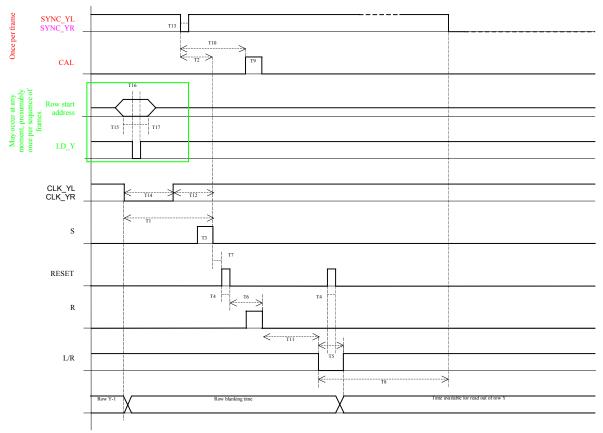


Figure 6: Frame read-out timing sequence

Note: SYNC_YR is not identical to as SYNC_YL. SYNC_YR is used in case of electronic shutter. The CLK_YR is driven identically as CLK_YL, but the SYNC_YR pulse leads the SYNC_YL pulse by a certain number of rows. This lead-time is the effective integration (electronic shutter ~) time. Relative to the row timing, both SYNC pulses are given at the same time position, once per frame, but during different rows.

SYNC_YL is pulsed when the first row will be read out and SYNC_YR is pulsed for the electronic shutter to start for this first row. CAL is pulsed on the first row too, 2 μ s later than SYNC_YL.

The minimal idle time is $1.4 \,\mu s$ (before starting reading pixels). However, it is advised not to read out pixels during the complete row initialisation process (in between the rising edge on S and the falling edge on L/R). In this case, the total idle time is minimally .

This timing assumes that the Y start register has been loaded in advance, which can occur at any time but before the pulse on SYNC_YL or SYNC_YR.

Table 4: Timing specifications

Sym	Min	Тур	Description
bol			

12-Dec-02 15:47 p. 14/33

	T	I	
T1	1.8 µs		Delay between selection of new row by falling edge on
			CLK_YL and falling edge on S.
			Minimal value. Normally, CLK_YR should be low already at
			the end of the previous sequence.
T2	1.8 µs		Delay between selection of new a row by SYNC_YL and
			falling edge on S.
T3	0.4 μs		Duration of S and R pulse.
T4	0.1 μs		Duration of RESET pulse.
T5	T4 + 40 ns	0.3 μs	L/R pulse must overlap second RESET pulse at both sides.
T6	0.8 μs		Delay between falling edge on RESET and falling edge on R.
T7	20 ns	0.1 μs	Delay between falling edge on S and rising edge on RESET.
T8	0	1 μs	Delay between falling edge on L/R and falling edge on
			CLK_Y.
T9	100 ns	1 μs	Duration of cal pulse. The CAL pulse is given once each
		·	frame.
T10	0	2 μs	Delay between falling edge of SYNC_YL and rising edge of
		-	CAL pulse.
T11	40 ns	0.1 μs	Delay between falling edge on R and rising edge on L/R.
T12	0.1 μs	1 μs	Delay between rising edge of CLK_Y and falling edge on S.
T13		0.5 μs	Pulse width SYNC_YL / YR
T14		0.5 μs	Pulse width CLK_YL / YR
T15	10 ns		Address set-up time
T16	20 ns		Load X / Y start register value
T17	10 ns		Address stable after load
T18	10 ns		
T19	20 ns		SYNC_X pulse width. SYNC_X while CLK_X is high.
T20	10 ns		
T21		40 ns	Analogue output is stable during CLK_X low.
T22		40 ns	CLK_X pulse width: During this clock phase the analogue
			output ramps to the next pixel level.
T23		125 ns	ADC digital output stable after falling edge of CLK_ADC

1.7.2 How to load the X- and Y- start positions

The start positions (start addresses) for "ROI" (region of interest) are pre-loaded in the X or Y start register. They become ffective by the application of the SYNC_X, SYNC_YL and/or SYNC_YR. The start X- or Y address must be applied to their common address bus, and the corresponding LD_X or LD_Y pin must be pulsed.

12-Dec-02 15:47 p. 15/33

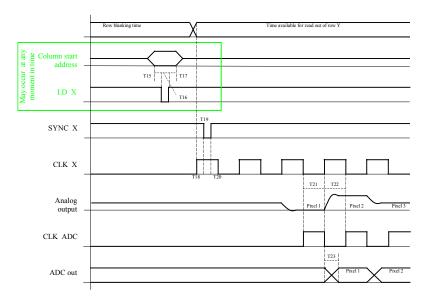


Figure 7: Column read-out timing sequence

On each **falling** edge of CLK_X, a new pixel of the same row (line) is accessed. The output stage is in hold when CLK_X is low and starts generating a new output after a rising edge on CLK_X.

The following timing constraints apply:

The X or Y start addresses can be uploaded well in advance, before the X or Y shift registers are preset by a SYNC pulse. However, if necessary, they can be loaded just before the SYNC_X or SYNC_Y pulse as shown in the figure.

E.g. the X start register can be loaded during the row idle time. The Y start register can be loaded during readout of the last row of the previous frame.

If the X or Y start address does not change for subsequent frames, it does not need to be reloaded in the register.

1.7.3 Other signals:

The SELECT signal must be tied to Vdd for normal operation. This signal was added for diagnostic reasons and inhibits the pixel array operation when held low.

The CAL signal sets the output amplifier DC offset level. When this signal is active (high) the pixel array is internally disconnected from the output amplifier, its gain is set to unity and its input signal is connected to the BLACK_REF input. This action must be performed at least once per frame. (on may even choose to do it once per line – but not advised) EOS_X, EOS_YL and EOS_YR produce a pulse when the respective shift register comes at its end. These outputs are used mainly during testing to verify proper operation of the shift registers.

TEST DIODE and TESTPIXEL ARRAY are connections to optical test structures that are used for electro-optical evaluation. TEST-DIODE is a plain photodiode with an area of 14x5 pixels. TESTPIXEL_ARRAY is an array (14x5) of pixels where the photodiodes are

12-Dec-02 15:47 p. 16/33

STAR250 Radiation Hard CMOS APS

connected in parallel. These structures are used to measure the photocurrent of the diodes directly.

TESTPIXEL_RESET and TESTPIXEL-OUT are connections to a single pixel that can be used for test purposes.

12-Dec-02 15:47 p. 17/33

2 Absolute maximum ratings

Table 4: absolute maximum ratings

Parameter	Value	Units
Any supply voltage	-0.5 to +7	V
Voltage on any input pin	-0.5 to Vdd+0.5	V
Operating temperature	0 to 65	Deg C
Storage temperature	-40 to 100	Deg C

12-Dec-02 15:47 p. 18/33

3 Specifications

3.1 DC operating conditions

Table 5: DC operating conditions

Symbol	Parameter	Min	Тур	Max	Units
VDD_ANA	Analogue supply voltage to imager part		5		V
VDD_DIG	Digital supply voltage to image opart		5		V
VDD_ADC_ANA	Analogue supply voltage to ADC		5		V
VDD_ADC_DIG	Digital supply voltage to ADC		5		V
VDD_ADC_DIG_3.3/5	Supply voltage of ADC output stage		3.3 to 5		V
VIH	Logical '1' input voltage	2.3		Vdd	V
VIL	Logical '0' input voltage	0		1	V
VOH	Logical '1' output voltage	4.25	4.5		V
VOL	Logical '0' output voltage		0.1	1	V

3.2 Resistor biases: power vs. speed

3.3 AC operating conditions

Table 6: AC operating conditions

Parameter	Min	Тур	Max	Units
Pixel output rate		5	8	MHz
Frame rate		18	29	Full frames /s

12-Dec-02 15:47 p. 19/33

3.4 Electro-optical characteristics

3.4.1 Overview

Table 7: Electro-optical specifications

Parameter	Specification (all	Comment
	typical)	
Detector technology	CMOS Active Pixel	
	Sensor	
Pixel structure	3-transistor active pixel	Radiation-tolerant pixel design
	4 diodes per pixel	4 Photodiodes for improved MTF
Photodiode	High fill factor	
	photodiode	
Sensitive area format	512 by 512 pixels	
Pixel size	$25 \times 25 \ \mu\text{m}^2$	
Spectral range	200 – 1000 nm	See curves
Quantum Efficiency x	Max. 35%	Above 20% between 450 and 750 nm.
Fill Factor		(note: metal fillfactor (MFF) is 63%)
Full Well capacity	311K electrons	When output amplifier gain = 1
Linear range within ±	128K electrons	When output amplifier gain $= 1$
1%		
Output signal swing	1.68 V	When output amplifier gain = 1
Conversion gain	5.7 μV/e-	When output amplifier gain = 1
		near dark
Temporal noise	76 e-	Dominated by kTC
Dynamic Range	74 dB (5000:1)	At the analog output
FPN (Fixed Pattern	$1\sigma < 0.1\%$ of full well	Measured local, on central image area
Noise)	(typical)	50% of pixels, in the dark
PRNU (Photo	Local: $1\sigma = 0.39\%$ of	Measured in central image area 50%
Response Non-	response	of pixels, at Qsat/2
uniformity)	Global: $1\sigma = 1.3\%$ of	
	response	
Average dark current	4750 e-/ s	At RT
signal		
DSNU (dark signal	e-/s RMS (TBC)	At RT, scale linearly with integration
non uniformity)		time.
MTF	Horizontal: 0.36	at 600 nm.
	Vertical: 0.39	

12-Dec-02 15:47 p. 20/33

Optical cross talk	5% (TBC) to nearest neighbour if central pixel is homogeneously	5% 100% 5%
	illuminated	3/6 100/6 3/6
		5%
Anti-blooming capacity	x 1000 to x 100 000	
Output amplifier gain	1, 2, 4 or 8	Controlled by 2 bits
Windowing	X and Y 9-bit programmable shift registers	Indicate upper left pixel of each window
Electronic shutter range	1:512	Integration time is variable in time steps equal to the row readout time
ADC	10 bit	
ADC linearity	\pm 3.5 counts	INL
Missing codes	none	
ADC setup time	310 ns	To reach 1% of final value
ADC delay time	125 ns	
Power Dissipation	< 350 mW	Average at 8 MHz pixel rate

3.4.2 Spectral response

Figure 5 shows a typical spectral response curve. The fringes in the curve result from optical interference in the top dielectric layers.

12-Dec-02 15:47 p. 21/33

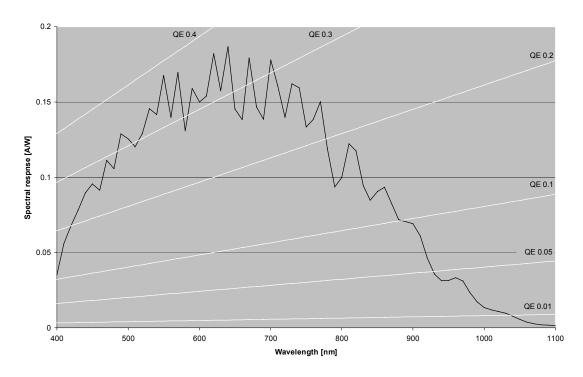
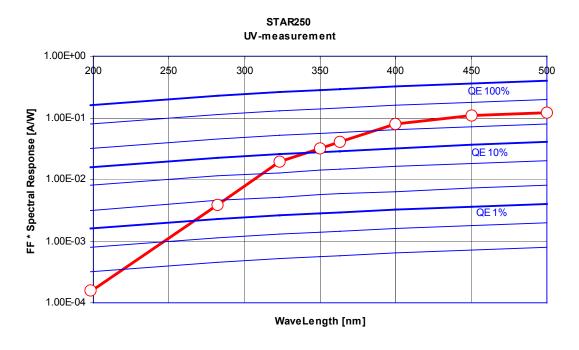



Figure 5: Typical spectral response curve lines of equal QE*FF are indicated.

12-Dec-02 15:47 p. 22/33

3.4.3 Pixel profile

The pixel profile was measured using the 'knife-edge' method: the image of a target containing a black-to white transition is scanned over a certain pixel with sub-pixel resolution steps. The image sensors settings and the illumination conditions are adjusted such that are the transitions covers 50 % of the output range. The scan is performed both in horizontal and in vertical direction.

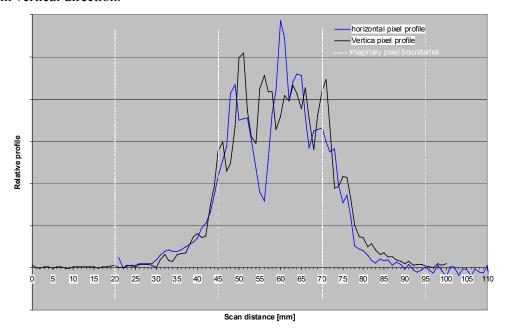


Figure 4: Typical pixel profiles

12-Dec-02 15:47 p. 23/33

4 Environmental characteristics

4.1 Temperature

Table 8: Temperature specifications

Parameter	Value	Units
Operating temperature	0 to 65	Deg C
Storage temperature	-40 to 100	Deg C

4.2 Radiation tolerance

Table 9: Radiation specifications

Parameter	Criterion	Qualification level
Gamma Total Dose	Increase in average	see graph
Radiation tolerance	dark current < 1	
	nA/cm ² after 3 MRad	
	Image operation with	10 Mrad demonstrated (Co60)
	dark signal < 1V/s	
	Single (test) pixel	24 Mrad demonstrated (Co60)
	operation with dark	
	signal < 1V/s	
Proton radiation	1% of pixels has an	see graph
tolerance	increase in dark current	
	> 1 nA/cm ² after	
	3*10^10 protons at 11.7	
	MeV	
SEL threshold	> 80 MeV cm ³ mg ⁻¹	To be confirmed

Next figure shows the increase in dark current under total dose irradiation. This curve was measured during high dose rate radiation. Annealing results in a significant decrease of dark current.

12-Dec-02 15:47 p. 24/33

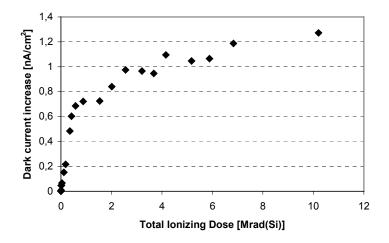


Figure 5: Increase in dark current vs. total dose radiation

Next figure shows the percentage of pixels with a dark current increase under 11.7 Mev radiation with protons.

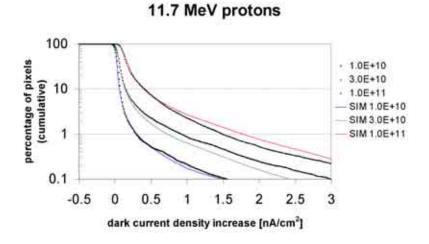


Figure 6: Increase in dark current under proton irradiation (measurements / simulation model)

5 Pin configuration

Table 10: Power supply connections

	10	VDD_AN A	Analog power supply: 5 V
_	11	VDD_DIG	Digital power supply 5V
	31	VDD AM	Power supply of output amplifier: 5 V

12-Dec-02 15:47 p. 25/33

	P	
33	VDD_DIG	Digital power supply 5V
34	VDD_AN A	Analogue power supply: 5 V
49	VDD_RES R	Reset power supply 5V
50	VDD_DIG	Digital power supply 5V
53	VDD_AD C_ANA	ADC analogue power supply 5V
66	VDD_AD C_ANA	ADC analogue power supply: 5 V
67	VDD_AD C_DIG	ADC digital power supply 5V
69	VDD_AD C_DIG_3. 3/5	ADC 3.3V power supply for digital output of ADC. For interface with 5V external system: connect to VDD_ADC_DIG. For interface with 3.3 V external system: connect to 3.3V power supply.
52	VDD_PIX	Pixel array power supply [default: 5V, the device is
76		then in "soft reset". In order to avoid the image lag associated with soft reset, reduce this voltage to 33.5 V "hard reset"]
78	VDD_DIG	Digital power supply 5V
79	VDD_RES L	Reset power supply 5V

Table 11: Ground connections

9	GND_ANA	Analog ground
12	GND_DIG	Digital ground
30	GND_AMP	Ground of output amplifier
32	GND_DIG	Digital ground
35	GND_ANA	Analog ground
51	GND_DIG	Digital ground
54	GND_ADC_A NA	ADC analog ground
65	GND ADC A	ADC analog ground

12-Dec-02 15:47 p. 26/33

_		NA	
	68	GND_ADC_DI G	ADC digital ground
	77	GND_DIG	Digital ground

Table 12: digital input signals

Table 12: digital input signals			
1	S	Control signal for column amplifier Apply pulse pattern – see sensor timing diagram	
2	R	Control signal for column amplifier Apply pulse pattern – see sensor timing diagram	
3	RESET	Resets row indicated by left/right shift register high active (1= reset row) Apply pulse pattern – see sensor timing diagram	
4	SELECT	Selects row indicated by left/right shift register high active (1=select row) Apply 5 V DC for normal operation	
5	L/R	Use left or right shift register for SELECT and RESET $1 = \text{left} / 0 = \text{right} - \text{see}$ sensor timing diagram	
6	A0	Start address for X- and Y-pointers (LSB)	
7	A1	Start address for X- and Y-pointers	
8	A2	Start address for X- and Y-pointers	
13	A3	Start address for X- and Y-pointers	
14	A4	Start address for X- and Y-pointers	
15	A5	Start address for X- and Y-pointers	
16	A6	Start address for X- and Y-pointers	
17	A7	Start address for X- and Y-pointers	
18	A8	Start address for X- and Y-pointers (MSB)	
19	LD_Y	Latch address (A0A8) to Y start register (0 = track, 1 = hold)	
20	LD_X	Latch address (A0A8) to X start register(0 = track, 1 = hold)	
21	CLK_YL	Clock YL shift register (shifts on falling edge)	
22	SYNC_YL	Sets YL shift register to location preloaded in Y start register Low active (0=sync)	

12-Dec-02 15:47 p. 27/33

		Apply SYNC YL when CLK YL is high
24	CLK_X	Clock X shift register (output valid & stable when CLK_X is low)
25	SYNC_X	Sets X shift register to location preloaded in X start register. Low active (0=sync) Apply SYNC_X when CLK_X is high After SYNC_X, apply falling edge on CLK_X, and rising edge on CLK_X.
27	CLK_YR	Clock YR shift register (shifts on falling edge)
28	SYNC_YR	Sets YR shift register to location preloaded in Y start register Low active (0=sync) Apply SYNC_YR when CLK_YR is high
36	CAL	Initialise output amplifier Output amplifier will output BLACKREF in unity gain mode when CAL is high (1) Apply pulse pattern (one pulse per frame) – see sensor timing diagram
37	G0	Select output amplifier gain value: G0 = LSB; G1 = MSB 00 = unity gain; 01 = x2; 10= x4; 11=x8
38	G1	idem
71	CLK_ADC	ADC clock ADC converts on falling edge
75	BITINVER T	1 = invert output bits 0 = no inversion of output bits
80	TRI_ADC	Tri-state control of digital ADC outputs 1 = tri-state; 0 = output

Table 13: Digital output signals

23	EOS_YL	End-of-scan of YL shift register Low first clock period after last row (low active)
26	EOS_X	End-of-scan of X shift register Low first clock period after last active column (low active)
29	EOS_YR	End-of-scan of YR shift register Low first clock period after last row (low active)

12-Dec-02 15:47 p. 28/33

55	D0	ADC output bit (LSB)
56	D1	ADC output bit
57	D2	ADC output bit
58	D3	ADC output bit
59	D4	ADC output bit
60	D5	ADC output bit
61	D6	ADC output bit
62	D7	ADC output bit
63	D8	ADC output bit
64	D9	ADC output bit (MSB)

Table 14: Analog input signals

39	NBIASARR	Connect with 500 K Ω to Vdd and decouple to ground by 100 nF capacitor
40	PBIAS	Connect with 40 K Ω to ground and decouple to Vdd by 100 nF capacitor for 12.5 MHz pixel rate.
		(Lower resistor values yield higher maximal pixel
		rates at the cost of extra power dissipation)
41	NBIAS AMP	Output amplifier speed/power control
	_	Connect with 82K to VDD and decouple with 100
		nF to GND for 12.5 MHz output rate. (Lower
		resistor values yield higher maximal pixel rates at
		the cost of extra power dissipation) Control voltage for output signal offset level
42	BLACKREF	Buffered on-chip, the reference level can be
		generated by a 100K resistive divider.
		Connect to +/- 2 V DC for use with on-chip ADC
44	INI ADC	Input, connect to sensor's output
44	IN_ADC	Input range is between 2 & 4 V (VLOW ADC &
		VHIGH_ADC)
45	NBIASANA2	Connect with 100 K Ω to VDD and decouple to
	TVDITTOTTIVIZ	GND
46	NBIASANA	Connect with 100 K Ω to VDD and decouple to
	1 (2111)11	GND
47	VLOW ADC	Low reference and high reference voltages of ADC
70	_	should be about 2 and 4 V.
/U	VHIGH_ADC	The internal resistance between VLOW_ADC and
		VHIGH_ADC is about 1.1 K.
		The required voltage settings on VLOW ADC and

12-Dec-02 15:47 p. 29/33

		VHIGH_ADC can be approximated by tying VLOW_ADC with 1.2 K to GND and VHIGH_ADC with 560 Ohm to VDD
48	G AB	Anti-blooming drain control voltage:
	_	Default: connect to ground. The anti-blooming is
		operational but not maximal
		Apply 1 V DC for improved anti-blooming
72	PBIASDIG2	Connect with 100K to GND and decouple to VDD
73	PBIASENCLO	Connect with 100K to GND and decouple to VDD
. 0	AD	
74	PBIASDIG1	Connect with 47K to GND and decouple to VDD

Table 15: Analog output signals

43	OUT	Analogue output signal
		To be connected to the analogue input of the ADC

Table 16: Test structures

81	TESTDIO DE	Plain photo diode, size: 14 x 25 pixels Must be left open for normal operation
82	TESTPIX ARRAY	Array of test pixels, connected in parallel (14 x 25 pixels) Must be left open for normal operation
83	TESTPIXE L_RESET	Reset input of single test pixel Must be tied to GND for normal operation
84	TESTPIXE L_OUT	Output of single test pixel Must be left open for normal operation

12-Dec-02 15:47 p. 30/33

6 Mechanical data

6.1 Package drawing

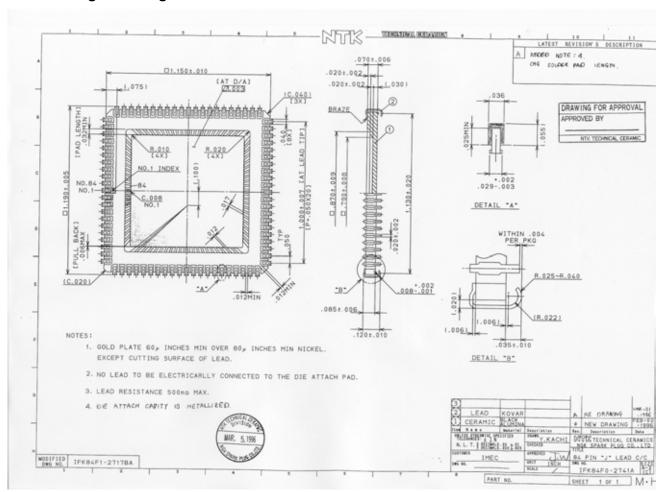


Figure 9: Package dimensions

Table 17: Package specifications

Type	JLCC-84
Material:	Black Alumina
	BA-914
Thermal expansion	$7.6 \times 10^{-6} / K$
coefficient	

12-Dec-02 15:47 p. 31/33

6.2 Die alignment

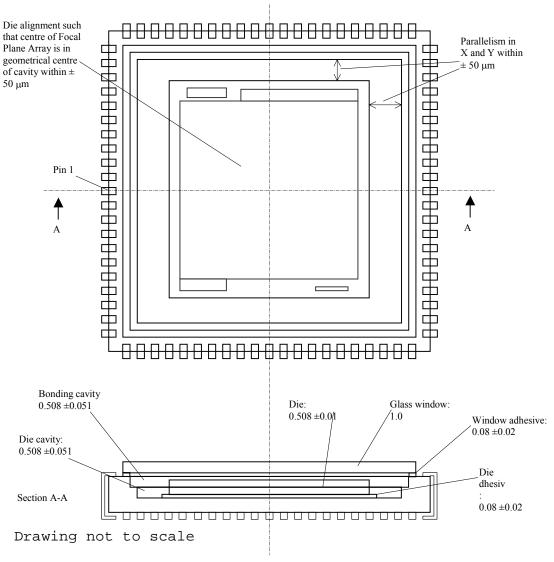


Figure 10: Die alignment

The die is aligned manually in the package to a tolerance of $\pm 50\mu m$ and the alignment is verified after hardening the die adhesive.

6.3 Window specifications

In the standard processing flow the following window is mounted:

Table 18: Glass cover specification

Material:	D263
Dimensions:	25 x 25 mm +- 0.2

12-Dec-02 15:47 p. 32/33

	mm
Thickness:	0.55 mm +- 0.05 mm

(EOD)

12-Dec-02 15:47 p. 33/33