8-bit Proprietary Microcontroller CMOS
 F²MC-8L MB89560A Series

MB89567A/567AC/P568/PV560

■ DESCRIPTION

The MB89560A series has been developed as a general-purpose version of the $\mathrm{F}^{2} \mathrm{MC}^{\star} 1-8 \mathrm{~L}$ family consisting of proprietary 8 -bit, single-chip microcontrollers.

In addition to a compact instruction set, the microcontroller contains a variety of peripheral functions such as $I^{2} \mathrm{C}$ interface*2, timers, 2 ch 8 -bit PWM timers, 8/16-bit timer, 21-bit timebase timer, 8-bit PWC timer, 17-bit Watch prescaler, Watch-dog timer, High speed UART, 8-bit SIO, UART/SIO, LCD controller/driver (optional booster), Two type Programmable Pulse Generators (PPG), an A/D converter, and external interrupt.
*1 : F²MC stands for FUJITSU Flexible Microcontroller.
*2 : $I^{2} \mathrm{C}$ of this product is complied to Intel Corp. System Management Bus Rev. 1.0 specification and to the Philips ${ }^{12} \mathrm{C}$ specification.

- FEATURES
- $\mathrm{F}^{2} \mathrm{MC}$-8L family CPU core
- Low-voltage operation (when an A/D converter is not used)
- Low current consumption (applicable to the dual-clock system)
- Minimum execution time: $0.32 \mu \mathrm{~s}$ at $12.5 \mathrm{MHz} / 3.5 \mathrm{~V}$ to 5.5 V

MB89560A Series

(Continued)

- $\mathrm{I}^{2} \mathrm{C}$ interface circuit
- LCD controller/driver: 24 segments x 4 commons (Max 96 pixels, duty LCD mode and Static LCD mode)
- LCD booster function (option)
- Wild register (Max 6 different address locations)
- 10-bit A/D converter: 8 channels
- Three types of Serial Interface:

High Speed UART (Transfer rate from 300 bps to 192000 bps / 10 MHz main clock)
8-bit Serial I/O (SIO)
UART/SIO

- Two type of Programmable Pulse Generator(PPG): 6-bit PPG and 12-bit PPG
- Six types of timer

8-bit PWM 2 channels timers
8/16-bit timer/counter (8 bits $\times 2$ channels or 16 bits $\times 1$ channel)
21-bit timebase timer
8-bit PWC timer operation
17-bit Watch prescaler
Watch-dog timer

- I/O ports: Max 50 channels
- External interrupt 1: 8 channels
- External interrupt 2 (wake-up function): 4 channels
- Low-power consumption modes (stop mode, sleep mode, and watch mode)
- LQFP-80 and QFP-80 package
- CMOS technology

MB89560A Series

- PRODUCT LINEUP

\qquad	MB89567A MB89567AC	MB89P568	MB89PV560
Classification	Mass production products (mask ROM products)	OTP	Piggy-back
ROM size	$\begin{gathered} 32 \mathrm{~K} \times 8 \text {-bit } \\ \text { (internal mask ROM) } \end{gathered}$	48 K x 8-bit (internal PROM)	$\begin{gathered} 56 \mathrm{~K} \times 8 \text {-bit } \\ \text { (external ROM) } \end{gathered}$
RAM size	$1 \mathrm{~K} \times 8$-bit		1 K x 8-bit
CPU functions	Number of instructions $: 136$ Instruction bit length $: 8$-bit Instruction length $: 1$ to 3 bytes Data bit length $: 1-, 8-, 16-$ bit Minimum execution time $: 0.32 \mu \mathrm{~s} / 12.5 \mathrm{MHz}$ Minimum interrupt processing time $: 2.88 \mu \mathrm{~s} / 12.5 \mathrm{MHz}$		
Ports	General-purpose I/O ports (N-channel open drain): 20 pins (2 shared with $I^{2} \mathrm{C}$ inputs, 16 shared with LCD, 2 shared with other resources) General-purpose I/O ports (CMOS) $: 30$ pins (shared with resources) Total $: 50$ pins		
21-bit timebase timer	21-bit Interrupt cycle: $\left(2^{13}, 2^{15}, 2^{18}\right.$ or $\left.2^{22}\right) / \mathrm{F}_{\mathrm{ch}}{ }^{* 7}$		
Watchdog timer	Reset generate cycle: Min $2^{21} / \mathrm{FcH}^{* 7}$ for main clock, Min $2^{14} / \mathrm{FcL}^{* 7}$ for sub clock		
Watch prescaler	17-bit Interrupt cycle: $31.25 \mathrm{~ms}, 0.25 \mathrm{~s}, 0.50 \mathrm{~s}, 1.00 \mathrm{~s}, 2.00 \mathrm{~s}, 4.00 \mathrm{~s} / 32.768 \mathrm{kHz}$ for subclock		
8/16-bit timer/ counter	Can be operated either as a 2-channel 8-bit timer/counter (Timer 1 and Timer 2, each with its own independent operating clock cycle), or as one 16-bit timer/counter In Timer 1 or 16-bit timer/counter operation, event counter operation (external clock-triggered) and square wave output capable		
8-bit PWM 2 ch timer	8 -bit interval timer operation (square wave output capable, operating clock cycle: 1 tinst, 8 tinst, 16 tinst, 64 tinst) 8 -bit resolution PWM operation (conversion cycle: 128×1 tinst to 256×64 tinst) 8/16-bit timer/counter output for counter clock selectability		
PWC timer	8 -bit timer operation (count clock cycle: 1 tinst, 4 tinst, 32 tinst) 8 -bit reload timer operation (toggle output possible, operating clock cycle: 1 to 32 tinst) 8 -bit pulse width measurement (continuous measurement possible: H-width, L-width, rising edge to rising edge, falling edge to falling edge, and rising edge to falling edge)		
$\begin{aligned} & \text { 10-bit A/D } \\ & \text { converter *2 } \end{aligned}$	10-bit resolution $\times 8$ channels A/D conversion function (conversion time: 60 tinst) Continuous activation by an 8/16-bit timer/counter output or a timebase timer output capable.		
6-bit PPG	Internal 6-bit counter Pulse width and cycle are program selectable		
12-bit PPG	Internal 12-bit counter Pulse width and cycle are program selectable		

(Continued)

MB89560A Series

Parameter number	MB89567A	MB89567AC	MB89P568	MB89PV560
$1^{2} \mathrm{C}$ interface ${ }^{* 4}$	Not Available	1 channel		
High speed UART	Transfer data length: 4-, 6-, 7-, 8-bit Transfer rate (300 bps to $192000 \mathrm{bps} / 9.216 \mathrm{MHz}$ main clock) support sub-clock mode			
UART/SIO	Transfer data length: 7-, 8-bit for UART, 8-bit for SIO Transfer rate (1201 bps to $78125 \mathrm{bps} / 10 \mathrm{MHz}$ main clock) support sub-clock mode			
8-bit serial I/O	8-bit, LSB first/MSB first selectability Transfer clocks (one external shift clock, three internal shift clocks: 2 tinst, 8 tinst, 32 tinst) *5			
LCD	Common output: 4 (Max) Segment output: 24 (Max) LCD driving power (bias) pins: 4 LCD display RAM size: 12 bytes (24×4 bits, Max 96 pixels) Duty LCD mode and Static LCD mode Booster for LCD driving: option*1 Dividing resistor for LCD driving: option			
Wild register	Maximum of 6-byte data can be assigned in 6 different address. Used to replace any data in the ROM when specific address and data are assigned in Wild register. Wild register can be set up by using different communication methods through the device.			
External interrupt 1 (wake-up function)	8 independent channels (interrupt vector, request flag, request output enable) Edge selectability (rising/falling) Used also for wake-up from stop/sleep mode. (edge detection is also permitted in stop mode.)			
External interrupt 2 (wake-up function)	4 channels ("L" level interrupts, independent input enable). Used also for wake-up from stop/sleep mode. (Low-level detection is also permitted in stop mode.)			
Standby mode	Sub clock mode, sleep mode, stop mode and clock mode			
Process	CMOS			
Operating voltage *6	2.2 V to 5.5 V		2.7 V to 5.5 V	2.7 V to $5.5 \mathrm{~V}^{* 3}$

*1 : When booster is used, the bias is reduced by $1 / 3$. It can be selected by mask option.
*2 : Voltage varies with product.
*3 : When external ROM is used, EPROM: MBM27C512-20 should be used, the operating voltage: 4.5 V to 5.5 V .
*4 : $I^{2} \mathrm{C}$ is complied to Intel Corp. System Management Bus Rev. 1.0 specification and to the Philips $I^{2} \mathrm{C}$ specification.
*5: 1 tinst $=$ one instruction cycle (execution time) which can be selected as $1 / 4,1 / 8,1 / 16$, or $1 / 64$ of main clock if main clock mode is selected, or $1 / 2$ of the subclock if subclock mode is selected.
*6 : Varies with conditions such as the operating frequency. (See "■ELECTRICAL CHARACTERISTICS.")
*7 : Fсн : main clock source oscillation, Fcı : sub clock source oscillation

MB89560A Series

PACKAGE AND CORRESPONDING PRODUCTS

Package	MB89567A MB89567AC	MB89P568-101 MB89P568-102	MB89PV560-101 MB89PV560-102
FPT-80P-M05	\bigcirc	\bigcirc	\times
FPT-80P-M06	\bigcirc	\bigcirc	\times
FPT-80P-M11	\bigcirc	\bigcirc	\times
MQP-80C-P01	\times	\times	\bigcirc

■ DIFFERENCES AMONG PRODUCTS

1. Memory Size

Before evaluating using the OTPROM (one-time PROM) products, verify its differences from the product that will actually be used. Take particular care on the following points:

- The stack area, etc., is set at the upper limit of the RAM.

2. Current Consumption

- For the MB89PV560, add the current consumed by the EPROM mounted in the piggy-back socket.
- When operating at low speed, the current consumed by the one-time PROM product is greater than that for the mask ROM product. However, the current consumption is roughly the same in sleep or stop mode.
- For more information, see " \square ELECTRICAL CHARACTERISTICS."

3. Mask Options

The functions available as options and the method of specifying options differ between products. Before using options check " \square MASK OPTIONS."
4. Wild register function

The Wild Register can be used in the following address spaces.

Device	Address Space
MB89PV560	$4000_{\text {н to FFFFн }}$
MB89P568	$4000_{\text {н }}$ to FFFF
MB89567A/567AC	800 н to FFFF $^{\prime}$

5. P40, P41

It will take about 64 count clock of external oscillation to initialize P40 and P41 pins in MB89PV560/P568. Therefore, these ports will be unstable for a while during power-on. For MB89567A/567AC, these ports will be in High-Z during power-on.

MB89560A Series

PIN ASSIGNMENT

(Continued)

MB89560A Series

(Top view)

(FPT-80P-M06)
*1: Main clock divided by two output
*2: For built-in LCD booster only
Note: For mask option of *2, please refer to "■ MASK OPTIONS".

MB89560A Series

(Continued)

(Top view)

*1: Main clock divided by two output
*2: For built-in LCD booster only
*3: Pin assignment on package top (MB89PV560 only)

Pin no.	Pin						
81	N.C.	89	AD2	97	N.C.	105	$\overline{\mathrm{OE}}$
82	A15	90	AD1	98	04	106	N.C.
83	A12	91	AD0	99	O5	107	A11
84	AD7	92	N.C.	100	O6	108	A9
85	AD6	93	O1	101	07	109	A8
86	AD5	94	O2	102	O8	110	A13
87	AD4	95	O3	103	$\overline{\mathrm{CE}}$	111	A14
88	AD3	96	VSS	104	A10	112	VCC

N.C.: Internally connected. Do not use.

Note: For mask option of *2, please refer to "■ MASK OPTIONS".

MB89560A Series

PIN DESCRIPTION

Pin no.		Pin name	I/O circuit type	Function

(Continued)

MB89560A Series

Pin no.		Pin name	I/O circuit type	Function
LQFP*1 LQFP* ${ }^{* 2}$	$\begin{gathered} \hline \text { MQFP }^{* 3} \\ \text { QFP }^{* 4} \end{gathered}$			
57	59	$\begin{gathered} \text { P41/HCK/ } \\ \text { TO12 } \end{gathered}$	F	General-purpose CMOS I/O port Also serves as an 8/16-bit timer/counter output. and half of main clock output Selectable pull-up resistor.
45	47	P20/SI	E	General-purpose CMOS I/O port Also serves as the data input for the serial I/O. The peripheral is a hysteresis input type. Selectable pull-up resistor.
46	48	P21/SO	F	General-purpose CMOS I/O port Also serves as the data output for the serial I/O. Selectable pull-up resistor.
47	49	P22/SCK	E	General-purpose CMOS I/O port Also serves as the clock I/O for the serial I/O. The peripheral is a hysteresis input type. Selectable pull-up resistor.
48	50	P23/PPG1	F	General-purpose CMOS I/O port Also serves as the 6 bit PPG output pin. Selectable pull-up resistor.
54	56	P30/SCL	G	N-ch open-drain general-purpose I/O port Clock I/O pin for $I^{2} \mathrm{C}$ interface
55	57	P31/SDA	G	N-ch open-drain general-purpose I/O port Data I/O pin for $\mathrm{I}^{2} \mathrm{C}$ interface
65	67	C0		Function as capacitor connection pin in the products with a
64	66	C1	-	booster.
59	61	P43/ PWM2 PPG2	F	General-purpose CMOS I/O port Also serves PWM wave output for the 8-bit PWM timer 1 and as 12 bit programmable pulse generator output. Selectable pull-up resistor.
58	60	P42/ PWM1/ EC1	E	General-purpose CMOS I/O port Also serves as the PWM wave output and external clock for the $8 / 16$ bit timer counter. Selectable pull-up resistor.
21 to 28	23 to 30	$\begin{gathered} \text { P00/AN0 } \\ \text { to } \\ \text { P07/AN7 } \end{gathered}$	J	General-purpose CMOS I/O ports Also serve as the analog input for the A/D converter. Selectable pull-up resistor.

(Continued)

MB89560A Series

(Continued)

Pin no.		Pin name	I/O circuit type	Function
LQFP*1 LQFP*2	$\begin{gathered} \text { MQFP** } \\ \text { QFP }^{* 4} \end{gathered}$			
$\begin{aligned} & 10 \text { to } 12 \\ & 14 \text { to } 18 \end{aligned}$	$\begin{aligned} & 12 \text { to } 14 \\ & 16 \text { to } 20 \end{aligned}$	P60/ SEG16 to P67/ SEG23	H	N-ch open-drain general-purpose output ports Also serve as an LCD controller/driver segment output.
2 to 9	4 to 11	$\begin{array}{\|c} \hline \text { P50/SEG8 } \\ \text { to } \\ \text { P57/ } \\ \text { SEG15 } \end{array}$	H	N -ch open-drain general-purpose output ports Also serve as an LCD controller/driver segment output.
74 to 80, 1	$\begin{gathered} 1 \text { to } 3 \\ 76 \text { to } 80 \end{gathered}$	$\begin{aligned} & \text { SEG0 to } \\ & \text { SEG7 } \end{aligned}$	1	LCD controller/driver segment output-only pins
70 to 73	72 to 75	$\begin{aligned} & \text { COM0 } \\ & \text { to } \\ & \text { COM3 } \end{aligned}$	I	LCD controller/driver common output-only pins
66 to 69	68 to 71	V0 to V3	-	LCD driving power supply pins.
40	42	X0A	B	Crystal or other resonator connector pins for the subclock
41	43	X1A		(Subclock: 32.768 kHz)
53	55	Vcc	-	Power supply pin
37	39	C	-	Capacitor connection pin ${ }^{\text {² }}$
13	15	Vss	-	Power supply (GND) pin
20	22	AVcc	-	A/D converter power supply pin
19	21	AVR	-	A/D converter reference voltage input pin
29	31	AVss	-	A/D converter power supply pin Use this pin at the same voltage as Vss.

*1: FPT-80P-M05
*2: FPT-80P-M11
*3: MQP-80C-P01
*4: FPT-80P-M06
*5: When MB89567A / MB89567AC / MB89PV560-101 / MB89PV560-102 is used, this pin will become NC pin without internal connection. There is no problem to leave pins open, to fix pins at $V_{c c}$ and to fix pins at V_{ss}. When MB89P568-101 or MB89P568-102 is used, this pin must be connected to Vss.

MB89560A Series

- For External EPROM Socket (MB89PV560 ONLY)

Pin no.	Pin name	1/0	Function
82	A15		
83	A12		
84	A7		
85	A6		
86	A5	O	
87	A4	0	Address output pins
88	A3		
89	A2		
90	A1		
91	A0		
93	O1		
94	O2	1	Data input pins
95	O3		
96	Vss	O	Power supply (GND) pin
98	O4		
99	O5		
100	06	1	Data input pins
101	07		
102	O8		
103	$\overline{C E}$	O	ROM chip enable pin
			Outputs "H" during standby.
104	A10	O	Address output pin
105	$\overline{\mathrm{OE}} / \mathrm{V}_{\mathrm{pp}}$	O	ROM output enable pin Outputs " L " at all times.
107	A11	O	Address output pins
108	A9		
109	A8		
110	A13	0	
111	A14	\bigcirc	
112	Vcc	O	EPROM power supply pin
81	N.C.	-	Internally connected pins Be sure to leave them open.
92			
97			
106			

MB89560A Series

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		Main clock (main clock crystal oscillator) - At an oscillation feedback resistor of approximately $1 \mathrm{M} \Omega / 5.0 \mathrm{~V}$
B		Subclock (subclock crystal oscillator) - At an oscillation feedback resistor of approximately $4.5 \mathrm{M} \Omega / 5.0 \mathrm{~V}$
C	\square	- Hysteresis input
D		- CMOS output - Hysteresis input - At an output pull-up resistor (P-ch) of approximately $50 \mathrm{k} \Omega / 5.0 \mathrm{~V}$
E		- CMOS output - CMOS input - The peripheral is a hysteresis input type. - Selectable pull-up resistor (P-ch) of approximately $50 \mathrm{k} \Omega / 5.0 \mathrm{~V}$

(Continued)

MB89560A Series

(Continued)

Type	Circuit	Remarks
F		- CMOS output - CMOS input - Selectable pull-up resistor (P-ch) of approximately $50 \mathrm{k} \Omega / 5.0 \mathrm{~V}$
G		- N-ch open-drain input/output - CMOS input - The peripheral is a hysteresis input type. (P30,P31 are OR-type input for ${ }^{2} \mathrm{C}$)
H		- N -ch open-drain output - CMOS input - LCD controller/driver segment output
1		- LCD controller/driver common/ segment output
J		- General CMOS I/O - Analog input (A/D converter) - Selectable pull-up resistor (P-ch) of approximately $50 \mathrm{k} \Omega / 5.0 \mathrm{~V}$ - Pull-up resistors must be disabled when used as an analog input.

MB89560A Series

■ HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than V_{cc} or lower than $\mathrm{V}_{\text {ss }}$ is applied to input and output pins other than medium- to high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in " ELECTRICAL CHARACTERISTICS" is applied between Vcc and Vss.
When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.
Also, take care to prevent the analog power supply (AVcc and AVR) and analog input from exceeding the digital power supply (V_{cc}) when the analog system power supply is turned on and off.
2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.
3. Treatment of Power Supply Pins on Microcontrollers with A / D and D / A Converters

Connect to be $A V_{c c}=D V_{c c}=V_{c c}$ and $A V s s=A V R=V_{s s}$ even if the A / D and D / A converters are not in use.
4. Treatment of N.C. Pins

Be sure to leave (internally connected) N.C. pins open.
5. Power Supply Voltage Fluctuations

Although $V_{c c}$ power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that Vcc ripple fluctuations ($\mathrm{P}-\mathrm{P}$ value) will be less than 10% of the standard Vcc value at the commercial frequency (50 Hz to 60 Hz) and the transient fluctuation rate will be less than $0.1 \mathrm{~V} / \mathrm{ms}$ at the time of a momentary fluctuation such as when power is switched.
6. Precautions when Using an External Clock

Even when an external clock is used, oscillation stabilization time is required for power-on reset and wake-up from stop mode.
7. Unused LCD dedicated pins

When LCD dedicated pins are not in use, keep it open.
8. Ports shared with SEG pin

When using port shared with SEG pin, be sure that the input voltage to port does not exceed the voltage of V3 (SEG driving voltage). This is particularly important to those devices with booster. When power-on or reset, SEG pin will output an initial value of "L".
9. LCD not in use

When LCD is not in use, connect the V3 pin to Vcc and keep other LCD dedicated pins open.
10. Wild Register function

In MB89PV560, wild register function cannot be evaluated. To evaluate the wild register function, use MB89P568.

11. Programming operation on RAM

Program operation debugging at RAM is not possible even when using MB89PV560.

12. Note to Noise in the External Reset Pin ($\overline{\mathrm{RST}}$)

If the reset pulse applied to the external reset pin ($\overline{\mathrm{RST}}$) does not meet the specifications, it may cause malfunctions. Use caution so that the reset pulse less than the specifications will not be fed to the external reset pin (RST).

MB89560A Series

PROGRAMMING TO THE EPROM ON THE MB89P568

The MB89P568 is an OTPROM version of the MB89567A and MB89567AC.

1. Features

- 48-Kbyte PROM on chip
- Equivalency to the MBM27C1001 in EPROM mode (when programmed with the EPROM programmer)

2. Memory Space

Memory space in EPROM mode is diagrammed below.

3. Programming to the EPROM

In EPROM mode, the MB89P568 functions equivalent to the MBM27C1001. This allows the PROM to be programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by using the dedicated socket adapter.

- Programming procedure
(1) Set the EPROM programmer to the MBM27C1001.
(2) Load program data into the EPROM programmer at 4000 to FFFFH
(3) Program with the EPROM programmer.

MB89560A Series

4. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure.

5. Programming Yield

All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature.
For this reason, a programming yield of 100% cannot be assured at all times.
6. EPROM Programmer Socket Adapter

Package	Compatible socket adapter
FPT-80P-M05	ROM-80SQF-32DP-8LA
FPT-80P-M06	ROM-80QF-32DP-8LA2
FPT-80P-M11	ROM-80QF2-32DP-8LA2

Inquiry: San Hayato Co., Ltd.: FAX +81-3-5396-9106 (Tokyo)

MB89560A Series

PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE

1. EPROM for Use

MBM27C512-20TV
2. Programming Socket Adapter

To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato Co., Ltd.) listed below.

Package	Adapter socket part number
LCC-32 (Rectangle)	ROM-32LC-28DP-YG

Inquiry: San Hayato Co., Ltd.: FAX +81-3-5396-9106 (Tokyo)

3. Memory Space

4. Programming to EPROM
(1) Set the EPROM programmer to the MBM27C512.
(2) Load program data into the EPROM programmer at 2000 H to FFFFh.
(3) Program to 2000 H to FFFFH with the EPROM programmer.

MB89560A Series

BLOCK DIAGRAM

MB89560A Series

\square CPU CORE

1. Memory Space

The microcontrollers of the MB89560A series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located the lowest address. The data area is provided immediately above the I/ O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89560A series is structured as illustrated below.

Memory space

*1 : MB89P568-101,102 has OTP ROM inside.
*2 : Wild register setting registers

MB89560A Series

2. Registers

The F²MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following registers are provided:
Program counter (PC) : A 16-bit register for indicating specifies instruction storage positions.
Accumulator (A) : A 16-bit temporary register for storing arithmetic operations, etc. When the instruction is an 8 -bit data processing instruction, the lower byte is used.
Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator when the instruction is an 8 -bit data processing instruction, the lower byte is used.
Index register (IX) : A 16-bit register for index modification
Extra pointer (EP) : A 16-bit pointer for indicating a memory address
Stack pointer (SP) : A 16-bit register for indicating a stack area
Program status (PS) : A 16-bit register for storing a register pointer, a condition code

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

MB89560A Series

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

- Rule for Conversion of Actual Addresses of the General-purpose Register Area

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.

H-flag : Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared otherwise. This flag is for decimal adjustment instructions.

I-flag: Interrupt is allowed when this flag is set to 1 . Interrupt is prohibited when the flag is set to 0 . Set to 0 when reset.
IL1, 0 : Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	ILO	Interrupt level	High-low
0	0	1	High
0	1		\vdots
1	0	2	
1	1	3	Low $=$ no interrupt

N-flag : Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0 .
Z-flag : Set when an arithmetic operation results in 0 . Cleared otherwise.
V-flag : Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does not occur.
C-flag : Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise. Set to the shift-out value in the case of a shift instruction.

The following general-purpose registers are provided :
General-purpose registers : An 8-bit resister for storing data

MB89560A Series

The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers. Up to a total of 32 banks can be used. The bank currently in use is indicated by the register bank pointer (RP).

- Register Bank Configuration

MB89560A Series

I/O MAP

Address	Register name	Register Description	Read/Write	Initial value
00н	PDR0	Port 0 data register	R/W	XXXXXXXX ${ }_{\text {¢ }}$
01н	DDR0	Port 0 data direction register	W	00000000в
02н	PDR1	Port 1 data register	R/W	XXXXXXXX
03н	DDR1	Port 1 data direction register	W	00000000в
04 ${ }_{\text {to }} 06$ н	(Vacancy)			
07H	SYCC	System clock control register	R/W	XXXMM100в
08н	STBC	Standby control register	R/W	00010XXX
09н	WDTC	Watchdog timer control register	W	0XXXXXXX
ОАн	TBTC	Timebase timer control register	R/W	00XXX000в
OBH	WPCR	Watch prescaler control register	R/W	00XX0000в
0 CH	PDR2	Port 2 data register	R/W	ХХХХХХХХв
ODH	DDR2	Port 2 data direction register	R/W	00000000в
ОЕн	PDR3	Port 3 data register	R/W	XXXXXX11в
OFH	PDR4	Port 4 data register	R/W	XXXXXXXXв
10н	DDR4	Port 4 direction register	R/W	XX000000в
11н	PDR5	Port 5 data register	R/W	00000000в
12н	(Vacancy)			
13H	PDR6	Port 6 data register	R/W	00000000в
14н to 19н	(Vacancy)			
$1 \mathrm{AH}^{\text {}}$	T2CR	Timer2 control register	R/W	Х00000X0в
1 BH	T2DR	Timer2 data register	R/W	XXXXXXXX ${ }_{\text {¢ }}$
1 CH	T1CR	Timer1 control register	R/W	Х00000ХОв
1D	T1DR	Timer1 data register	R/W	XXXXXXXX
1Ен to 21н	(Vacancy)			
22н	SMC11	UART1 mode control register 1	R/W	00000000в
23-	SRC1	UART1 mode data register	R/W	XX011000в
24	SSD1	UART1 status/data register	R/W	00100X1хв
25 н	SIDR1/SODR1	UART1 data register	R/W	XXXXXXXX ${ }_{\text {¢ }}$
26н	SMC12	UART1 mode control register 2	R/W	XX100001в
27	CNTR1	PWM control register 1	R/W	00000000в
28н	CNTR2	PWM control register 2	R/W	000X0000в
29н	CNTR3	PWM control register 3	R/W	Х000XXXXв
$2 \mathrm{~A}_{\boldsymbol{H}}$	COMR1	PWM compare register 1	W	XXXXXXXX ${ }_{\text {¢ }}$
2 BH	COMR2	PWM compare register 2	W	XXXXXXXX
2 CH	PCR1	PWC pulse width control register 1	R/W	000XX000в

(Continued)

MB89560A Series

Address	Register name	Register Description	Read/Write	Initial value
2DH	PCR2	PWC pulse width control register 2	R/W	00000000в
2Ен	RLBR	PWC reload buffer register	R/W	XXXXXXXX
$2 \mathrm{~F}_{\mathrm{H}}$	SMC21	UART2/SIO mode control register	R/W	00000000в
30н	SMC22	UART2/SIO mode control register 2	R/W	00000000в
31H	SSD2	UART2/SIO status/data register	R/W	00001XXX ${ }_{\text {¢ }}$
32н	SIDR2/SODR2	UART2/SIO data register	R/W	XXXXXXXX
33н	SRC2	UART2/SIO rate control register	R/W	XXXXXXXX
34	ADC1	A/D control register 1	R/W	Х00000ХОв
35	ADC2	A/D control register 2	R/W	X0000001в
36	ADDL	A/D data register L	R/W	XXXXXXXX
37	ADDH	A/D data register H	R/W	XXXXXXXX
38	RCR21	PPG control register 1(PPG2)	R/W	00000000в
39н	RCR23	PPG control register 3(PPG2)	R/W	0Х000000в
$3 \mathrm{~A}_{\boldsymbol{H}}$	RCR22	PPG control register 2(PPG2)	R/W	XX000000в
3Вн	RCR24	PPG control register 4(PPG2)	R/W	XX000000в
3Сн to 3Ен	(Vacancy)			
$3 \mathrm{~F}_{\mathrm{H}}$	EIC1	External interrupt 1 control register 1	R/W	00000000в
40н	EIC2	External interrupt 1 control register 2	R/W	00000000в
41H	EIC3	External interrupt 1 control register 3	R/W	00000000в
42H	EIC4	External interrupt 1 control register 4	R/W	00000000в
43н to 50н	(Vacancy)			
51H	IBSR	${ }^{2} \mathrm{C}$ bus status register	R	00000000в
52н	IBCR	$1^{2} \mathrm{C}$ bus control register	R/W	00000000в
53н	ICCR	$1^{2} \mathrm{C}$ clock control register	R/W	000XXXXX ${ }_{\text {¢ }}$
54	IADR	$1^{2} \mathrm{C}$ address register	R/W	XXXXXXXX
55	IDAR	$1^{2} \mathrm{C}$ data register	R/W	XXXXXXXX
56н	EIE2	External interrupt 2 enable register	R/W	XXXX0000в
57 ${ }_{\text {H }}$	EIF2	External interrupt 2 flag register	R/W	ХХХХХХХОв
58н	RCR1	PPG control register 1(PPG1)	R/W	00000000в
59н	RCR2	PPG control register 2(PPG1)	R/W	0X000000в
5 А	CKR	Clock Output control register	R/W	00000000в
5Вн	LCR1	LCD controller/driver control register 1	R/W	00010000в
$5 \mathrm{CH}_{\text {}}$	LCR2	LCD controller/driver control register 2	R/W	00000000в
5D	LCR3	LCD controller/driver control register 3	R/W	XX000000в
5Ен	LDR1	LCD data register 1	R/W	XXXXXXXX

(Continued)

MB89560A Series

(Continued)

Address	Register name	Register Description	Read/Write	Initial value
$5 \mathrm{~F}_{\mathrm{H}}$	(Vacancy)			
60н to 6Вн	VRAM	Display RAM	R/W	XXXXXXXX
$6 \mathrm{CH}_{\text {to }}$ 6F F	(Vacancy)			
7 H	SMR	Serial I/O mode register	R/W	00000000 в
71н	SDR	Serial I/O data register	R/W	XXXXXXXX ${ }_{\text {в }}$
72 H	PURR0	Pull-up resistor register 0	R/W	11111111в
73н	PURR1	Pull-up resistor register 1	R/W	11111111в
74	PURR2	Pull-up resistor register 2	R/W	11111111в
75 +	PURR4	Pull-up resistor register 4	R/W	XX111111в
76	(Vacancy)			
77	WREN	Wild register enable register	R/W	XX000000в
78	WROR	Wild register data test register	R/W	XX000000в
79 +	ADEN	A/D port input enable register	R/W	1111111]
7 7	(Vacancy)			
7Вн	ILR1	Interrupt level setting register 1	W	11111111 ${ }_{\text {B }}$
7 CH	ILR2	Interrupt level setting register 2	W	11111111 ${ }_{\text {B }}$
7D	ILR3	Interrupt level setting register 3	W	11111111 ${ }_{\text {B }}$
7Ен	ILR4	Interrupt level setting register 4	W	11111111в
7F\%	ITR	Interrupt test register	Access Prohibited	1111111в

Read/write access symbols

R/W : Readable and writable
R : Read-only
W : Write-only

Initial value symbols

0 : The initial value of this bit is " 0 ".
1 : The initial value of this bit is " 1 ".
X : The initial value of this bit is undefined.
M : The initial value of this bit is determined by mask option.
Note : Do not use vacancies.

MB89560A Series

WILD REGISTER I/O MAP

Address	Register name	Register description	Read/Write	Initial value
480 ${ }_{\text {H }}$	WRARH1	Wild register high-byte address register1	R/W	XXXXXXXXв
481н	WRARL1	Wild register low-byte address register1	R/W	XXXXXXXX
482н	WRDR1	Wild register data register1	R/W	XXXXXXXX
483н	WRARH2	Wild register high-byte address register2	R/W	XXXXXXXX
484н	WRARL2	Wild register low-byte address register2	R/W	XXXXXXXX
485 ${ }^{\text {H }}$	WRDR2	Wild register data register2	R/W	XXXXXXXX
486н	WRARH3	Wild register high-byte address register3	R/W	XXXXXXXX ${ }_{\text {¢ }}$
487 ${ }_{\text {H }}$	WRARL3	Wild register low-byte address register3	R/W	XXXXXXXX
488H	WRDR3	Wild register data register3	R/W	XXXXXXXX
489н	WRARH4	Wild register high-byte address register4	R/W	
48Ан	WRARL4	Wild register low-byte address register4	R/W	XXXXXXXX
48В ${ }_{\text {н }}$	WRDR4	Wild register data register4	R/W	
48С ${ }_{\text {H }}$	WRARH5	Wild register high-byte address register5	R/W	XXXXXXXX
48D	WRARL5	Wild register low-byte address register5	R/W	XXXXXXXX
48E	WRDR5	Wild register data register5	R/W	XXXXXXXX
48FH	WRARH6	Wild register high-byte address register6	R/W	XXXXXXXX
490 н	WRARL6	Wild register low-byte address register6	R/W	XXXXXXXX ${ }_{\text {¢ }}$
491н	WRDR6	Wild register data register6	R/W	XXXXXXXX в $^{\text {¢ }}$

Read/write access symbols

R/W : Readable and writable
R : Read-only
W : Write-only

Initial value symbols

0 : The initial value of this bit is " 0 ".
1 : The initial value of this bit is " 1 ".
X : The initial value of this bit is undefined.
M : The initial value of this bit is determined by mask option.
Note : Do not use vacancies.

MB89560A Series

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

$\left(\mathrm{A} \mathrm{V}_{\mathrm{ss}}=\mathrm{V} \mathrm{ss}=0.0 \mathrm{~V}\right)$

Parameter	Symbol	Rating		Unit	Remarks

(Continued)

MB89560A Series

(Continued)
$(\mathrm{AV} s \mathrm{~s}=\mathrm{V} \mathrm{ss}=0.0 \mathrm{~V})$

Parameter	Symbol	Rating		Unit	Remarks
		Max			
"H" level total maximum output current	\sum loн	-	-50	mA	
"H" level total average output current	\sum lohav	-	-30	mA	\multirow{3}2{}
Power consumption	PD_{D}	-	300	mW	
Operating temperature	TA_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

*1: Use $A V c c$ and $V_{c c}$ set at the same voltage.
Take care so that AVR does not exceed $A V c c+0.3 \mathrm{~V}$, such as when power is turned on.
Take care so that $A V$ cc does not exceed $V c c$, such as when power is turned on.
*2 : Average value (operating current \times operating rate)
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB89560A Series

2. Recommended Operating Conditions
$\left(\mathrm{AVss}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}\right)$

Parameter	Symbol	Value		Unit	Remarks
		Min	Max		
Power supply voltage	Vcc AVcc	2.2*	5.5*	V	For MB89567A and MB89567AC
		1.5	5.5	V	Retains the RAM state in stop mode for MB89567A and MB89567AC
		2.7*	5.5*	V	For MB89PV560 and MB89P568
		1.5	5.5	V	Retains the RAM state in stop mode for MB89PV560 and MB89P568
LCD power voltage	V0 to V3	$\mathrm{V}_{\text {ss }}$	Vcc	V	Liquid crystal power supply range : without booster (The best value is according to the specification of LCD used.)
A/D converter reference input voltage	AVR	3.5	AV cc	V	
Operating temperature	TA	-40	+ 85	${ }^{\circ} \mathrm{C}$	

*: These values depend on the operating conditions and the analog assurance range. See Figure "Operating Voltage vs. Main Clock Operating Frequency (MB89567A, MB89567AC) ", "Operating Voltage vs. Main Clock Operating Frequency (MB89P568/MB89PV560)" and "6. A/D Converter Electrical Characteristics."

MB89560A Series

"Operating Voltage vs. Main Clock Operating Frequency (MB89567A, MB89567AC) and "Operating Voltage vs. Main Clock Operating Frequency (MB89P568/MB89PV560) indicate the operating frequency of the external oscillator at an instruction cycle of 4/Fch

MB89560A Series

Operating Voltage vs. Main Clock Operating Frequency (MB89P568/MB89PV560)

Since the operating voltage range is dependent on the instruction cycle, see minimum execution time if the operating speed is switched using a gear.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB89560A Series

3. DC Characteristics (power supply voltage : 5.0V)

(Continued)

MB89560A Series

$\left(\mathrm{AV} \mathrm{Cc}=\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min	Typ	Max		
"L" level output voltage	VoL	P00 to P07, P10 to P17, P30, P31, P40 to P47, P50 to P57, P60 to P67, RST	$\mathrm{loL}=4.0 \mathrm{~mA}$	-	-	0.4	V	
		P20 to P27	$\mathrm{loL}=15.0 \mathrm{~mA}$	-	-	0.4		
Input leakage current (High-Z output leakage current)	1 L	$\begin{aligned} & \text { P00 to P07, } \\ & \text { P10 to P17, } \\ & \text { P20 to P27, } \\ & \text { P40 to P45 } \end{aligned}$	$0.0 \mathrm{~V}<\mathrm{V}_{1}<\mathrm{V}_{\text {cc }}$	-5	-	+5	$\mu \mathrm{A}$	Without pull-up Resistor
		$\begin{aligned} & \text { P50 to P57, } \\ & \text { P60 to P67 } \end{aligned}$		-5	-	+5	$\mu \mathrm{A}$	Resistor Ladder option
		$\begin{aligned} & \text { P50 to P57, } \\ & \text { P60 to P67 } \end{aligned}$	$0.0 \mathrm{~V}<\mathrm{V}_{1}<\mathrm{V}_{3}$	-5	-	+5	$\mu \mathrm{A}$	LCD booster option
		MODA	$0.0 \mathrm{~V}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{cc}}$	-10	-	+10	$\mu \mathrm{A}$	$\begin{aligned} & \text { MB89PV560 } \\ & \text { MB89P568 } \end{aligned}$
Open-drain output leakage current	1 luod	$\begin{aligned} & \text { P50 to P57, } \\ & \text { P60 to P67 } \end{aligned}$	$0.0 \mathrm{~V}<\mathrm{V}_{1}<\mathrm{V}_{\text {cc }}$	-	-	+5	$\mu \mathrm{A}$	Resistor Ladder option
		$\begin{aligned} & \text { P50 to P57, } \\ & \text { P60 to P67, } \end{aligned}$	$0.0 \mathrm{~V}<\mathrm{V}_{1}<\mathrm{V}_{3}$	-	-	+5	$\mu \mathrm{A}$	LCD booster option
		$\begin{aligned} & \hline \text { P30, P31, } \\ & \text { P46, P47 } \end{aligned}$	$\begin{aligned} & 0.0 \mathrm{~V}<\mathrm{V}_{\mathrm{l}}<\mathrm{V}_{\mathrm{ss}} \\ & +5.5 \mathrm{~V} \end{aligned}$	-	-	+5	$\mu \mathrm{A}$	
Pull-up resistance	Rpulı	$\begin{aligned} & \text { P00 to P07, } \\ & \text { P10 to P17, } \\ & \text { P20 to P27, } \\ & \frac{\text { P40 to P45, }}{\text { RST }} \end{aligned}$	$\mathrm{V}_{1}=0.0 \mathrm{~V}$	25	50	100	k Ω	When pull-up resistor selected except RST
Pull-down resistance	Rmoda	MODA	$\mathrm{V}_{1}=3.0 \mathrm{~V}$	50	100	200	k Ω	$\begin{aligned} & \text { MB89567A/ } \\ & \text { MB89567AC } \end{aligned}$
Power supply current *1	lcc 1	V cc	$\begin{aligned} & \mathrm{FCH}=10 \mathrm{MHz}, \\ & \mathrm{tinst}^{2}=0.4 \mu \mathrm{~s}, \end{aligned}$ Main clock run mode	- -	15 8	20 13	mA	MB89PV560 MB89P568 MB89567A MB89567AC
	Icc2		$\begin{aligned} & \mathrm{FcH}_{\mathrm{cH}}=10 \mathrm{MHz}, \\ & \text { tinst }^{2}=6.4 \mu \mathrm{~s}, \\ & \text { Main clock run } \\ & \text { mode } \end{aligned}$	-	5	8.5 3	mA	MB89PV560 MB89P568 MB89567A MB89567AC
	Iccs1		$\begin{aligned} & \mathrm{FcH}=10 \mathrm{MHz}, \\ & \text { tinst }^{2}=0.4 \mu \mathrm{~s}, \\ & \text { Main clock sleep } \\ & \text { mode } \end{aligned}$	-	5	7	mA	$\begin{aligned} & \text { MB89PV560 } \\ & \text { MB89P568 } \end{aligned}$
				-	2.5	5		$\begin{aligned} & \text { MB89567A } \\ & \text { MB89567AC } \end{aligned}$

(Continued)

MB89560A Series

(Continued)
$\left(\mathrm{A} \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},, \mathrm{AV} \mathrm{ss}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min	Typ	Max		
Power supply current *1	Iccs2	V cc	$\begin{aligned} & \mathrm{F}_{\mathrm{CH}}=10 \mathrm{MHz}, \\ & \text { tinst }^{2}=6.4 \mu \mathrm{~s}, \\ & \text { Sleep mode } \end{aligned}$	-	1.5	3	mA	$\begin{aligned} & \hline \text { MB89PV560 } \\ & \text { MB89P568 } \end{aligned}$
				-	0.7	2		MB89567A MB89567AC
	Iccı		$\mathrm{F}_{\mathrm{CL}}=32.768$ kHz , Subclock mode, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	3	7	mA	MB89PV560 MB89P568
				-	50	85	$\mu \mathrm{A}$	$\begin{aligned} & \text { MB89567A } \\ & \text { MB89567AC } \end{aligned}$
	Iccıs		$\mathrm{F}_{\mathrm{CL}}=32.768$ kHz , Subclock sleep mode,$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	30	50	$\mu \mathrm{A}$	$\begin{aligned} & \text { MB89PV560 } \\ & \text { MB89P568 } \end{aligned}$
				-	15	30		MB89567A MB89567AC
			$\begin{aligned} & \mathrm{FCL}=32.768 \\ & \mathrm{kHz}, \end{aligned}$		5	15	$\mu \mathrm{A}$	$\begin{aligned} & \text { MB89PV560 } \\ & \text { MB89P568 } \end{aligned}$
	lcct		Watch mode, Main clock stop mode	-	1.6	15	$\mu \mathrm{A}$	$\begin{array}{\|l\|} \hline \text { MB89567A } \\ \text { MB89567AC } \end{array}$
Power supply current *1	Іссн	V cc	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Subclock stop mode	-	3	10	$\mu \mathrm{A}$	$\begin{aligned} & \text { MB89PV560 } \\ & \text { MB89P568 } \end{aligned}$
					1	10	$\mu \mathrm{A}$	$\begin{aligned} & \text { MB89567A } \\ & \text { MB89567AC } \end{aligned}$
LCD divided resistance	Rıco	-	Between V_{cc} and V_{ss}	300	500	750	k Ω	
COM0 to COM3 output impedance	Rvcom	COM0 to COM3	V 1 to V3 $=5.0 \mathrm{~V}$	-	-	5	k Ω	
SEG0 to SEG23 output impedance	Rvseg	SEG0 to SEG23		-	-	15	k Ω	
LCD controller/ driver leakage current	ILcdL	$\begin{aligned} & \text { V0 to V3, } \\ & \text { COM0 to COM3, } \\ & \text { SEG0 to SEG23 } \end{aligned}$	-	-1	-	1	$\mu \mathrm{A}$	
Input capacitance	Cin	Other than $\mathrm{AV}_{\mathrm{cc}}$, $\mathrm{AV}_{\mathrm{ss}}, \mathrm{V}_{\mathrm{cc}}$, and Vss	$\mathrm{f}=1 \mathrm{MHz}$	-	10	-	pF	

*1: The power supply current is measured at the external clock
*2 : For information on tinst, see "5. AC Characteristics (4) Instruction Cycle."
Note : For LCD and port multiplex pin (P50 to P57, P60 to P67), please refer to LCD specification when the port is used, and refer to LCD specification when used as LCD pin.

MB89560A Series

4. DC Characteristics (power supply voltage : 3.0V)
$\left(\mathrm{AV} \mathrm{Vc}=\mathrm{V} \mathrm{cc}=3.0 \mathrm{~V}, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min	Typ	Max		
"H" level input voltage	VIH	$\begin{aligned} & \text { P00 to P07, } \\ & \text { P10 to P17, } \\ & \text { P20 to P27, } \\ & \text { P30 to P31, } \\ & \text { P40 to P45, } \\ & \text { P50 to P57, } \\ & \text { P60 to P67 } \end{aligned}$	-	0.7 Vcc	-	$\mathrm{V} \mathrm{cc}+0.3$	V	CMOS
	Vihs	RST, MODA, INT10 to INT17, $\overline{\text { INT20 to }} \overline{\mathrm{NNT23}}$, SI,SCK,EC1,UCK, SCK1,UI,SI1,PWC	-	0.8 Vcc	-	V cc +0.3	V	Hysteresis
	VIHSmb	SCL, SDA	-	Vss +1.4	-	Vss +5.5	V	SMB input buffer selected
	ViнİC		-	0.7 Vcc	-	Vss +5.5	V	${ }^{2}$ C C input buffer selected
"L" level input voltage	VIL	$\begin{aligned} & \text { P00 to P07, } \\ & \text { P10 to P17, } \\ & \text { P20 to P27, } \\ & \text { P30 to P31, } \\ & \text { P40 to P45, } \\ & \text { P50 to P57, } \\ & \text { P60 to P67 } \end{aligned}$	-	Vss-0.3	-	0.3 Vcc	V	CMOS
	Vıs	$\overline{\text { RST }}, ~ M O D A$, INT10 to INT17, INT20 to INT23, SI,SCK,EC1,UCK, SCK1,UI,SI1,PWC	-	Vss-0.3	-	0.2 Vcc	V	Hysteresis
	VILSmb	SCL, SDA	-	Vss - 0.3	-	Vss +0.6	V	SMB input buffer selected
	Vııгс		-	Vss-0.3	-	0.3 Vcc	V	${ }^{2}$ C input buffer selected
Open-drain output pin application voltage	V	$\begin{aligned} & \text { P60 to P67, } \\ & \text { P50 to P57 } \end{aligned}$	-	Vss-0.3	-	$\mathrm{V} \mathrm{cc}+0.3$	V	Resistor Ladder option
		$\begin{aligned} & \text { P60 to P67, } \\ & \text { P50 to P57 } \end{aligned}$	-	Vss-0.3	-	V3	V	LCD booster option
		$\begin{aligned} & \text { P46, P47, P30, } \\ & \text { P31 } \end{aligned}$	-	Vss-0.3	-	Vss + 5.5	V	
"H" level output voltage	Vон	$\begin{aligned} & \text { P00 to P07, } \\ & \text { P10 to P17, } \\ & \text { P40 to P45 } \end{aligned}$	$\mathrm{loH}=-2.0 \mathrm{~mA}$	2.4	-	-	V	
		P20 to P27	$\mathrm{IOH}=-10 \mathrm{~mA}$	2.4	-	-		

(Continued)

MB89560A Series

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min	Typ	Max		
"L" level output voltage	VoL	P00 to P07, P10 to P17, P30, P31, P40 to P47, P50 to P57, P60 to P67, RST	$\mathrm{loL}=4.0 \mathrm{~mA}$	-	-	0.4	V	
		P20 to P27	$\mathrm{loL}=10 \mathrm{~mA}$	-	-	0.4		
Input leakage current (Hi-z output leakage current)	IL	$\begin{aligned} & \text { P00 to P07, } \\ & \text { P10 to P17, } \\ & \text { P20 to P27, } \\ & \text { P40 to P45 } \end{aligned}$	$0.0 \mathrm{~V}<\mathrm{V}_{1}<\mathrm{V}_{\text {cc }}$	-5	-	+5	$\mu \mathrm{A}$	Without pull-up Resister
		$\begin{aligned} & \text { P50 to P57, } \\ & \text { P60 to P67 } \end{aligned}$		-5	-	+5	$\mu \mathrm{A}$	Resister Ladder option
		$\begin{aligned} & \text { P50 to P57, } \\ & \text { P60 to P67, } \end{aligned}$	$0.0 \mathrm{~V}<\mathrm{V}_{1}<\mathrm{V}_{3}$	-5	-	+5	$\mu \mathrm{A}$	LCD booster option
		MODA	$0.0 \mathrm{~V}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{cc}}$	-10	-	+10	$\mu \mathrm{A}$	$\begin{aligned} & \text { MB89PV560 } \\ & \text { MB89P568 } \end{aligned}$
Open-drain output leakage current	ILIod	$\begin{aligned} & \text { P50 to P57, } \\ & \text { P60 to P67, } \end{aligned}$	$0.0 \mathrm{~V}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{cc}}$	-	-	+5	$\mu \mathrm{A}$	Resister Ladder option
		$\begin{aligned} & \text { P50 to P57, } \\ & \text { P60 to P67 } \end{aligned}$	$0.0 \mathrm{~V}<\mathrm{V}_{1}<\mathrm{V}_{3}$	-	-	+5	$\mu \mathrm{A}$	LCD booster option
		$\begin{aligned} & \text { P30, P31, } \\ & \text { P46, P47 } \end{aligned}$	$\begin{array}{rl} 0.0 & V<V_{1}<V_{s s} \\ & +5.5 \mathrm{~V} \end{array}$	-	-	+5	$\mu \mathrm{A}$	
Pull-up resistance	Rpull	$\begin{aligned} & \text { P00 to P07, } \\ & \text { P10 to P17, } \\ & \text { P20 to P27, } \\ & \frac{\text { P40 to P45, }}{\text { RST }} \end{aligned}$	$\mathrm{V}_{1}=0.0 \mathrm{~V}$	50	100	200	$\mathrm{k} \Omega$	When pull-up resistor selected except $\overline{\text { RST }}$
Pull-down resistance	Rmoda	MODA	$\mathrm{V}_{1}=5.0 \mathrm{~V}$	25	50	100	k Ω	$\begin{aligned} & \text { MB89567A } \\ & \text { MB89567AC } \end{aligned}$
Powersupply current *1	Iccı	V co	$\begin{aligned} & \mathrm{F}_{\mathrm{CH}}=10 \mathrm{MHz}, \\ & \mathrm{tinst}^{2}=0.4 \mu \mathrm{~s}, \end{aligned}$ Main clock run mode	-	6 4	10 9	mA	MB89PV560 MB89P568 MB89567A MB89567AC
	Icc2		$\begin{aligned} & \mathrm{F}_{\mathrm{cH}}=10 \mathrm{MHz}, \\ & \text { tinst }^{2}=6.4 \mu \mathrm{~s}, \end{aligned}$ Main clock run mode	-	1.5	3	mA	MB89PV560 MB89P568
				-	0.4	2		$\begin{aligned} & \text { MB89567A } \\ & \text { MB89567AC } \end{aligned}$

(Continued)

MB89560A Series

(Continued)
$\left(\mathrm{AV} \mathrm{cc}=\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min	Typ	Max		
Power supply current *1	Iccs1	V cc	$\begin{aligned} & \mathrm{F}_{\text {ch }}=10 \mathrm{MHz}, \\ & \text { tinst }^{2}=0.4 \mu \mathrm{~s}, \\ & \text { Main clock } \\ & \text { sleep mode } \end{aligned}$	-	2	4	mA	$\begin{aligned} & \hline \text { MB89PV560 } \\ & \text { MB89P568 } \\ & \hline \end{aligned}$
				-	1	3		$\begin{aligned} & \text { MB89567A } \\ & \text { MB89567AC } \end{aligned}$
	Iccs2		$\begin{aligned} & \mathrm{F}_{\mathrm{cH}}=10 \mathrm{MHz}, \\ & \text { tinst }^{2}=6.4 \mu \mathrm{~s}, \\ & \text { Main clock } \\ & \text { sleep mode } \end{aligned}$	-	1	2	mA	$\begin{aligned} & \text { MB89PV560 } \\ & \text { MB89P568 } \end{aligned}$
				-	0.3	1.5		$\begin{aligned} & \text { MB89567A } \\ & \text { MB89567AC } \end{aligned}$
	Iccl		$\mathrm{F}_{\mathrm{CL}}=32.768$ kHz, Subclock mode, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	1	3	mA	$\begin{aligned} & \text { MB89PV560 } \\ & \text { MB89P568 } \end{aligned}$
				-	25	60	$\mu \mathrm{A}$	$\begin{aligned} & \text { MB89567A } \\ & \text { MB89567AC } \end{aligned}$
	Iccıs		$\mathrm{F}_{\mathrm{CL}}=32.768$ kHz, Subclock sleep mode, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	15	30	$\mu \mathrm{A}$	$\begin{aligned} & \text { MB89PV560 } \\ & \text { MB89P568 } \end{aligned}$
				-	8	25		$\begin{aligned} & \text { MB89567A } \\ & \text { MB89567AC } \end{aligned}$
			$\begin{aligned} & \mathrm{FcL}=32.768 \\ & \mathrm{kHz}, \end{aligned}$		5	15	$\mu \mathrm{A}$	$\begin{aligned} & \hline \text { MB89PV560 } \\ & \text { MB89P568 } \end{aligned}$
	Ica		Watch mode, Main clock stop mode	-	1	14	$\mu \mathrm{A}$	$\begin{aligned} & \text { MB89567A } \\ & \text { MB89567AC } \end{aligned}$
	Icch		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Subclock stop mode	-	1	5	$\mu \mathrm{A}$	
LCD divided resistance	Rlcd	-	Between Vcc and Vss	300	500	750	k Ω	
COM0 to COM3 output impedance	Rvcom	COM0 to COM3	V 1 to V3 $=3.0 \mathrm{~V}$	-	-	5	k Ω	
SEGO to 23 output impedance	Rvseg	SEG0 to SEG23		-	-	15	k Ω	
LCD controller/ driver leakage current	ILcol	V0 to V3, COM0 to COM3 SEG0 to SEG23	-	-1	-	1	$\mu \mathrm{A}$	
Input capacitance	Cin	Other than $\mathrm{AV}_{\mathrm{cc}}$, $\mathrm{AV}_{\mathrm{ss}}, \mathrm{Vcc}$, and Vss	$\mathrm{f}=1 \mathrm{MHz}$	-	10	-	pF	

*1 : The power supply current is measured at the external clock
*2 : For information on tinst, see "5. AC Characteristics (4) Instruction Cycle."
Note : For LCD and port multiplex pin (P50 to P57, P60 to P67), please refer to LCD specification when the port is used, and refer to LCD specification when used as LCD pin.

MB89560A Series

5. AC Characteristics

(1) Reset Timing

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min	Max		
$\overline{\text { RST }}$ "L" pulse width	tzızH	-	48 thcyl	-	ns	

Notes : • thcyL is the oscillation cycle ($1 / \mathrm{F}_{\mathrm{cH}}$) to input to the X0 pin.

- If the reset pulse applied to the external reset pin (RST) does not meet the specifications, it may cause malfunctions. Use caution so that the reset pulse less than the specifications will not be fed to the external reset pin ($\overline{\mathrm{RST}})$.

(2) Power-on Reset
$\left(\mathrm{AV}\right.$ ss $=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min	Max		
Power supply rising time	t_{R}	-	0.5	50	ms	
			1	-	ms	Due to repeated operations

Note : Make sure that power supply rises within the selected oscillation stabilization time.
For example, when the main clock is operating at $10 \mathrm{MHz}\left(\mathrm{F}_{\mathrm{CH}}\right)$ and the oscillation stabilization time select option has been set to $2^{18} / \mathrm{F}_{\text {сн }}$, the oscillation stabilization delay time is 26.2 ms . Therefore, the maximum value of power supply rising time is about 26.2 ms .
Rapid changes in power supply voltage may cause a power-on reset. If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.

MB89560A Series

(3) Clock Timing
$\left(\mathrm{AV}\right.$ ss $=\mathrm{V}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin	Value			Unit	Remarks
			Min	Typ	Max		
Clock frequency	$\mathrm{Fch}^{\text {c }}$	$\mathrm{X0} 0 \mathrm{X} 1$	1	-	12.5	MHz	Main clock
	FcL	X0A, X1A	-	32.768	-	kHz	Subclock
Clock cycle time	thcyl	X0, X1	80	-	1000	ns	Main clock
	tLeyl	X0A, X1A	-	30.5	-	$\mu \mathrm{s}$	Subclock
Input clock pulse width	$\begin{aligned} & \text { Pwh } \\ & \mathrm{Pww}^{2} \end{aligned}$	X0	20	-	-	ns	External clock
Input clock rising/falling time	$\begin{aligned} & \text { tcR } \\ & \text { tcc } \end{aligned}$	X0	-	-	10	ns	External clock

X0 and X1 Timing and Conditions

Main Clock Conditions

When using a crystal oscillator or ceramic oscillator

When using an external clock

MB89560A Series

X0A and X1A Timing

When using a crystal oscillator

Note : External clock is not available.
(4) Instruction Cycle
$\left(\mathrm{AV}\right.$ ss $=\mathrm{V}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Value	Unit	Remarks
Instruction cycle (minimum execution time)	tinst	4/Fсн, 8/Fсн, 16/Fсн, 64/Fсн	$\mu \mathrm{s}$	tinst $=0.32 \mu \mathrm{~s}$ when operating at $\mathrm{F}_{\mathrm{cH}}=12.5 \mathrm{MHz}\left(4 / \mathrm{F}_{\mathrm{cH}}\right)$
		2/FcL	$\mu \mathrm{s}$	tinst $=61.036 \mu \mathrm{~s}$ when operating at $\mathrm{F}_{\mathrm{CL}}=32.768 \mathrm{kHz}$

MB89560A Series

(5) Serial I/O Timing
$\left(\mathrm{Vcc}=5.0 \mathrm{~V}, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min	Max		
Serial clock cycle time	tscyc	SCK, SCK1, UCK	Internal shift clock mode	2 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
SCK $\downarrow \rightarrow$ SO time	tsıov	$\begin{aligned} & \text { SCK, SO, SCK1, } \\ & \text { SO1, UCK, UO } \end{aligned}$		-200	+200	ns	
Valid SI \rightarrow SCK \uparrow	tivs	SI, SCK, SI1, SCK1, UI, UCK		200	-	ns	
SCK $\uparrow \rightarrow$ valid SI hold time	tshix	SCK, SI, SCK1, SII, UCK, UI		200	-	ns	
Serial clock "H" pulse width	tshsL	SCK, SCK1, UCK	Externalshift clock mode	1 tins* ${ }^{*}$	-	$\mu \mathrm{s}$	
Serial clock "L" pulse width	tsısh			1 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
SCK $\downarrow \rightarrow$ SO time	tslov	$\begin{aligned} & \text { SCK, SO, SCK1, } \\ & \text { SO1, UCK, UO } \end{aligned}$		0	200	ns	
Valid SI \rightarrow SCK \uparrow	tivs	SI, SCK, SI1, SCK1, UI, UCK		200	-	ns	
SCK $\uparrow \rightarrow$ valid SI hold time	tsH1X	SCK, SI, SCK1, SII, UCK, UI		200	-	ns	

*: For information on tinst, see "(4) Instruction Cycle."

MB89560A Series

Internal Shift Clock Mode

External Shift Clock Mode

(6) Peripheral Input Timing
$\left(\mathrm{Vcc}=5.0 \mathrm{~V}, \mathrm{AV}\right.$ ss $=\mathrm{V}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min	Max		
Peripheral input "H" pulse width 1	tı\|н1	INT10 to INT17, $\overline{\text { INT20 to } \overline{\text { INT23 }},}$ EC, PWC	-	2 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
Peripheral input "L" pulse width 1	thHLI			2 tins**	-	$\mu \mathrm{s}$	

*: For information on tinst, see "(4) Instruction Cycle."

MB89560A Series

(7) $I^{2} \mathrm{C}$ timing
$\left(\mathrm{Vcc}=5.0 \mathrm{~V}, \mathrm{AV}_{\text {ss }}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min	Max		
Start condition output	tsta	$\begin{aligned} & \hline \mathrm{SCL} \\ & \mathrm{SDA} \end{aligned}$	-	$\begin{gathered} 1 / 4 \text { tisst }^{* 1} \times \\ \mathrm{M}^{* 2} \times \mathrm{N}^{* 3}-20 \end{gathered}$	$\begin{gathered} 1 / 4 \text { tinst } \times \\ \mathrm{M}^{\star 2} \times \mathrm{N}^{* 3}+20 \end{gathered}$	ns	Master mode
Stop condition output	tsto	$\begin{aligned} & \text { SCL } \\ & \text { SDA } \end{aligned}$	-	$\begin{gathered} 1 / 4 \text { tinst } \times \\ \left(\mathrm{M}^{\star 2} \times \mathrm{N}^{\star 3}+8\right)-20 \end{gathered}$	$\begin{gathered} 1 / 4 \text { tinst } X \\ \left(\mathrm{M}^{* 2} \times \mathrm{N}^{* 3}+8\right)+20 \end{gathered}$	ns	Master mode
Start condition detect	tsta	$\begin{aligned} & \text { SCL } \\ & \text { SDA } \end{aligned}$	-	$1 / 4$ tinst $\times 6+40$	-	ns	
Stop condition detect	tsto	$\begin{array}{\|l\|} \hline \text { SCL } \\ \text { SDA } \end{array}$	-	$1 / 4$ tinst $\times 6+40$	-	ns	
Re-start condition output	tstasu	$\begin{array}{\|l\|} \hline \text { SCL } \\ \text { SDA } \end{array}$	-	$\begin{gathered} 1 / 4 \text { tinst } \times \\ \left(\mathrm{M}^{\star 2} \times \mathrm{N}^{\star 3}+8\right)-20 \end{gathered}$	$\begin{gathered} 1 / 4 \text { tinst } \times \\ \left(\mathrm{M}^{\star 2} \times \mathrm{N}^{\star 3}+8\right)+20 \end{gathered}$	ns	Master mode
Re-start condition detect	tstasu	$\begin{array}{\|l\|} \hline \text { SCL } \\ \text { SDA } \end{array}$	-	1/4 tinst $\times 4+40$	-	ns	
SCL output LOW width	tıow	SCL	-	$\begin{gathered} 1 / 4 \text { tinst } \times \\ \mathrm{M}^{* 2} \times \mathrm{N}^{\star 3}-20 \end{gathered}$	$\begin{gathered} 1 / 4 \text { tinst } \times \\ \mathrm{M}^{* 2} \times \mathrm{N}^{* 3}+20 \end{gathered}$	ns	Master mode
SCL output HIGH width	thigh	SCL	-	$\begin{gathered} 1 / 4 \text { tinst } \times \\ \left(\mathrm{M}^{\star 2} \times \mathrm{N}^{\star 3}+8\right)-20 \end{gathered}$	$\begin{gathered} 1 / 4 \text { tinst } \times \\ \left(\mathrm{M}^{\star 2} \times \mathrm{N}^{\star 3}+8\right)+20 \end{gathered}$	ns	Master mode
SDA output delay	too	SDA	-	1/4 tinst $\times 4-20$	1/4 tinst $\times 4+20$	ns	
SDA output setup time after interrupt	toosu	SDA	-	1/4 tinst $\times 4-20$	-	ns	*4
SCL input LOW pulse width	tow	SCL	-	$1 / 4$ tinst $\times 6+40$	-	ns	
SCL input HIGH pulse width	thigh	SCL	-	$1 / 4$ tinst $\times 2+40$	-	ns	
SDA input setup time	tsu	SDA	-	40	-	ns	
SDA hold time	tho	SDA	-	0	-	ns	

*1 : For information in tinst, see " (4) Instruction Cycle".
*2 : M is defined in the ICCR CS4 and CS3 (bit 4 to bit 3) . For details, please refer to the H/W manual register explanation.
*3: N is defined in the ICCR CS2 to CS0 (bit 2 to bit 0).
*4 : When the interrupt period is greater than SCL "L" width, SDA and SCL output (Standard) value is based on hypothesis when rising time is 0 ns .

MB89560A Series

Data transmit (master/slave)

Data receive (master/slave)

MB89560A Series

6. A/D Converter Electrical Characteristics

(1) For MB89567A/AC A/D Converter
$\left(\mathrm{AVcc}=2.7 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{AV} \mathrm{ss}=\mathrm{V} s \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min	Typ	Max		
Resolution	-	-	-	-	-	10	bit	1LSB = AVR/1024
Total error			$A V R=A V c c$	-	-	± 3.0	LSB	
Non-linearity error				-	-	± 2.5	LSB	
Differential linearity error				-	-	± 1.9	LSB	
Zero transition voltage	Vот			$\begin{aligned} & \text { AVss - } \\ & \text { 1.5 LSB } \end{aligned}$	$\begin{aligned} & \text { AVss + } \\ & 0.5 \mathrm{LSB} \end{aligned}$	$\begin{aligned} & \text { AVss + } \\ & 2.5 \mathrm{LSB} \end{aligned}$	mV	
Full-scale transition voltage	Vfst			$\begin{aligned} & \text { AVR - } \\ & \text { 3.5 LSB } \end{aligned}$	$\begin{aligned} & \text { AVR - } \\ & \text { 1.5 LSB } \end{aligned}$	$\begin{aligned} & \text { AVR + } \\ & \text { 1.5 LSB } \end{aligned}$	mV	
Interchannel disparity	-			-	-	4	LSB	1LSB = AVR/1024
A/D mode conversion time *3			-	-	60 tinst $^{* 1}$	-	$\mu \mathrm{S}$	
A/D Sampling time				-	16 tinst ${ }^{* 1}$	-		
Analog port input current	Iain	ANO		-	-	10	$\mu \mathrm{A}$	
Analog input voltage	Vain			AVss	-	AVR	V	
Power supply current	IA	AV ${ }_{\text {cc }}$	-	-	4	6	mA	when A/D conversion is activated
	Іан		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	1	5	$\mu \mathrm{A}$	when A/D conversion is stopped
Reference voltage	-	AVR	-	AVss+3.5	-	AVcc	V	
Reference voltage supply current	IR		A/D is Activated	-	200	-	$\mu \mathrm{A}$	
	Ів		A/D is Stopped	-	-	5	$\mu \mathrm{A}$	*2

*1 : For information on tinst, see "(4) Instruction Cycle" in "5. AC Characteristics."
*2 : When A/D conversion is not in operation, and the CPU is in STOP mode.
*3 : Included sampling time

MB89560A Series

(2) For MB89P568/PV560 A/D Converter
($\mathrm{AVcc}=3.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{AV}$ ss $=\mathrm{V}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min	Typ	Max		
Resolution	-	-	-	-	-	10	bit	$\begin{aligned} & \text { 1LSB }= \\ & \text { AVR/1024 } \end{aligned}$
Total error			$\mathrm{AVR}=\mathrm{AV} \mathrm{cc}$	-	-	± 3.0	LSB	
Non-linearity error				-	-	± 2.5	LSB	
Differential linearity error				-	-	± 1.9	LSB	
Zero transition voltage	Vot			$\begin{gathered} \text { AVss - } 1.5 \\ \text { LSB } \end{gathered}$	$\begin{aligned} & \text { AVss + } \\ & 0.5 \mathrm{LSB} \end{aligned}$	$\begin{aligned} & \text { AVss + } \\ & \text { 2.5 LSB } \end{aligned}$	mV	
Full-scale transition voltage	Vfst			$\begin{gathered} \text { AVR - } 3.5 \\ \text { LSB } \end{gathered}$	$\begin{aligned} & \text { AVR - } \\ & \text { 1.5 LSB } \end{aligned}$	$\begin{aligned} & \text { AVR + } \\ & 1.5 \mathrm{LSB} \end{aligned}$	mV	
Interchannel disparity	-			-	-	4	LSB	$\begin{aligned} & 1 \text { LSB }= \\ & \text { AVR/1024 } \end{aligned}$
A/D mode conversion time *3			-	-	60 tins* ${ }^{* 1}$	-	$\mu \mathrm{s}$	
A/D Sampling time				-	16 tinst ${ }^{* 1}$	-		
Analog port input current	Iain	ANO to AN7		-	-	10	$\mu \mathrm{A}$	
Analog input voltage	$\mathrm{V}_{\text {AIN }}$			AVss	-	AVR	V	
Power supply current	IA	AVcc	-	-	4	6	mA	when A/D conversion is activated
	Іан		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	1	5	$\mu \mathrm{A}$	when A/D conversion is stopped
Reference voltage	-	AVR	-	AVss + 3.5	-	AV cc	V	
Reference voltage supply current	IR		A / D is Activated	-	400	-	$\mu \mathrm{A}$	
	Івн		A / D is Stopped	-	-	5	$\mu \mathrm{A}$	*2

*1 : For information on tinst, see "(4) Instruction Cycle" in "5. AC Characteristics."
*2 : When A/D conversion is not in operation, and the CPU is in STOP mode.
*3 : Included sampling time

MB89560A Series

(3) A/D Converter Glossary

- Resolution

Analog changes that are identifiable with the A / D converter.

- Linearity error

The deviation of the straight line connecting the zero transition point ("00 00000000 " \leftrightarrow "00 00000001 ") with the full-scale transition point ("11 11111110" " "11 1111 1111") from actual conversion characteristics

- Differential linearity error

The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

- Total error (unit: LSB)

The difference between theoretical and actual conversion values caused by the zero transition error, full-scale transition error, linearity error, quantization error, and noise

(Continued)

MB89560A Series

(Continued)

MB89560A Series

(4) Precautions

- The smaller the $|A V R-A V s s|$ is, the greater the error would become relatively.
- The output impedance of the external circuit for the analog input must satisfy the following conditions :

Output impedance of the external circuit < Approx. $10 \mathrm{k} \Omega$

- If the output impedance of the external circuit is too high, an analog voltage sampling time might be insufficient.

Analog Input equivalent circuit

Sample hold circuit *

* : The value of R and C at the sample hold circuit depends on the following.

MB89567A/MB89567AC : $\mathrm{R} \div 2.2 \mathrm{k} \Omega, \mathrm{C} \div 45 \mathrm{pF}$
MB89P568/MB89PV560 : R $\doteqdot 1.4 \mathrm{k} \Omega, \mathrm{C} \doteqdot 64 \mathrm{pF}$

MB89560A Series

EXAMPLE CHARACTERISTICS

(1) "L" Level Output Voltage

(2) "H" Level Output Voltage

MB89560A Series

(3) "H" Level Input Voltage / "L" Level Input Voltage

MB89560A Series

(4) Power Supply Current (External Clock)

(Continued)

MB89560A Series

(Continued)

IA VS. AVcc

IR vs. AVR

(5) Pull-up Resistance

Rpull vs.Vcc

MB89560A Series

MASK OPTIONS

No.	Model	$\begin{aligned} & \text { MB89567A } \\ & \text { MB89567AC } \end{aligned}$	MB89P568	MB89PV560
	Specification method	Specify when ordering mask.	Setting unavailable.	Setting unavailable.
1	Main clock oscillation stabilization delay time initial value* selection ($\mathrm{F}_{\mathrm{cH}}=10 \mathrm{MHz}$) - 01: $2^{14} / \mathrm{Fch}_{\text {с }}$ (Approx. 1.6 ms) - 10: $2^{17 / F} /$ сн (Approx. 13.1 ms) -11: $2^{18} /$ Fсн (Approx. 26.2 ms)	Selectable	$\begin{aligned} & 2^{18} / \mathrm{F}_{\mathrm{CH}} \text { (Approx. } \\ & 26.2 \mathrm{~ms} \text {) } \end{aligned}$	$2^{18} /$ Fch $_{\text {ch }}$ (approx. 26.2 ms)
2	LCD driving power supply - On-chip voltage booster - Internal voltage divider (external divider resistors can be used)	Selectable	-101 Internal voltage divider -102 On-chip voltage booster	-101 Internal voltage divider -102 On-chip voltage booster

ORDERING INFORMATION

Part number	Package	Remarks
MB89567APFV MB89567ACPFV MB89P568PFV-101	80-pin Plastic LQFP (FPT-80P-M05)	Without Booster Resistor divider
$\begin{aligned} & \text { MB89567APFV } \\ & \text { MB89567ACPFV } \\ & \text { MB89P568PFV-102 } \end{aligned}$		With Booster
$\begin{aligned} & \text { MB89567APF } \\ & \text { MB89567ACPF } \\ & \text { MB89P568PF-101 } \end{aligned}$	80-pin Plastic QFP (FPT-80P-M06)	Without Booster Resistor divider
$\begin{aligned} & \text { MB89567APF } \\ & \text { MB89567ACPF } \\ & \text { MB89P568PF-102 } \end{aligned}$		With Booster
MB89567APFM MB89567ACPFM MB89P568PFM-101	80-pin Plastic LQFP (FPT-80P-M11)	Without Booster Resistor divider
MB89567APFM MB89567ACPFM MB89P568PFM-102		With Booster
MB89PV560CF-101	80-pin Ceramic MQFP (MQP-80C-P01)	Without Booster Resistor divider
MB89PV560CF-102		With Booster

MB89560A Series

PACKAGE DIMENSIONS

80-pin plastic LQFP (FPT-80P-M05)

*Pins width and pins thickness include plating thickness.

© 2000 FUJTSU LIMTED F80008S-C-3.7
(Continued)

MB89560A Series

MB89560A Series

*Pins width and pins thickness include plating thickness.

© 2001 FUJITSU LIMITED F80016S-c--2-5

MB89560A Series

(Continued)

© 1994 FUJITSU LIITED N80001SC-4-2
Dimensions in mm (inches)

MB89560A Series

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

