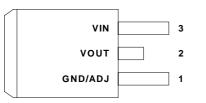


GENERAL DESCRIPTION

The CM1117 series of adjustable and fixed voltage regulators are designed to provide 1A for applications requiring high efficiency. All internal circuitry is designed to operated down to 800mV input to output differential and the dropout voltage is fully specified as a function of load current.

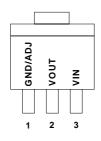
The CM1117 offers current limiting and thermal protection. The on chip trimming adjusts the reference voltage accuracy to 1%.

FEATURES


- Three Terminal Adjustable or Fixed Voltages: 1.8V, 2.5V, 3.3V, and adjustable.
- Output Current of 1A
- Low dropout voltage: 1V Typ.
- Line Regulation: 0.2% Max
- Load Regulation: 0.4% Max
- Fast Transient Response
- Thermal Protection
- SOT-223 and TO-252 package available

APPLICATIONS

- High Efficiency Linear Regulators
- Post Regulators for Switching Supplies
- Battery Chargers
- Active SCSI Terminators
- Post Regulator for Switching DC/DC Converter
- Battery Powered Instrumentation


PIN CONFIGURATION

TO-252 Front View

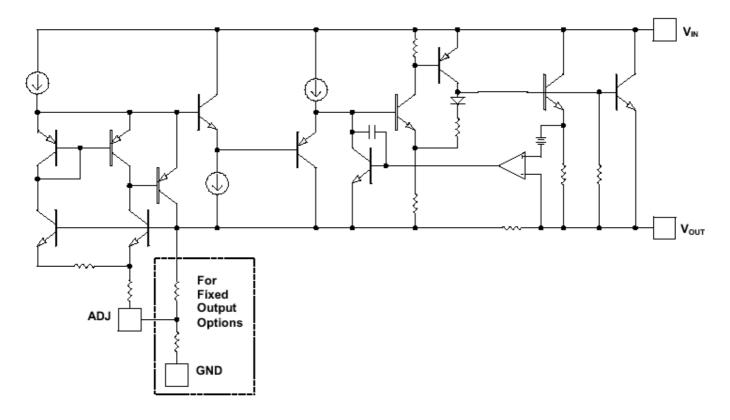
ORDERING INFORMATION

SOT-223 Top View

Package Type		Operating Temperature		
TO-252	SOT-223	Range (T _A)	Output Voltage	
CM1117DCN252	CM1117DCM223	0 ~ +70	1.8V	
CM1117KCN252	CM1117KCM223	0 ~ +70	2.5V	
CM1117SCN252	CM1117SCM223	0 ~ +70	3.3V	
CM1117CN252	CM1117CM223	0 ~ +70	ADJ.	
CM1117GDCN252*	CM1117GDCM223*	0 ~ +70	1.8V	
CM1117GKCN252*	CM1117GKCM223*	0 ~ +70	2.5V	
CM1117GSCN252*	CM1117GSCM223*	0 ~ +70	3.3V	
CM1117GCN252*	CM1117GCM223*	0 ~ +70	ADJ.	

ABSOLUTE MAXIMUM RATINGS

Input Voltage	+12V
Operating Junction Temperature Range, T _J 0	to +125
Storage Temperature	to +150
Lead Temperature (10 sec.)	260


RESOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min.	Тур.	Max	Units
Input Voltage	V _{IN}	2.7		7	V

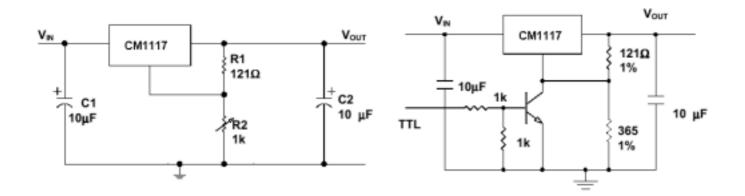
THERMAL INFORMATION

Parameter		Maximum	Unit
Thermal Resistance (_{ic})	SOT-223	50	/W
	TO-252	50	
Thermal Resistance (_{ja})	SOT-223	100	/W
	TO-252	80	
Internal Power Dissipation (P_D) ($T = 100$, No Heatsink)	SOT-223	900	mW
$\frac{1}{1} = 100 , \text{ Not real sink}$	TO-252	1500	
Maximum Junction Temperature		150	
Maximum Lead Temperature (10 Sec)	300		

BLOCK DIAGRAM

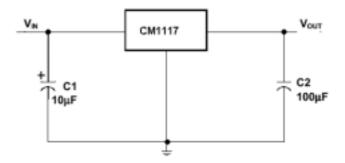
ELECTRICAL CHARACTERISTICS

Electrical Characteristics at I_{OUT} = 10mA, and T_J = +25°C; unless otherwise noted


D	D			CM1117		
Parameter	Device Test Conditions		Min.	Тур.	Max.	Unit
Reference Voltage	CM1117	$I_{OUT} = 10$ mA, $V_{IN} = 5$ V	1.238	1.250	1.262	V
	CM1117D	10mA <= I _{OUT} <= 1A, 3.2V<= V _{IN} <= 7V	1.764	1.800	1.836	V
Output Voltage	CM1117K	10mA <= I _{OUT} <= 1A, 4.25V<= V _{IN} <= 7V	2.450	2.500	2.550	V
CM1117S		10mA <= I _{OUT} <= 1A, 4.75V<= V _{IN} <= 7V	3.234	3.300	3.366	V
Line Degulater	Adj. Output	I _{OUT} = 10mA, 1.5V<= V _{IN} <= 7V		0.04	0.20	%
Line Regulator	Fixed Output	I _{OUT} = 10mA, V _{OUT} + 1.5V<= V _{IN} <= 7V		1.0	6.0	mV
Lood Degulation	Adj. Output	10mA <= I _{OUT} <= 1A, V _{IN} – V _{OUT} = 3V		0.10	0.30	%
Load Regulation	Fixed Output	$10mA \le I_{OUT} \le 1A, V_{IN} = V_{OUT} + 1.5V$		1.0	10.0	mV
Dropout Voltage	Fixed Output	I _{OUT} = 10mA		1		V
$(V_{IN} - V_{OUT})$	Fixed Output	$I_{OUT} = 1A$		1.1	1.30	v
Current Limit	Fixed Output	$(V_{IN} - V_{OUT}) = 3V$	1	1.1		А
Minimum Load		V _{IN} <= 7V		5	14	mA
Current (Note 1)	Fine d Ontent			40		
Quiescent Current	Fixed Output	V _{IN} <= 7V		12	14	mA
Ripple Rejection		f _O = 120Hz, 1V _{RMS} , , I _{OUT} = 400mA, (V _{IN} – V _{OUT})= 3V	60	75		dB
(Note 2)						
Thermal Regulation		T _A = 25°C, 30ms pulse		0.01	0.1	%W
(Note 2)				0.01	0.1	7000
Adjust Pin Current		$I_{OUT} = 10 \text{mA}, V_{IN} - V_{OUT} = 2 \text{V}$		50	120	μA

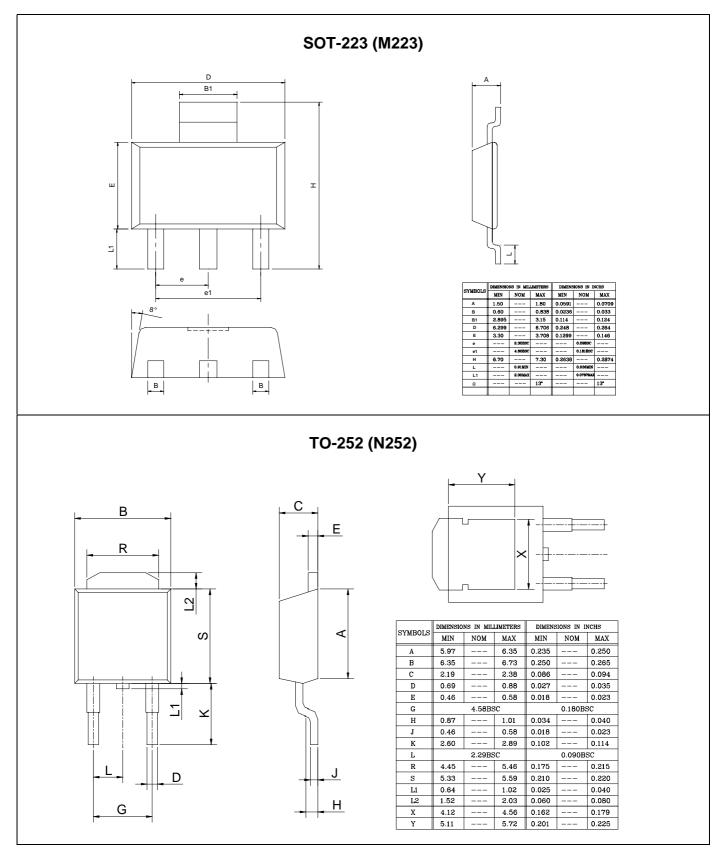
Note 1: For the adjustable device, the minimum load current is the minimum current required to maintain regulation. Normally the current in the resistor divider used to set the output voltage is selected to meet the minimum load current requirement.

Note 2: These parameters, although guaranteed, are not tested in production.



APPLICATION CIRCUIT

Adjustable Regulator VOUT = 1.25V (1+R2/R1)


5V Regulator with Shutdown

Fixed Voltage Regulator

PACKAGE DIMENSION

IMPORTANT NOTICE

Champion Microelectronic Corporation (CMC) reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. CMC integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of CMC products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

HsinChu Headquarter	Sales & Marketing		
5F, No. 11, Park Avenue II,	11F, No. 306-3, SEC. 1, Ta Tung Road,		
Science-Based Industrial Park,	Hsichih, Taipei Hsien 221, Taiwan		
HsinChu City, Taiwan			
TEL: +886-3-567 9979	TEL: +886-2-8692 1591		
FAX: +886-3-567 9909	FAX: +886-2-8692 1596		