## 8-bit Proprietary Microcontroller

## CMOS

## F²MC-8L MB89490 Series

## MB89497/498/F499/PV490

## ■ DESCRIPTION

The MB89490 series has been developed as a general-purpose version of the $\mathrm{F}^{2} \mathrm{MC}^{*}-8 \mathrm{~L}$ family consisting of proprietary 8 -bit single-chip microcontrollers.
In addition to a compact instruction set, the microcontroller contains a variety of peripheral functions such as 21-bit timebase timer, watch prescaler, PWM timer, 8/16-bit timer/counter, remote receiver control, LCD controller/driver, external interrupt 0 (edge), external interrupt 1 (level), 10 -bit A/D converter, UART/SIO, SIO, $I^{2} \mathrm{C}$ and watchdog timer reset.

The MB89490 series is designed suitable for compact disc/cassette tape/radio receiver controller as well as in a wide range of applications for consumer product.
*: F²MC stands for FUJITSU Flexible Microcontroller.

## FEATURES

- Package used

QFP package for MB89F499, MB89497,MB89498
MQFP package for MB89PV490

- High speed operating capability at low voltage
- Minimum execution time: $0.32 \mu \mathrm{~s} / 12.5 \mathrm{MHz}$


## PACKAGE

100-pin Plastic QFP
(FTP-100-pin Ceramic MQFP
(MQP-100C-P01)

## MB89490 Series

## (Continued)

- $\mathrm{F}^{2} \mathrm{MC}-8 \mathrm{~L}$ family CPU core

Instruction set optimized for controllers
Multiplication and division instructions
16-bit arithmetic operations
Test and branch instructions
Bit manipulation instructions, etc.

- Clock

Embedded PLL clock multiplication circuit for sub-clock
Operating clock (PLL for sub-clock) can be selected four times of the sub-clock oscillation

- Six timers

PWM timer x 2
8/16-bit timer/counter x 2
21-bit timebase timer
Watch prescaler

- External interrupt

Edge detection (selectable edge) : 8 channels
Low level interrupt (wake-up function) : 8 channels

- 10-bit A/D converter (8 channels)

10-bit successive approximation type

- UART/SIO

Synchronous/asynchronous data transfer capability

- SIO

Synchronous data transfer capability

- LCD controller/driver

Max. 32 segments output x 4 commons

- ${ }^{2} \mathrm{C}$ interface circuit
- Remote receiver circuit
- Low-power consumption mode

Stop mode (oscillation stops so as to minimize the current consumption.)
Sleep mode (CPU stops so as to reduce the current consumption to approx. $1 / 3$ of normal.)
Watch mode (everything except the watch prescaler stops so as to reduce the power comsumption to an extremely low level.)
Sub-clock mode

- Watchdog timer reset
- I/O ports: max. 66channels


## PRODUCT LINEUP

\left.| Part number |  | MB89497 | MB89498 | MB89F499 |
| :--- | :---: | :---: | :---: | :---: |$\right]$ MB89PV490

[^0]
${ }^{*} 1$ : $I^{2} \mathrm{C}$ is complied to Philips $I^{2} \mathrm{C}$ specification.

## PACKAGE AND CORRESPONDING PRODUCTS

| Part number | MB89497/498 | MB89F499 | MB89PV490 |
| :---: | :---: | :---: | :---: |
| FPT-100P-M06 | O | O | X |
| MQP-100C-P01 | X | X | O |

O : Availabe
X : Not available

## ■ DIFFERENCES AMONG PRODUCTS

## 1. Memory Size

Before evaluating using the piggyback product, verify its differences from the product that will actually be used. Take particular care on the following point:

- The stack area is set at the upper limit of the RAM.


## 2. Current Consumption

- For the MB89PV490 the current consumed by the EPROM mounted in the piggy-back socket is needed to be included.
- When operating at low speed, the current consumed by the FLASH product is greater than that for the mask ROM product. However, the current consumption is roughly the same in sleep and stop mode.
- For more information, see " $\square$ Electrical Characteristics."


## 3. Oscillation Stabilization Time after Power-on Reset

- For MB89PV490 and MB89F499, the power-on stabilization time cannot be selected.
- For MB89497 and MB89498, the power-on stabilization time can be selected.
- For more information, please refer to " $\boldsymbol{\square}$ Mask Option".


## PIN ASSIGNMENT




Pin assignment on package top (MB89PV490 only)

| Pin no. | Pin name |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 101 | N.C. | 109 | A2 | 117 | N.C. | 125 | $\overline{\mathrm{OE}}$ |
| 102 | A15 | 110 | A1 | 118 | O4 | 126 | N.C. |
| 103 | A12 | 111 | A0 | 119 | O5 | 127 | A11 |
| 104 | A7 | 112 | N.C. | 120 | O6 | 128 | A9 |
| 105 | A6 | 113 | O1 | 121 | O7 | 129 | A8 |
| 106 | A5 | 114 | O2 | 122 | O8 | 130 | A13 |
| 107 | A4 | 115 | O3 | 123 | $\overline{\mathrm{CE}}$ | 131 | A14 |
| 108 | A3 | 116 | Vss | 124 | A10 | 132 | Vcc |

N.C.: As connected internally, do not use.

## MB89490 Series

## PIN DESCRIPTION

| Pin number | Pin name | I/O circuit <br> type |  |
| :---: | :---: | :---: | :--- |
| MQFP*1/QFP*2 |  |  |  |$n$

## MB89490 Series

(Continued)

| Pin number | Pin name | I/O circuit | Function |
| :---: | :---: | :---: | :---: |
| MQFP ${ }^{* 1} /$ QFP $^{* 2}$ | Prname |  | Function |
| 57 | P53/COM2 | F/I | General-purpose CMOS I/O port. <br> The pin is shared with the LCD common output. |
| 58 | P54/COM3 | F/I | General-purpose CMOS I/O port. The pin is shared with the LCD common output. |
| $75 \sim 82$ | $\begin{gathered} \text { P60/SEG16 } \\ \tilde{\sim} \\ \text { P67/SEG23 } \end{gathered}$ | F/I | General-purpose CMOS I/O port. <br> The pin is shared with LCD segment output. |
| $83 \sim 90$ | P70/SEG24 <br> P77/SEG31 | F/I | General-purpose CMOS I/O port. The pin is shared with LCD segment output. |
| 91 | P80/SI1 | E | General-purpose CMOS I/O port. <br> The pin is shared with UART/SIO data input. |
| 92 | P81/SO1 | F | General-purpose CMOS I/O port. The pin is shared with UART/SIO data output. |
| 93 | P82/SCK1 | E | General-purpose CMOS I/O port. <br> The pin is shared with UART/SIO clock I/O. |
| $59 \sim 74$ | $\begin{aligned} & \text { SEGO ~ } \\ & \text { SEG15 } \end{aligned}$ | 1 | LCD segment output-only pin. |
| $55 \sim 56$ | $\begin{gathered} \text { COM0 ~ } \\ \text { COM1 } \end{gathered}$ | 1 | LCD common output-only pin. |
| 54, 53, 52 | V1 to V3 | - | LCD driving power supply pin. |
| 1,51 | Vcc | - | Power supply pin. |
| 50,100 | Vss | - | Power supply pin (GND). |
| 30 | AV ${ }_{\text {cc }}$ | - | A/D converter power supply pin. |
| 29 | AVR | - | A/D converter reference voltage input pin. |
| 31 | AVss | - | A/D converter power supply pin. Use at the same voltage level as Vss. |

## MB89490 Series

## - External EPROM Socket (MB89PV490 only)

| Pin number | Pin | I/O | Function |
| :---: | :---: | :---: | :---: |
| MQFP*1 |  |  |  |
| 102 | A15 | 0 | Address output pins. |
| 131 | A14 |  |  |
| 130 | A13 |  |  |
| 103 | A12 |  |  |
| 127 | A11 |  |  |
| 124 | A10 |  |  |
| 128 | A9 |  |  |
| 129 | A8 |  |  |
| 104 | A7 |  |  |
| 105 | A6 |  |  |
| 106 | A5 |  |  |
| 107 | A4 |  |  |
| 108 | A3 |  |  |
| 109 | A2 |  |  |
| 110 | A1 |  |  |
| 111 | A0 |  |  |
| 122 | 08 | I | Data input pins. |
| 121 | O7 |  |  |
| 120 | 06 |  |  |
| 119 | O5 |  |  |
| 118 | O4 |  |  |
| 115 | O3 |  |  |
| 114 | O 2 |  |  |
| 113 | O1 |  |  |
| 101 |  |  |  |
| 112 | N.C. | - | Internally connected pins. Always leave open. |
| 117 | N.C. | - | Internally connected pins. Always leave open. |
| 126 |  |  |  |
| 116 | Vss | O | Power supply pin (GND). |
| 123 | $\overline{C E}$ | O | Chip enable pin for the EPROM. Outputs "H" in standby mode. |
| 125 | $\overline{\mathrm{OE}}$ | O | Output enable pin for the EPROM. Always outputs "L". |
| 132 | Vcc | O | Power supply pin for the EPROM. |

## MB89490 Series

## I/O CIRCUIT TYPE

| Circuit Class | Circuit | Remarks |
| :---: | :---: | :---: |
| A |  | - Main/Sub-clock circuit |
| B |  | - Hysteresis input (CMOS input in MB89F499) <br> - The pull-down resistor (not available in MB89F499) Approx. $50 \mathrm{k} \Omega$ |
| C |  | - The pull-up resistor (P-channel) Approx. $50 \mathrm{k} \Omega$ <br> - Hysteresis input |
| D |  | - CMOS output <br> - $\mathrm{IOH}=-4 \mathrm{~mA}, \mathrm{IOL}=12 \mathrm{~mA}$ <br> - CMOS input <br> - Selectable pull-up resistor Approx. $50 \mathrm{k} \Omega$ |
| E |  | - CMOS output <br> - $\mathrm{IOH}=-2 \mathrm{~mA}, \mathrm{IOL=4mA}$ <br> - CMOS port input <br> - Hysteresis resource input <br> - Selectable pull-up resistor Approx. $50 \mathrm{k} \Omega$ |

## MB89490 Series

(Continued)

| F |  | - CMOS output <br> - $\mathrm{IOH}=-2 \mathrm{~mA}, \mathrm{IOL}=4 \mathrm{~mA}$ <br> - CMOS input <br> - Selectable pull-up resistor Approx. $50 \mathrm{k} \Omega$ |
| :---: | :---: | :---: |
| G |  | - CMOS output <br> - $\mathrm{IOH}=-2 \mathrm{~mA}, \mathrm{IOL}=4 \mathrm{~mA}$ <br> - CMOS port input <br> - Automotive ( $\mathrm{VIH}=0.85 \mathrm{Vcc}, \mathrm{VIL}=0.5 \mathrm{Vcc}$ ) resource input <br> - Analog input <br> - Selectable pull-up resistor Approx. $50 \mathrm{k} \Omega$ |
| H |  | - N-ch open-drain output <br> - $\mathrm{IOL}=15 \mathrm{~mA}$ <br> - CMOS port input <br> - CMOS resource input <br> - 5 V tolerance |
| 1 |  | - LCD segment output |
| J | $\square \longrightarrow-\infty$ | - CMOS input |

## HANDLING DEVICES

## 1. Preventing Latch-up

Latch-up may occur on CMOS ICs if voltage higher than $\mathrm{V}_{\mathrm{cc}}$ or lower than $\mathrm{V}_{\text {ss }}$ is applied to input and output pins other than medium- to high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in " $\square$ Electrical Characteristics" is applied between V cc and $\mathrm{V}_{\text {ss. }}$
When latch-up occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.
Also, take care to prevent the analog power supply (AVcc and AVR), and analog input from exceeding the digital power supply ( $\mathrm{V} c \mathrm{c}$ ) when the analog system power supply is turned on and off.

## 2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

## 3. Treatment of Power Supply Pins on Microcontrollers with A/D

Connect to be $A V_{c c}=V_{c c}$ and $A V_{s s}=A V R=V_{s s}$ even if the $A / D$ is not in use .

## 4. Treatment of N.C. Pins

Be sure to leave (internally connected) N.C. pins open.

## 5. Power Supply Voltage Fluctuations

Although Vcc power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that Vcc ripple fluctuations ( $\mathrm{P}-\mathrm{P}$ value) will be less than $10 \%$ of the standard Vcc value at the commercial frequency ( 50 to 60 Hz ) and the transient fluctuation rate will be less than $0.1 \mathrm{~V} / \mathrm{ms}$ at the time of a momentary fluctuation such as when power is switched.

## 6. Precautions when Using an External Clock

Even when an external clock is used, oscillation stabilization time is required for power-on reset and wake-up from stop mode.

## 7. Treatment of Unused dedicated LCD pins

When dedicated LCD pins are not in use, keep them open.

## MB89490 Series

## PROGRAMMING AND ERASING FLASH MEMORY ON THE MB89F499

## 1. Flash Memory

The flash memory is located between 1000 н and FFFFH in the CPU memory map and incorporates a flash memory interface circuit that allows read access and program access from the CPU to be performed in the same way as mask ROM. Programming and erasing flash memory is also performed via the flash memory interface circuit by executing instructions in the CPU. This enables the flash memory to be updated in place under the control of the CPU, providing an efficient method of updating program and data.

## 2. Flash Memory Features

- 60 K byte $\times 8$-bit configuration ( $16 \mathrm{~K}+8 \mathrm{~K}+8 \mathrm{~K}+28 \mathrm{~K}$ sectors)
- Automatic programming algorithm (Embedded algorithm* : Equivalent to MBM29LV200)
- Includes an erase pause and restart function
- Data polling and toggle bit for detection of program/erase completion
- Detection of program/erase completion via CPU interrupt
- Compatible with JEDEC-standard commands
- Sector Protection (sectors can be combined in any combination)
- No. of program/erase cycles : 10,000 (Min)
*: Embedded Algorithm is a trademark of Advanced Micro Devices.


## 3. Procedure for Programming and Erasing Flash Memory

Programming and reading flash memory cannot be performed at the same time. Accordingly, to program or erase flash memory, the program must first be copied from flash memory to RAM so that programming can be performed without program access from flash memory.

## 4. Flash Memory Register

- Control status register (FMCS)

| Address 007Ан | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Initial value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | INTE | RDYINT | WE | RDY | Reserved | Reserved | - | Reserved | 000X00-0b |
| R/W |  | R/W R/W |  | R | R/W | R/W | - | R/W |  |

## 5. Sector Configuration

The table below shows the sector configuration of flash memory and lists the addresses of each sector for both during CPU access a flash memory programming.

- Sector configuration of flash memory

| Flash Memory | CPU Address | Programmer Address* |
| :---: | :---: | :---: |
| 16 K bytes | FFFF ${ }_{\text {to }} \mathrm{COOOH}$ | 1FFFFF to 1-000 |
| 8 K bytes | BFFF ${ }_{\text {to }} \mathrm{A000}{ }_{\text {H }}$ | 1 BFFF н to 1A000 |
| 8 K bytes | 9FFFH to 8000н | 19FFFr to 18000н |
| 28 K bytes | 7FFFr to 1000н | 17 FFF to 11000 н |

## MB89490 Series

*: Programmer address
The programmer address is the address to be used instead of the CPU address when programming data from a parallel flash memory programmer. Use the programmer address on programming or erasing using a general purpose parallel programmer.
6. ROM Programmer Adaptor and Recommended ROM Programmers

| Part number | Package | Adaptor Part No. | Recommended Programmer <br> Manufacturer and Model |
| :---: | :---: | :---: | :---: |
|  |  | Sun Hayato Co. Ltd. | Ando Denki Co. Ltd. |
| MB89F499PF | FPT-100P-M06 | TBD | AF9708 (ver 1.60 or later) <br> AF9709 (ver 1.60 or later) |

* Enquiries

Sunhayato Co. Ltd. : FAX +81-3-5396-9106
Ando Denki Co. Ltd. : TEL +81-44-549-7300

## MB89490 Series

## PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE

## 1. EPROM for Use

## MBM27C512-20TV

## 2. Programming Socket Adapter

To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato Co., Ltd.) listed below.

| Package | Adapter socket part number |
| :---: | :---: |
| LCC-32 (Rectangle) | ROM-32LC-28DP-YG |

Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3986-0403

## 3. Memory Space

Memory space in each mode is shown in the diagram below.


## 4. Programming to the EPROM

(1) Set the EPROM programmer to the MBM27C512.
(2) Load program data into the EPROM programmer at 1000 н to FFFFн.
(3) Program to 1000 to FFFFH with the EPROM programmer.

## MB89490 Series

## Block Diagram



[^1]
## MB89490 Series

## CPU CORE

## 1. Memory Space

The microcontrollers of the MB89490 series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89490 series is structured as illustrated below.

## Memory Space



## MB89490 Series

## 2. Registers

The F²MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following registers are provided:

Program counter (PC): A 16-bit register for indicating instruction storage positions.
Accumulator (A):
A 16-bit temporary register for storing arithmetic operations, etc. When the instruction is an 8 -bit data processing instruction, the lower byte is used.

Temporary accumulator (T): A 16-bit register for performing arithmetic operations with the accumulator. When the instruction is an 8-bit data processing instruction, the lower byte is used.

Index register (IX):
A 16-bit register for index modification.
Extra pointer (EP):
A 16-bit pointer for indicating a memory address.
Stack pointer (SP):
A 16-bit register for indicating a stack area.
Program status (PS): A 16-bit register for storing a register pointer, a condition code.


The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

## Structure of the Program Status Register



## MB89490 Series

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

## Rule for Conversion of Actual Addresses of the General-purpose Register Area



The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.

H-flag: Set to "1" when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Clear to " 0 " otherwise. This flag is for decimal adjustment instructions.

I-flag: Interrupt is allowed when this flag is set to " 1 ". Interrupt is prohibited when the flag is set to " 0 ". Clear to " 0 " when reset.

IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

| IL1 | ILO | Interrupt level | Priority |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | High |
| 0 | 1 |  |  |
| 1 | 0 | 2 |  |
| 1 | 1 | 3 | Low $=$ no interrupt |

N-flag: Set to "1" if the MSB is set to "1" as the result of an arithmetic operation. Clear to "0" otherwise.
Z-flag: Set to "1" when an arithmetic operation results in "0". Clear to "0" otherwise.
V-flag: Set to "1" if a signed numeric value overflows because of an arithmetic calculation. Clear to "0" if the overflow does not occur.

C-flag: Set to "1" when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Clear to " 0 " otherwise. Set to the shift-out value in the case of a shift instruction.

## MB89490 Series

The following general-purpose registers are provided:
General-purpose registers: An 8-bit register for storing data
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers. Up to a total of 32 banks can be used on the MB89490 series. The bank currently in use is indicated by the register bank pointer (RP).

## Register Bank Configuration



## MB89490 Series

## ■ I/O MAP

| Address | Register name | Register description | Read/Write | Initial value |
| :---: | :---: | :---: | :---: | :---: |
| 00H | PDR0 | Port 0 data register | R/W | XXXXXXXXв |
| 01н | DDR0 | Port 0 data direction register | W* | 00000000в |
| 02н | PDR1 | Port 1 data register | R/W | ХХХХХХХХХв |
| 03н | DDR1 | Port 1 data direction register | W* | 00000000в |
| 04H | PDR2 | Port 2 data register | R/W | 00000000в |
| 05 | (Reserved) |  |  |  |
| 06н | DDR2 | Port 2 data direction register | R/W | 00000000в |
| 07\% | SYCC | System clock control register | R/W | X-1MM100в |
| 08H | STBC | Standby control register | R/W | $00010 \times X$ Хв |
| 09н | WDTC | Watchdog timer control register | W* | $0--$ ХХХХв |
| 0Ан | TBTC | Timebase timer control register | R/W | 00---000в |
| OBн | WPCR | Watch prescaler control register | R/W | 00--0000в |
| 0Сн | PDR3 | Port 3 data register | R/W | ХХХХХХХХв |
| ODH | DDR3 | Port 3 data direction register | R/W | 00000000в |
| 0Ен | RSFR | Reset flag register | R | XXXX----в |
| OFH | PDR4 | Port 4 data register | R/W | 11111111в |
| 10H | PDR5 | Port 5 data register | R/W |  |
| 11H | DDR5 | Port 5 data direction register | R/W | ---00000 в |
| 12 H | PDR6 | Port 6 data register | R/W | XXXXXXXX в $^{\text {¢ }}$ |
| 13H | DDR6 | Port 6 data direction register | R/W | 00000000в |
| 14 H | PDR7 | Port 7 data register | R/W | XXXXXXXXв |
| 15 H | DDR7 | Port 7 data direction register | R/W | 00000000в |
| 16 ${ }^{\text {H }}$ | PDR8 | Port 8 data register | R/W | ---ХХХХХв |
| 17\% | DDR8 | Port 8 data direction register | R/W | ---00000в |
| 18H | EIC0 | External interrupt 0 control register 0 | R/W | 00000000в |
| 19н | EIC1 | External interrupt 0 control register 1 | R/W | 00000000в |
| 1 Ан $^{\text {¢ }}$ | EIC2 | External interrupt 0 control register 2 | R/W | 00000000в |
| 1Вн | EIC3 | External interrupt 0 control register 3 | R/W | 00000000в |
| 1 CH | EIE1 | External interrupt 1 enable register | R/W | 00000000в |
| 1Dн | EIF1 | External interrupt 1 flag register | R/W | -------0в |
| 1Ен | SMR | Serial mode register | R/W | 00000000в |
| 1 FH | SDR | Serial data register | R/W |  |
| 20 H | T01CR | Timer 01 control register | R/W | 000000X0в |
| 21н | T00CR | Timer 00 control register | R/W | $000000 \times 0$ в |
| 22 H | T01DR | Timer 01 data register | R/W | ХХХХХХХХв |
| 23н | T00DR | Timer 00 data register | R/W | ХХХХХХХХв |
| 24H | T11CR | Timer 11 control register | R/W | $000000 \times 0$ в |
| 25 H | T10CR | Timer 10 control register | R/W | 000000×0в |

(Continued)

## MB89490 Series

## （Continued）

| Address | Register name | Register description | Read／Write | Initial value |
| :---: | :---: | :---: | :---: | :---: |
| 26н | T11DR | Timer 11 data register | R／W | ХХХХХХХХв |
| 27 H | T10DR | Timer 10 data register | R／W | XXXXXXXX |
| 28H | ADER | A／D input enable register | R／W | 1111111建 |
| 29－ | ADC0 | A／D control register 0 | R／W | －00000Х0в |
| 2Ан | ADC1 | A／D control register 1 | R／W | －0000001в |
| 2Bн | ADDH | A／D data register（Upper byte） | R | －－－－－－ХХв |
| 2 CH | ADDL | A／D data register（Lower byte） | R | XXXXXXXX |
| 2Dh | CNTR0 | PWM 0 timer control register | R／W | $0-000000$ в |
| 2Ен | COMRO | PWM 0 timer compare register | W＊ | XXXXXXXX |
| 2 FH | SMC0 | UART／SIO serial mode control register | R／W | 00000000в |
| 3 H | SMC1 | UART／SIO serial mode control register | R／W | 00000000в |
| 31н | SSD | UART／SIO serial status／data register | R／W | 00001－－－в |
| 32－ | SIDR／SODR | UART／SIO serial data register | R／W | ХХХХХХХХХв |
| 33н | SRC | UART／SIO serial rate control register | R／W | ХХХХХХХХХв |
| 34 | CNTR1 | PWM 1 timer control register | R／W | $0-000000$ в |
| 35 H | COMR1 | PWM 1 timer compare register | W＊ | ХХХХХХХХХв |
| 36 | IBSR | ${ }^{2} \mathrm{C}$ bus status register | R | 00000000в |
| 37 ${ }^{\text {H}}$ | IBCR | $1^{1} \mathrm{C}$ bus control register | R／W | 00000000 в |
| 38－ | ICCR | ${ }^{12} \mathrm{C}$ clock control register | R／W | $000 \times X X X \chi_{\text {в }}$ |
| 39н | IADR | ${ }^{1} \mathrm{C}$ C address register | R／W | ХХХХХХХХХв |
| ЗАн | IDAR | ${ }^{1} \mathrm{C}$ C data register | R／W | XXXXXXXX |
| 3Bн | PLLCR | Sub PLL control register | R／W | －－－－0000в |
| 3C to 3F\％ | （Reserved） |  |  |  |
| 40H | RMN | Remote control counter register | R | ХХХХХХХХХв |
| 41， | RMC | Remote control control register | R／W | 00000000в |
| 42H | RMS | Remote control status register | R／W | 0X000001в |
| 43－ | RMD | Remote control FIFO data register | R | Х－－－－ХХХв |
| 44 H | RMCD0 | Remote control compare register 0 | R／W | 1111111建 |
| 45 H | RMCD1 | Remote control compare register 1 | R／W | 1111111的 |
| 46H | RMCD2 | Remote control compare register 2 | R／W | 1111111的 |
| 47 | RMCD3 | Remote control compare register 3 | R／W | 11111111 ${ }_{\text {B }}$ |
| 48н | RMCD4 | Remote control compare register 4 | R／W | 11111111 ${ }_{\text {B }}$ |
| 49 н | RMCD5 | Remote control compare register 5 | R／W | 1111111的 |
| 4Ан | RMCI | Remote interrupt register | R／W | －110－000в |
| 4Bн to 5Dн | （Reserved） |  |  |  |
| 5Ен | LOCR | LCD controller output control register | R／W | －0000000в |
| 5 FH | LCD | LCD controller control register | R／W | 00010000в |
| 60н to 6FH | VRAM | LCD data RAM | R／W | ХХХХХХХХв |
| 70 | PURC0 | Port 0 pull up resistor control register | R／W | 11111111B |
| 71H | PURC1 | Port 1 pull up resistor control register | R／W | 111111118 |

（Continued）
(Continued)

| Address | Register name | Register description | Read/Write | Initial value |
| :---: | :---: | :---: | :---: | :---: |
| 72H | PURC2 | Port 2 pull up resistor control register | R/W | 11111111в |
| 73н | PURC3 | Port 3 pull up resistor control register | R/W | 11111111в |
| 74 | PURC5 | Port 5 pull up resistor control register | R/W | ---11111в |
| 75 | PURC6 | Port 6 pull up resistor control register | R/W | 11111111в |
| 76 | PURC7 | Port 7 pull up resistor control register | R/W | 11111111в |
| 77 | PURC8 | Port 8 pull up resistor control register | R/W | -----111в |
| 78н to 79н | (Reserved) |  |  |  |
| 7Ан | FMCS | Flash memory control status registger | R/W | 000X00-0в |
| 7Вн | ILR1 | Interrupt level setting register 1 | W* | 11111111в |
| 7 CH | ILR2 | Interrupt level setting register 2 | W* | 11111111в |
| 7D | ILR3 | Interrupt level setting register 3 | W* | 11111111в |
| 7Ен | ILR4 | Interrupt level setting register 4 | W* | 11111111в |
| 7 FH | (Reserved) |  |  |  |

* Bit manipulation instruction cannot be used.


## - Read/write access symbols

R/W : Readable and writable
R : Read-only
W: Write-only

## - Initial value symbols

0 : The initial value of this bit is " 0 ".
1 : The initial value of this bit is " 1 ".
X : The initial value of this bit is undefined.

- : Unused bit.

M : The initial value of this bit is determined by mask option.

## MB89490 Series

## ELECTRICAL CHARACTERISTICS

## 1. Absolute Maximum Ratings

| $\left(\mathrm{AV} \mathrm{Vss}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}\right)$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Value |  | Unit | Remarks |
|  |  | Min. | Max. |  |  |
| Power supply voltage | Vcc AV cc | Vss-0.3 | Vss +4.0 | V | AVcc must be equal to Vcc |
|  | AVR | Vss-0.3 | Vss +4.0 | V |  |
| LCD power supply voltage | V1 to V3 | Vss-0.3 | Vcc | V |  |
| Input voltage | V | Vss-0.3 | $\mathrm{Vcc}+0.3$ | V | other than P40~P47 |
|  |  | Vss-0.3 | Vss +6.0 | V | P40~P47 in MB89PV490, MB89497/498 |
|  |  | Vss-0.3 | Vss +5.5 | V | P40~P47 in MB89F499 |
| Output voltage | Vo | Vss-0.3 | $\mathrm{V} \mathrm{cc}+0.3$ | V |  |
| "L" level maximum output current | loL | - | 15 | mA |  |
| "L" level average output current | lolav | - | 4 | mA | Average value (operating current $\times$ operating rate) |
| "L" level total maximum output current | इlo | - | 100 | mA |  |
| "L" level total average output current | Elodav | - | 40 | mA | Average value (operating current $\times$ operating rate) |
| "H" level maximum output current | Іон | - | -15 | mA |  |
| "H" level average output current | Iohav | - | -4 | mA | Average value (operating current $\times$ operating rate) |
| " H " level total maximum output current | $\Sigma$ Іон | - | -50 | mA |  |
| "H" level total average output current | $\sum$ lohav | - | -20 | mA | Average value (operating current $\times$ operating rate) |
| Power consumption | PD | - | 300 | mW |  |
| Operating temperature | $\mathrm{T}_{\text {A }}$ | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |  |
| Storage temperature | Tstg | -55 | +150 | ${ }^{\circ} \mathrm{C}$ |  |

Precautions: Permanent device damage may occur if the above "Absolute Maximum Ratings" are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## MB89490 Series

## 2. Recommended Operating Conditions

$$
(\mathrm{AVss}=\mathrm{V} s \mathrm{ss}=0.0 \mathrm{~V})
$$

| Parameter | Symbol | Value |  | Unit | Remarks |  |
| :--- | :--- | :---: | :---: | :---: | :--- | :--- |
|  |  | Min. | Max. |  | MB89PV490, <br> MB89F499 |  |
| Power supply voltage | Vcc <br> AVcc | $2.7^{*}$ | 3.6 | V | Operation assurance <br> range | M |
|  |  | 1.5 | 3.6 | V | Operation assurance <br> range | MB89497, <br> MB89498 |
|  |  | V | Retains the RAM state in <br> stop mode |  |  |  |
|  | AVR | 2.7 | 3.6 | V |  |  |
| LCD power supply voltage | V 1 to V 3 | Vss | Vcc | V |  |  |
| Operating temperature | $\mathrm{T}_{\mathrm{A}}$ | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |  |  |

*: These values depend on the operating conditions and the analog assurance range. See Figure 1, 2 and " 5 . A/D Converter Electrical Characteristics."


Figure 1 Operating Voltage vs. Main Clock Operating Frequency (MB89F499/497/498)

## MB89490 Series



Figure 2 Operating Voltage vs. Main Clock Operating Frequency (MB89PV490)
Figure 1 and 2 indicate the operating frequency of the external oscillator at an instruction cycle of 4/Fcн.
Since the operating voltage range is dependent on the instruction cycle, see minimum execution time if the operating speed is switched using a gear.

## MB89490 Series

## 3. DC Characteristics

$\left(\mathrm{AV} \mathrm{Cc}=\mathrm{V} \mathrm{cc}=3.0 \mathrm{~V}, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

| Parameter | Symbol | Pin | Condition | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Typ. | Max. |  |  |
| "H" level input voltage | $\mathrm{V}_{\mathrm{H}}$ | $\begin{aligned} & \text { P00 ~ P07, } \\ & \text { P10 ~ P17, } \\ & \text { P20 ~ P27, } \\ & \text { P30 ~ P37, } \\ & \text { P50 ~ P54, } \\ & \text { P60 ~ P67, } \\ & \text { P70 ~ P77, } \\ & \text { P80 ~ P84, } \\ & \text { SCL, SDA, } \\ & \text { MOD1, MOD2 } \end{aligned}$ | - | 0.7 Vcc | - | V cc +0.3 | v |  |
|  |  | P40 ~ P47 | - | 0.7 Vcc | - | Vss +6.0 | V | MB89PV490, MB89497/498 |
|  |  |  | - | 0.7 Vcc | - | Vss +5.5 | V | MB89F499 |
|  | V ${ }_{\text {Hs }}$ | $\overline{\text { RST, MODO, ECO, }}$ EC1, SCKO, SIO, SCK1, SI1, RMC, INT00 ~ INT07 | - | 0.8 Vcc | - | $\mathrm{Vcc}+0.3$ | V |  |
|  | $\mathrm{V}_{\text {HA }}$ | $\overline{\text { INT10 }} \sim \overline{\text { INT17 }}$ | - | 0.85 V cc | - | $\mathrm{V}_{\mathrm{cc}}+0.3$ | v |  |
| "L" level input voltage | VII | $\begin{aligned} & \text { P00 ~ P07, } \\ & \text { P10 P17, } \\ & \text { P20 ~ P27, } \\ & \text { P30 ~ P37, } \\ & \text { P40 P P47, } \\ & \text { P50 ~ P54, } \\ & \text { P60 P67, } \\ & \text { P70 P P77, } \\ & \text { P80 ~ P84, } \\ & \text { SCL, SDA, } \\ & \text { MOD1, MOD2 } \end{aligned}$ | - | Vss - 0.3 | - | 0.3 Vcc | v |  |
|  | Vıs | $\overline{\mathrm{RST}}, \mathrm{MODO}, \mathrm{ECO}$, EC1, SCKO, SIO, SCK1, SI1, RMC, INT00 ~ INT07 | - | Vss - 0.3 | - | 0.2 Vcc | V |  |
|  | VILA | $\overline{\text { INT10 }} \sim \overline{\text { INT17 }}$ | - | Vss-0.3 | - | 0.5 Vcc | v |  |
| Open-drain output pin application voltage | Vo | P40 ~ P47 | - | Vss - 0.3 | - | Vss +6.0 | V | MB89PV490, MB89497/498 |
|  |  |  | - | Vss - 0.3 | - | Vss +5.5 | V | MB89F499 |
| "H" level output voltage | Vон | $\begin{aligned} & \text { P10 ~ P17, } \\ & \text { P20 ~ P27, } \\ & \text { P30 ~ P37, } \\ & \text { P50 ~ P54, } \\ & \text { P60 ~ P67, } \\ & \text { P70 ~ P77, } \\ & \text { P80 ~ P82 } \end{aligned}$ | $\mathrm{IOH}=-2.0 \mathrm{~mA}$ | 2.2 | - | - | v |  |
|  |  | P00 ~ P07 | $\mathrm{IOH}=-4.0 \mathrm{~mA}$ | 2.2 | - | - | V |  |

(Continued)

## MB89490 Series

(Continued)

| Parameter | Symbol | Pin | Condition | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Typ. | Max. |  |  |
| "L" level output voltage | Vol | $\begin{aligned} & \hline \text { P10 ~ P17, } \\ & \text { P20 ~ P27, } \\ & \text { P30 ~ P37, } \\ & \text { P50 ~ P54, } \\ & \text { P60 ~ P67, } \\ & \text { P70 ~ P77, } \\ & \text { P80 ~ P82, RST } \end{aligned}$ | $\mathrm{loL}=4.0 \mathrm{~mA}$ | - | - | 0.4 | V |  |
|  |  | P00 ~ P07 | $\mathrm{loL}=12.0 \mathrm{~mA}$ | - | - | 0.4 | V |  |
|  |  | P40 ~ P47 | $\mathrm{loL}=15.0 \mathrm{~mA}$ | - | - | 0.4 | V |  |
| Input leakage current | ILI | $\begin{array}{\|l} \text { P00 ~ P07, } \\ \text { P10 ~ P17, } \\ \text { P20 ~ P27, } \\ \text { P30 ~ P37, } \\ \text { P40 ~ P47, } \\ \text { P50 ~ P54, } \\ \text { P60 ~ P67, } \\ \text { P70 ~ P77, } \\ \text { P80 ~ P84 } \end{array}$ | $0.45 \mathrm{~V}<\mathrm{V}_{1}<\mathrm{V}_{\text {cc }}$ | -5 | - | +5 | $\mu \mathrm{A}$ | Without pull-up resistor |
| Open-drain outputleakage current | ILod | P40 ~ P47 | 0.0 V $<\mathrm{V}_{1}<\mathrm{V}_{\text {cc }}$ | -5 | - | +5 | $\mu \mathrm{A}$ |  |
| Pull-down resistance | Roown | MOD0 | $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}}$ | 25 | 50 | 100 | k $\Omega$ | Except MB89F499 |
| Pull-up resistance | Rpull | $\begin{aligned} & \text { P00 ~ P07, } \\ & \text { P10 ~ P17, } \\ & \text { P20 ~ P27, } \\ & \text { P30 ~ P37, } \\ & \text { P50 ~ P54, } \\ & \text { P60 ~ P67, } \\ & \text { P70 ~ P77, } \\ & \frac{\text { P80 ~ P82, }}{\text { RST }} \end{aligned}$ | $\mathrm{V}_{1}=0.0 \mathrm{~V}$ | 25 | 50 | 100 | k $\Omega$ | When pull-up resistor is selected (except $\overline{\mathrm{RST}}$ ) |
| Common output impedance | Rvcom | COM0 to COM3 | V 1 to $\mathrm{V} 3=+3.0 \mathrm{~V}$ | - | - | 2.5 | k $\Omega$ |  |
| Segment output impedance | Rvseg | SEG0 to SEG31 | V 1 to $\mathrm{V} 3=+3.0 \mathrm{~V}$ | - | - | 15 | k $\Omega$ |  |
| LCD divided resistance | Rlcd | - | Between Vcc and Vss | 300 | 500 | 750 | k $\Omega$ |  |
| LCD controller/ driver leakage current | IlCdL | V1 to V3, COM0 to COM3, SEG0 to SEG31 | - | -1 | - | +1 | $\mu \mathrm{A}$ |  |

(Continued)

## MB89490 Series

(Continued)

| Parameter | Symbol | Pin | Condition | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Typ. | Max. |  |  |
| Power supply current | 1 lca 1 | Vcc | $\begin{aligned} & \mathrm{FcH}=10 \mathrm{MHz} \\ & \text { tinst }=0.4 \mu \mathrm{~s} \\ & \text { Main clock run mode } \end{aligned}$ | - | 3.5 | TBD | mA | MB89PV490, MB89497/498 |
|  |  |  |  | - | 6.0 | TBD | mA | MB89F499 |
|  | Icc2 |  | $\begin{aligned} & \mathrm{FcH}=10 \mathrm{MHz} \\ & \mathrm{t}_{\text {mist }}=6.4 \mu \mathrm{~s} \\ & \text { Main clock run mode } \end{aligned}$ | - | 0.4 | TBD | mA | MB89PV490, <br> MB89497/498 |
|  |  |  |  | - | 1.5 | TBD | mA | MB89F499 |
|  | Iccs 1 |  | $\begin{aligned} & \mathrm{F}_{\mathrm{cH}}=10 \mathrm{MHz} \\ & \text { tinst }=0.4 \mu \mathrm{~s} \end{aligned}$ <br> Main clock sleep mode | - | 1.2 | TBD | mA | MB89PV490, <br> MB89497/498 |
|  |  |  |  | - | 2.0 | TBD | mA | MB89F499 |
|  | Iccs2 |  | $\begin{aligned} & \mathrm{FCH}=10 \mathrm{MHz} \\ & \mathrm{t}_{\text {thst }}=6.4 \mu \mathrm{~s} \\ & \text { Main clock sleep mode } \end{aligned}$ | - | 0.4 | TBD | mA | MB89PV490, MB89497/498 |
|  |  |  |  | - | 1.0 | TBD | mA | MB89F499 |
|  | Iccl <br> Icclpll |  | $\mathrm{F}_{\mathrm{CL}}=32.768 \mathrm{kHz}$ Sub-clock mode $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | - | 22.0 | TBD | $\mu \mathrm{A}$ | MB89PV490, MB89497/498 |
|  |  |  |  | - | 35.0 | TBD | $\mu \mathrm{A}$ | MB89F499 |
|  |  |  | $\begin{aligned} & \text { FcL }=32.768 \mathrm{kHz} \\ & \text { Sub-clock mode } \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \text { sub PLL } \times 4 \end{aligned}$ | - | 120.0 | TBD | $\mu \mathrm{A}$ | MB89PV490, <br> MB89497/498 |
|  |  |  |  | - | 150.0 | TBD | $\mu \mathrm{A}$ | MB89F499 |
|  | Icals |  | $\begin{aligned} & \text { FcL }=32.768 \mathrm{kHz} \\ & \text { Sub-clock sleep mode } \\ & T_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$ | - | 7.0 | TBD | $\mu \mathrm{A}$ | MB89PV490, <br> MB89497/498 |
|  |  |  |  | - | 15.0 | TBD | $\mu \mathrm{A}$ | MB89F499 |
|  | Icct |  | Fcl $=32.768 \mathrm{kHz}$ <br> Watch mode <br> Main clock stop mode <br> $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | - | 1.0 | TBD | $\mu \mathrm{A}$ | MB89PV490, <br> MB89497/498 |
|  |  |  |  | - | 5.0 | TBD | $\mu \mathrm{A}$ | MB89F499 |
|  | Icch |  | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ <br> Sub-clock stop mode | - | 0.8 | TBD | $\mu \mathrm{A}$ | MB89PV490, <br> MB89497/498 |
|  |  |  |  | - | 1.0 | TBD | $\mu \mathrm{A}$ | MB89F499 |
|  | IA | $\mathrm{AV}_{\mathrm{cc}}$ | $\mathrm{AV}_{c c}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | - | 1.0 | 3.0 | mA | A/D converting |
|  | IAH |  | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | - | 0.8 | 4.0 | $\mu \mathrm{A}$ | A/D stop |
| Input capacitance | $\mathrm{Cin}^{1}$ | Other than $\mathrm{V}_{\mathrm{cc}}, \mathrm{V}_{\mathrm{ss}}, \mathrm{AV}_{\mathrm{cc}}$, AVss, AVR | $\mathrm{f}=1 \mathrm{MHz}$ | - | 10.0 | - | pF |  |

## MB89490 Series

## 4. AC Characteristics

(1) Reset Timing

| Parameter | Symbol | Condition | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min. | Max. |  |  |
| $\overline{\mathrm{RST}}$ " L " pulse width | tzızH | - | 48 thcyl | - | ns |  |

Note: thcyl is the oscillation cycle $(1 / \mathrm{Fch})$ to input to the XO pin.
The MCU operation is not guaranteed when the "L" pulse width is shorter than tzzzH.

(2) Power-on Reset

| Parameter | Symbol | Condition | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min. | Max. |  |  |
| Power supply rising time | $\mathrm{t}_{\mathrm{R}}$ | - | - | 50 | ms |  |
| Power supply cut-off time | toff |  | 1 | - | ms | Due to repeated operations |

Note: Make sure that power supply rises within the selected oscillation stabilization time.
Rapid changes in power supply voltage may cause a power-on reset. If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.


## MB89490 Series

(3) Clock Timing
$\left(\mathrm{AV}\right.$ ss $=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

| Parameter | Symbol | Pin | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min. | Typ. | Max. |  |  |
| Clock frequency | Fch | $\mathrm{X0} 0 \mathrm{X} 1$ | 1 | - | 12.5 | MHz |  |
|  | FcL | X0A, X1A | - | 32.768 | 75 | kHz |  |
| Clock cycle time | thcyl | X0, X1 | 80 | - | 1000 | ns |  |
|  | tLCyL | X0A, X1A | 13.3 | 30.5 | - | $\mu \mathrm{s}$ |  |
| Input clock pulse width | $\begin{aligned} & \mathrm{P}_{\mathrm{wH}} \\ & \mathrm{P}_{\mathrm{wL}} \end{aligned}$ | X0 | 20 | - | - | ns | External clock |
|  | PwhL Pwll | X0A | - | 15.2 | - | $\mu \mathrm{s}$ |  |
| Input clock rising/falling time | $\begin{aligned} & \text { tcR } \\ & \text { tcF } \end{aligned}$ | X0, X0A | - | - | 10 | ns |  |

X0 and X1 Timing and Conditions


Main Clock Conditions


## MB89490 Series

## Sub-clock Timing and Conditions


(4) Instruction Cycle

| Parameter | Symbol | Value | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| Instruction cycle (minimum execution time) | tinst | 4/Fсн, 8/Fсн, 16/Fcн, 64/Fсн | $\mu \mathrm{s}$ | $\left(4 /\right.$ F $\left._{\text {ch }}\right)$ tinst $=0.32 \mu \mathrm{~s}$ when operating at $\mathrm{F}_{\mathrm{CH}}=12.5 \mathrm{MHz}$ |
|  |  | 2/Fcı, 1/2Fcl | $\mu \mathrm{s}$ | (2/Fcı) tinst $=61.036 \mu \mathrm{~s}$ when operating at $\mathrm{FcL}=32.768 \mathrm{kHz}$ |

## MB89490 Series

- PLL operation guarantee range (subPLL x 4)

Relationship between internal operating clock frequency and power supply voltage


Relationship between subclock oscillating frequency and instruction cycle when subPLL is enabled


## MB89490 Series

(5) Serial I/O Timing
$\left(\mathrm{AVcc}=\mathrm{V} \mathrm{cc}=3.0 \mathrm{~V}, \mathrm{AV} \mathrm{ss}=\mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

| Parameter | Symbol | Pin | Condition | Value |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Max. |  |
| Serial clock cycle time | tscyc | SCK0, SCK1 | Internal shift clock mode | 2 tinst ${ }^{*}$ | - | $\mu \mathrm{s}$ |
| SCK $\downarrow \rightarrow$ SO time | tstov | SCK0, SCK1, SO0, SO1 |  | -200 | 200 | ns |
| Valid SI $\rightarrow$ SCK $\uparrow$ | tivs | SIO, SI1, SCK0, SCK1 |  | 1/2 tinst ${ }^{*}$ | - | $\mu \mathrm{s}$ |
| SCK $\uparrow \rightarrow$ valid SI hold time | tshix | SCK0, SCK1, SIO, SI1 |  | 1/2 tinst********* | - | $\mu \mathrm{s}$ |
| Serial clock "H" pulse width | tshsL | SCK0, SCK1 | External shift clock mode | 1 tinst* | - | $\mu \mathrm{s}$ |
| Serial clock "L" pulse width | tsLSH |  |  | 1 tinst ${ }^{*}$ | - | $\mu \mathrm{s}$ |
| SCK $\downarrow \rightarrow$ SO time | tslov | SCK0, SCK1, SO0, SO1 |  | 0 | 200 | ns |
| Valid SI $\rightarrow$ SCK $\uparrow$ | tivsh | SIO, SI1, SCK0, SCK1 |  | 1/2 tinst ${ }^{*}$ | - | $\mu \mathrm{s}$ |
| SCK $\uparrow \rightarrow$ valid SI hold time | tshix | SCK0, SCK1, SIO, SI1 |  | 1/2 tinst ${ }^{*}$ | - | $\mu \mathrm{s}$ |

*: For information on tinst, see "(4) Instruction Cycle."
Internal Clock Operation


## External Clock Operation



## MB89490 Series

(6) $I^{2} C$ Timing
$\left(\mathrm{Vcc}=3.0 \mathrm{~V}, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

| Parameter | Symbol | Pin | Condition | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Max. |  |  |
| Start condition output | tsta | $\begin{aligned} & \hline \text { SCL } \\ & \text { SDA } \end{aligned}$ |  | $\begin{gathered} 1 / 4 \text { tinst }^{* 1} \mathrm{x} \\ \mathrm{M} x \mathrm{~N}-20 \end{gathered}$ | $\begin{gathered} 1 / 4 \text { tinst } \mathrm{x} \\ M \times N+20 \end{gathered}$ | ns | master mode |
| Stop condition output | tsto | $\begin{aligned} & \text { SCL } \\ & \text { SDA } \end{aligned}$ |  | $\begin{gathered} 1 / 4 \text { tinst } \mathrm{X} \\ (\mathrm{M} \times \mathrm{N}+8)-20 \end{gathered}$ | $\begin{gathered} 1 / 4 \text { tinst } \mathrm{X} \\ \left(\mathrm{M} * 2 \times \mathrm{N}^{\star 3}+8\right)+ \\ 20 \end{gathered}$ | ns | master mode |
| Start condition detect | tsta | $\begin{aligned} & \text { SCL } \\ & \text { SDA } \end{aligned}$ |  | 1/4tinst $\times 6+40$ | - | ns |  |
| Stop condition detect | tsto | $\begin{aligned} & \hline \text { SCL } \\ & \text { SDA } \end{aligned}$ |  | 1/4tinst $\mathrm{x} 6+40$ | - | ns |  |
| Re-start condition output | tstasu | $\begin{aligned} & \hline \text { SCL } \\ & \text { SDA } \end{aligned}$ |  | $\begin{gathered} 1 / 4 \text { tinst } x \\ (\mathrm{M} \times \mathrm{N}+8)-20 \end{gathered}$ | $\begin{gathered} 1 / 4 \text { tinst } x \\ (\mathrm{M} \times \mathrm{N}+8)+20 \end{gathered}$ | ns | master mode |
| Re-start condition detect | tstasu | $\begin{aligned} & \text { SCL } \\ & \text { SDA } \end{aligned}$ |  | 1/4tinst $\mathrm{x} 4+40$ | - | ns |  |
| SCL output LOW width | tow | SCL |  | $\begin{gathered} 1 / 4 \text { tinst } \mathrm{X} \\ \mathrm{M} \times \mathrm{N}-20 \end{gathered}$ | $\begin{gathered} 1 / 4 \text { tinst } \mathrm{C} \\ M \times N+20 \end{gathered}$ | ns | master mode |
| SCL output HIGH width | thig | SCL |  | $\begin{gathered} 1 / 4 \text { tinst } \mathrm{X} \\ (\mathrm{M} \times \mathrm{N}+8)-20 \end{gathered}$ | $\begin{gathered} 1 / 4 \text { tinst } \mathrm{X} \\ (\mathrm{M} \times \mathrm{N}+8)+20 \end{gathered}$ | ns | master mode |
| SDA output delay | too | SDA |  | 1/4tinst X 4-20 | $1 / 4$ tinst $\mathrm{X} 4+20$ | ns |  |
| SDA output setup time after interrupt | toosu | SDA |  | 1/4tinst $\times 4-20$ | - | ns | *4 |
| SCL input LOW pulse width | tow | SCL |  | 1/4tinst $\times 6+40$ | - | ns |  |
| SCL input HIGH pulse width | thig | SCL |  | $1 / 4$ tinst $\times 2+40$ | - | ns |  |
| SDA input setup time | tsu | SDA |  | 40 | - | ns |  |
| SDA hold time | tно | SDA |  | 0 | - | ns |  |

*1: For information in tinst, see "(4) Instruction Cycle".
*2: $M$ is defined in the ICCR CS4 and CS3 (bit 4 to bit 3). For details, please refer to the H/W manual register explanation.
*3: N is defined in the ICCR CS2 to CS0 (bit 2 to bit 0 )
*4: When the interrupt period is grater than SCL "L" width, SDA and SCL output (Standard) value is based on hypothesis when rising time is 0 ns .


Data receive (master/slave)


## MB89490 Series

(7) Peripheral Input Timing

| Parameter | Symbol | Pin | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min. | Max. |  |  |
| Peripheral input "H" pulse width 1 | tııн1 | EC0, EC1, RMC, INTOO ~ INT07, INT10 ~ INT17 | 2 tins** | - | $\mu \mathrm{s}$ |  |
| Peripheral input "L" pulse width 1 | tHLL |  | 2 tins* ${ }^{*}$ | - | $\mu \mathrm{s}$ |  |

*: For information on tinst, see "(4) Instruction Cycle."


## MB89490 Series

## 5. A/D Converter Electrical Characteristics

(1) A/D Converter Electrical Characteristics

| Parameter | Symbol | Pin | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min. | Typ. | Max. |  |  |
| Resolution | - | - | - | 10 | - | bit |  |
| Total error |  |  | - | - | $\pm 3.0$ | LSB |  |
| Linearity error |  |  | - | - | $\pm 2.5$ | LSB |  |
| Differential linearity error |  |  | - | - | $\pm 1.9$ | LSB |  |
| Zero transition voltage | Vot |  | AVss - 1.5 LSB | AVss + 0.5 LSB | AVss + 2.5 LSB | mV |  |
| Full-scale transition voltage | $\mathrm{V}_{\text {fst }}$ |  | AVcc - 3.5 LSB | AVcc-1.5 LSB | AVcc-0.5 LSB | mV |  |
| A/D mode conversion time | - |  | - | - | 38 tinst* | $\mu \mathrm{s}$ |  |
| Analog port input current | IAIN | ANO to AN7 | - | - | 10 | $\mu \mathrm{A}$ |  |
| Analog input voltage | VAIN |  | $\mathrm{AV}_{\text {ss }}$ | - | AVR | V |  |
| Reference voltage | - | AVR | $\mathrm{AV}_{\text {ss }}+2.7$ | - | AVcc | V |  |
| Reference voltage supply current | IR |  | - | 200 | TBD | $\mu \mathrm{A}$ | $\mathrm{A} / \mathrm{D}$ is activated |
|  | Ів |  | - | - | 5 | $\mu \mathrm{A}$ | $\mathrm{A} / \mathrm{D}$ is stopped |

*: For information on tinst, see "(4) Instruction Cycle" in "4. AC Characteristics".
(2) A/D Converter Glossary

- Resolution

Analog changes that are identifiable with the A/D converter.
When the number of bits is 10 , analog voltage can be divided into $2^{10}=1024$.

- Linearity error (unit: LSB)

The deviation of the straight line connecting the zero transition point ("00 0000 0000" $\leftrightarrow " 0000000001$ ") with the full-scale transition point ("11 1111 1111" $\leftrightarrow " 111111$ 1110") from actual conversion characteristics.

- Differential linearity error (unit: LSB)

The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value.

- Total error (unit: LSB)

The difference between theoretical and actual conversion values.

## MB89490 Series



## MB89490 Series

## (3) Notes on Using A/D Converter

- Input impedance of the analog input pins

The A/D converter used for the MB89490 series contains a sample and hold circuit as illustrated below to fetch analog input voltage into the sample and hold capacitor for 16 instruction cycles after activation A/D conversion.

For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output impedance of the external circuit low.

Note that if the impedance cannot be kept low, it is recommended to connect an external capacitor of about $0.1 \mu \mathrm{~F}$ for the analog input pin.


|  | MB89F499 | MB89PV490/MB89497/MB89498 |
| :--- | :---: | :---: |
| R: analog input equivalent resistance | $2.4 \mathrm{k} \Omega$ | $2.4 \mathrm{k} \Omega$ |
| C: analog input equivalent capacitance | 52 pF | 53 pF |

## MB89490 Series

## MASK OPTIONS

| No. | Part number | MB89497 | MB89498 | MB89F499 | MB89PV490 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Specifying procedure | Specify when ordering mask |  | Setting not possible |  |
| 1 | Selection of oscillation stabilization time (OSC) <br> - The initial value of the oscillation stabilization time for the main clock can be set by selecting the values of the WTM1 and WTM0 bit on the right. |  Sel <br> OSC  <br> 1 $: 2$ <br> 2 $: 2$ <br> 3 $: 2$ |  | Fixed to oscilla stabilization tim | ion of $2^{18} / \mathrm{FcH}$ |

## MB89490 Series

## ORDERING INFORMATION

| Part number | Package | Remarks |
| :--- | :---: | :---: |
| MB89497PF <br> MB89498PF <br> MB89F499PF | 100-pin Plastic QFP <br> (FPT-100P-M06) |  |
| MB89PV490CF | 100-pin Ceramic MQFP <br> (MQP-100C-P01) |  |

## MB89490 Series

## PACKAGE DIMENSIONS

100-pin Plastic QFP
FPT-100P-M06

(Continued)

## MB89490 Series

(Continued)

100-pin ceramic MQFP
MQP-100C-P01

© 1994 FUJITSU LIMITED M100001SC-1-2

## MB89490 Series

MEMO

## MB89490 Series

## FUJITSU LIMITED

## For further information please contact:

## Japan

FUJITSU LIMITED
Marketing Division
Electronic Devices
Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku,
Tokyo 163-0721, Japan
Tel: +81-3-5322-3353
Fax: +81-3-5322-3386
http://edevice.fujitsu.com/

## North and South America

FUJITSU MICROELECTRONICS AMERICA, INC. 3545 North First Street,
San Jose, CA 95134-1804, U.S.A.
Tel: +1-408-922-9000
Fax: +1-408-922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: +1-800-866-8608
Fax: +1-408-922-9179
http://www.fma.fujitsu.com/

## Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10, D-63303 Dreieich-Buchschlag, Germany
Tel: +49-6103-690-0
Fax: +49-6103-690-122
http://www.fme.fujitsu.com/

## Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD. \#05-08, 151 Lorong Chuan, New Tech Park,
Singapore 556741
Tel: +65-6281-0770
Fax: +65-6281-0220
http://www.fmal.fujitsu.com/

## Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280

## Korea

Tel: +82-2-3484-7100
Fax: +82-2-3484-7111
http://www.fmk.fujitsu.com/

F0208
© FUJITSU LIMITED Printed in Japan

All Rights Reserved.
The contents of this document are subject to change without notice.
Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/ or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.


[^0]:    *1 : Use MBM27C512 as the external ROM.

[^1]:    *1: High current I/O port.

