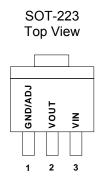


GENERAL DESCRIPTION

The CM1117F series of adjustable and fixed voltage regulators are designed to provide 1A for applications requiring high efficiency. All internal circuitry is designed to operated down to 1V input to output differential and the dropout voltage is fully specified as a function of load current.

The CM1117F offers current limiting and thermal protection. The on chip trimming adjusts the reference voltage accuracy to 2%.


FEATURES

- ◆ Three Terminal Adjustable or Fixed Voltages: 1.8V, 2.5V, 3.3V, and adjustable.
- Output Current of 1A
- Low dropout voltage: 1.1V Typ.
- ◆ Line Regulation: 0.3% Max
- ◆ Load Regulation: 2% Max
- ♦ Fast Transient Response
- ◆ Thermal Protection
- ♦ SOT-223 package available
- Rugged 3KV ESD withstand capability.

APPLICATIONS

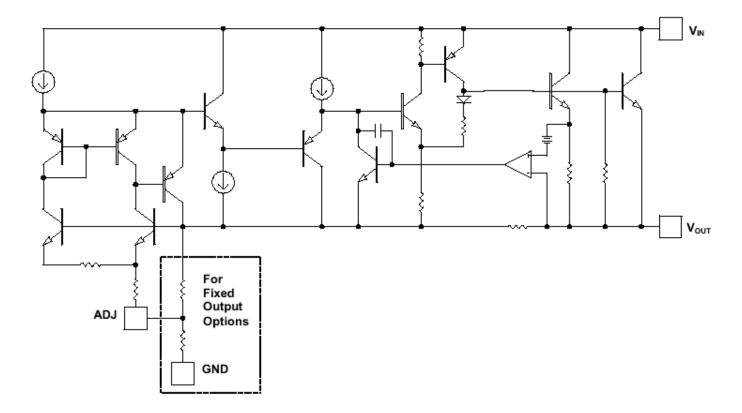
- ♦ High Efficiency Linear Regulators
- Post Regulators for Switching Supplies
- Battery Chargers
- Active SCSI Terminators
- Post Regulator for Switching DC/DC Converter
- Battery Powered Instrumentation

PIN CONFIGURATION

ORDERING INFORMATION

Package Type	Operating Temperature	Output Voltage
SOT-223	Range (T _A)	Output Voltage
CM1117FDCM223	0°C ~+70°C	1.8V
CM1117FKCM223	0°C ~+70°C	2.5V
CM1117FSCM223	0°C ~+70°C	3.3V
CM1117FCM223	0°C ~+70°C	ADJ.
CM1117FGDCM223*	0°C ~+70°C	1.8V
CM1117FGKCM223*	0°C ~+70°C	2.5V
CM1117FGSCM223*	0°℃ ~+70°℃	3.3V
CM1117FGCM223*	0°℃ ~+70°℃	ADJ.

^{*}Note: G : Suffix for Pb Free Product


ABSOLUTE MAXIMUM RATINGS

Input Voltage	+12V
Operating Junction Temperature Range, T _J	0°C to +125°C
Storage Temperature	40°C to +150°C
Lead Temperature (10 sec.)	260 ℃

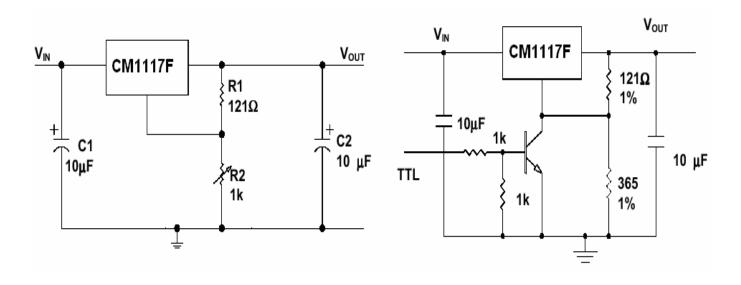
THERMAL INFORMATION

Parameter		Maximum	Unit
Thermal Resistance (Θ_{ja})	SOT-223	60	°C/W
Internal Power Dissipation (P _D) ($\Delta T = 100^{\circ}C$, No Heatsink)	SOT-223	900	mW
Maximum Junction Temperature		125	$^{\circ}\!\mathbb{C}$
Maximum Lead Temperature (10 Sec)		260	$^{\circ}\!\mathbb{C}$

BLOCK DIAGRAM

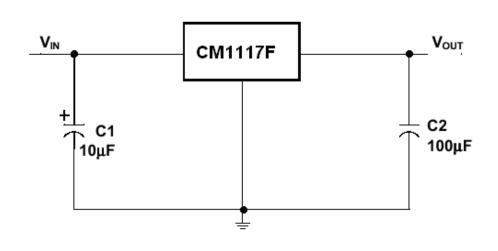
ELECTRICAL CHARACTERISTICS

Electrical Characteristics at I_{OUT} = 10mA, and T_J = +25°C; unless otherwise noted


Damanus tan	Parameter Paris	CM1117F			1111	
Parameter	Parameter Device Test Conditions		Min.	Тур.	Max.	Unit
Reference Voltage	CM1117F	I_{OUT} = 10mA, V_{IN} = 5V	1.225	1.250	1.275	V
	CM1117FD	$10\text{mA} \le I_{\text{OUT}} \le 1\text{A}, 3.2\text{V} \le V_{\text{IN}} \le 7\text{V}$	1.764	1.800	1.836	V
Output Voltage	CM1117FK	$10mA \le I_{OUT} \le 1A$, $4.25V \le V_{IN} \le 7V$	2.450	2.500	2.550	V
CM1117F		$10mA \le I_{OUT} \le 1A, 4.75V \le V_{IN} \le 7V$	3.234	3.300	3.366	V
Line Degulator	Adj. Output	I _{OUT} = 10mA, 1.5V<= V _{IN} <= 7V		0.05	0.30	%
Line Regulator	Fixed Output	$I_{OUT} = 10$ mA, $V_{OUT} + 1.5$ V<= $V_{IN} <= 7$ V		1	6.0	mV
Load Dogulation	Adj. Output	$10mA \le I_{OUT} \le 1A, V_{IN} - V_{OUT} = 3V$		0.4	2	%
Load Regulation	Fixed Output	$10\text{mA} \le I_{\text{OUT}} \le 1\text{A}, V_{\text{IN}} = V_{\text{OUT}} + 1.5\text{V}$		8	36	mV
Dropout Voltage	Fixed Output	I _{OUT} = 10mA		1		V
(V _{IN} – V _{OUT}) Fixed Output	I _{OUT} = 1A		1.1	1.25	V	
Current Limit	Fixed Output	$(V_{IN} - V_{OUT}) = 3V$		1.8		Α
Minimum Load		V _{IN} <= 7V	4			mA
Current (Note 1)		VIN <- 7 V	4			ША
Quiescent Current	Fixed Output	V _{IN} <= 7V		10	13	mA
Ripple Rejection		f = 120Hz 1\/ = 1\(\) \/ \= 2\/		35		dB
(Note 2)		$f_0 = 120$ Hz, $1V_{RMS}$, $I_{OUT} = 1$ A, $(V_{IN} - V_{OUT}) = 3$ V		35		иь
Thermal Regulation		T _A = 25°C, 30ms pulse		0.01	0.1	%W
(Note 2)				0.01	0.1	70 V V
Adjust Pin Current		$I_{OUT} = 10$ mA, $V_{IN} - V_{OUT} = 2$ V		48	120	μΑ

Note 1: For the adjustable device, the minimum load current is the minimum current required to maintain regulation. Normally the current in the resistor divider used to set the output voltage is selected to meet the minimum load current requirement.

Note 2: These parameters, although guaranteed, are not tested in production.



APPLICATION CIRCUIT

Adjustable Regulator VOUT = 1.25V (1+R2/R1)

5V Regulator with Shutdown

Fixed Voltage Regulator

Application Hints

Like any linear voltage regulator, CM1117F requires external capacitors to ensure stability. The external capacitors must be carefully selected to ensure performance.

Input Capacitor

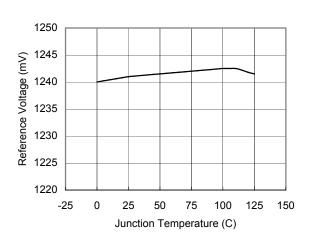
An input capacitor of at least $10\mu F$ is required. Ceramic or Tantalum can be used. The value can be increase without upper limit.

Output Capacitor

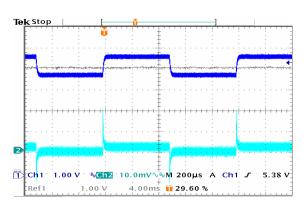
An output capacitor is required for stability. It must be placed no more than 1 cm away from the V_{OUT} pin, and connected directly between V_{OUT} and GND pins. The minimum value is $22\mu\text{F}$ but may be increase without limit.

Thermal Considerations

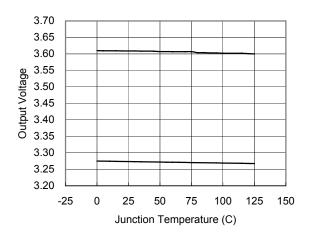
It is important that the thermal limit of the package is not exceeded. The CM1117F has built-in thermal protection. When the thermal limit is exceeded, the IC will enter protection, and V_{OUT} will be pulled to ground. The power dissipation for a given application can be calculated as following:

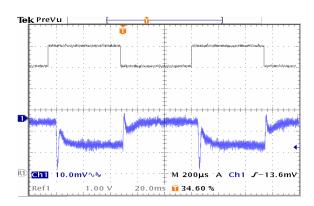

The power dissipation (P_D) is $P_D = I_{OUT} * [V_{IN} - V_{OUT}]$

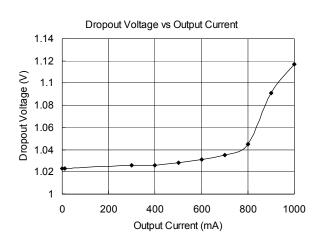
The thermal limit of the package is then limited to $P_{D(MAX)} = [T_J - T_A]/\Theta_{JA}$ where T_J is the junction temperature, TA is the ambient temperature, and Θ_{JA} is around 60°C/W for CM1117F. CM1117F is designed to enter thermal protection at 175°C. For example, if T_A is 25°C then the maximum P_D is limited to about 2.5W. In other words, if $I_{OUT(MAX)} = 1A$, then $[V_{IN} - V_{OUT}]$ cannot exceed 2.5V.



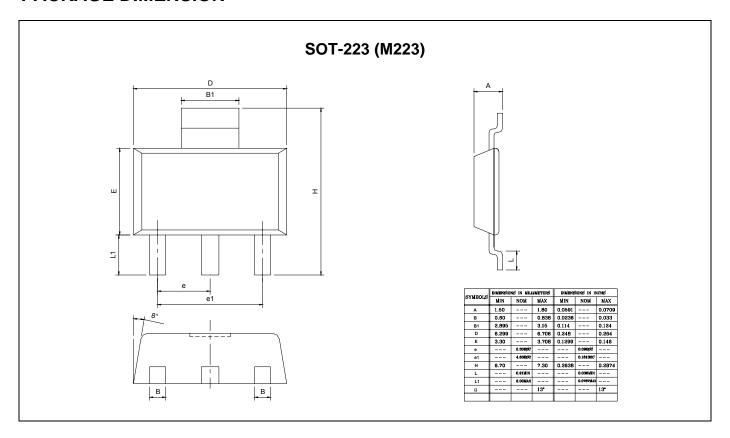
Typical Performance Characteristics


Reference Voltage vs Junction Temperature


Line Transients



Output Voltage vs Junction Temperature


Load Transients

PACKAGE DIMENSION

CM1117F 1A Low Dropout Voltage Regulator

IMPORTANT NOTICE

Champion Microelectronic Corporation (CMC) reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. CMC integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of CMC products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

HsinChu Headquarter

Sales & Marketing

5F, No. 11, Park Avenue II,	11F, No. 306-3, SEC. 1, Ta Tung Road,
Science-Based Industrial Park,	Hsichih, Taipei Hsien 221, Taiwan
HsinChu City, Taiwan	
TEL: +886-3-567 9979	TEL: +886-2-8692 1591
FAX: +886-3-567 9909	FAX: +886-2-8692 1596