PD - 90677D

International **IGR** Rectifier **RADIATION HARDENED POWER MOSFET THRU-HOLE (T0-204)**

Product Summary

Part Number	Radiation Level	RDS(on)	lD
IRH7150	100K Rads (Si)	0.065Ω	34A
IRH3150	300K Rads (Si)	0.065Ω	34A
IRH4150	600K Rads (Si)	0.065Ω	34A
IRH8150	1000K Rads (Si)	0.065Ω	34A

International Rectifier's RADHard HEXFET[®] technology provides high performance power MOSFETs for space applications. This technology has over a decade of proven performance and reliability in satellite applications. These devices have been characterized for both Total Dose and Single Event Effects (SEE). The combination of low Rdson and low gate charge reduces the power losses in switching applications such as DC to DC converters and motor control. These devices retain all of the well established advantages of MOSFETs such as voltage control, fast switching, ease of paralleling and temperature stability of electrical parameters.

Absolute Maximum Ratings

IRH7150 100V, N-CHANNEL RAD Hard[™]HEXFET[®] TECHNOLOGY

Features:

- Single Event Effect (SEE) Hardened
- Low RDS(on)
- Low Total Gate Charge
- Proton Tolerant
- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed
- Ceramic Package
- Light Weight

Pre-Irradiation

	Parameter		Units
ID @ VGS = 12V, TC = 25°C	Continuous Drain Current	34	
ID @ VGS = 12V, TC = 100°C	Continuous Drain Current	21	A
IDM	Pulsed Drain Current ①	136	
P _D @ T _C = 25°C	Max. Power Dissipation	150	W
	Linear Derating Factor	1.2	W/°C
VGS	Gate-to-Source Voltage	±20	V
EAS	Single Pulse Avalanche Energy 2	500	mJ
IAR	Avalanche Current ①	34	A
EAR	Repetitive Avalanche Energy ①	15	mJ
dv/dt	Peak Diode Recovery dv/dt 3	5.5	V/ns
Тј	Operating Junction	-55 to 150	
TSTG	Storage Temperature Range		°C
	Lead Temperature	300 (0.063 in.(1.6mm) from case for 10s)	
	Weight	11.5 (Typical)	g

For footnotes refer to the last page

Pre-Irradiation

	Parameter	Min	Тур	Max	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	100	_		V	VGS = 0V, ID = 1.0mA
ΔBV _{DSS} /ΔTJ	Temperature Coefficient of Breakdown Voltage	_	0.13	_	V/°C	Reference to 25°C, $I_D = 1.0$ mA
RDS(on)	Static Drain-to-Source On-State	—	—	0.065	Ω	VGS = 12V, ID = 21A (4)
	Resistance	—		0.076		$V_{GS} = 12V, I_{D} = 34A$
VGS(th)	Gate Threshold Voltage	2.0	—	4.0	V	$V_{DS} = V_{GS}$, $I_{D} = 1.0 mA$
9fs	Forward Transconductance	8.0	—	_	S (Ŭ)	V _{DS} > 15V, I _{DS} = 21A ④
IDSS	Zero Gate Voltage Drain Current	_		25	μA	V _{DS} = 80V ,V _{GS} =0V
		—	-	250	μι	$V_{DS} = 80V,$
						$V_{GS} = 0V, T_{J} = 125^{\circ}C$
IGSS	Gate-to-Source Leakage Forward	—	—	100	nA	VGS = 20V
IGSS	Gate-to-Source Leakage Reverse	—	—	-100		VGS = -20V
Qg	Total Gate Charge	_	—	160		VGS =12V, ID = 34A
Qgs	Gate-to-Source Charge	_	—	35	nC	$V_{DS} = 50V$
Q _{gd}	Gate-to-Drain ('Miller') Charge	_	—	65		
td(on)	Turn-On Delay Time	—	—	45		$V_{DD} = 50V, I_{D} = 34A$
tr	Rise Time	_	—	190	ns	V_{GS} =12V, R_{G} = 2.35 Ω
td(off)	Turn-Off Delay Time	—		170	115	
tf	FallTime	—		130		
LS+LD	Total Inductance	_	10	_	nH	Measured from Drain lead (6mm /0.25in.
						from package) to Source lead (6mm /0.25in.
						from package) with Source wires internally
						bonded from Source Pin to Drain Pad
C _{iss}	Input Capacitance		4300			$V_{GS} = 0V, V_{DS} = -25V$
C _{OSS}	Output Capacitance	_	1200		pF	f = 1.0MHz
C _{rss}	Reverse Transfer Capacitance		200	_		

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

Source-Drain Diode Ratings and Characteristics

	Parameter			Тур	Max	Units	Test Conditions
IS	Continuous Source Current (Body Diode)			_	34	Δ	
ISM	Pulse Source Current (Body Diode) ①			_	136	A	
VSD	Diode Forward Voltage			—	1.4	V	$T_j = 25^{\circ}C, I_S = 34A, V_{GS} = 0V ④$
trr	Reverse Recovery Time			_	570	nS	Tj = 25°C, IF = 34A, di/dt ≥ 100A/μs
QRR	Reverse Recovery Charge			—	5.8	μC	$V_{DD} \leq 25V @$
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by $L_S + L_D$.					

Thermal Resistance

	Parameter	Min	Тур	Max	Units	Test Conditions
R _{th} JC	Junction-to-Case	—	_	0.83		
R _{th} JA	Junction-to-Ambient	—		30	°C/W	
RthCS	Case-to-Sink	—	0.12	—		Typical socket mount

Note: Corresponding Spice and Saber models are available on the G&S Website.

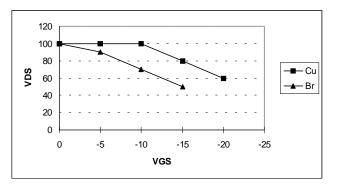
For footnotes refer to the last page

Radiation Characteristics

International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at International Rectifier is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison.

	Parameter	100K Rads(Si)1		600 to 1000K Rads (Si)2		Units	Test Conditions	
		Min	Min Max Min Max					
BVDSS	Drain-to-Source Breakdown Voltage	200	_	200		V	$V_{GS} = 0V, I_{D} = 1.0mA$	
VGS(th)	Gate Threshold Voltage	2.0	4.0	1.25	4.5		$V_{GS} = V_{DS}$, $I_D = 1.0 \text{mA}$	
IGSS	Gate-to-Source Leakage Forward	_	100	—	100	nA	$V_{GS} = 20V$	
IGSS	Gate-to-Source Leakage Reverse		-100	-	-100		V _{GS} = -20 V	
IDSS	Zero Gate Voltage Drain Current	_	25	-	50	μA	V _{DS} =80V, V _{GS} =0V	
R _{DS(on)}	Static Drain-to-Source ④	_	0.065	-	0.09	Ω	VGS = 12V, I _D =21A	
	On-State Resistance (TO-3)							
R _{DS(on)}	Static Drain-to-Source ④	_	0.065	-	0.09	Ω	VGS = 12V, I _D =21A	
()	On-State Resistance (TO-204AA)							
V _{SD}	Diode Forward Voltage ④	_	1.4	—	1.4	V	$V_{GS} = 0V, I_{S} = 34A$	

Table 1. Electrical Characteristics @ Tj = 25°C, Post Total Dose Irradiation 66

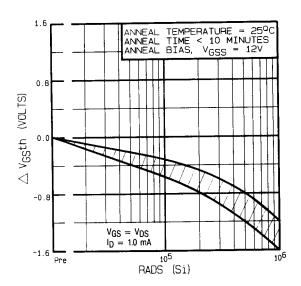

1. Part number IRH7150

2. Part numbers IRH3150, IRH4150 and IRH8150

International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.

lon	LET	Energy	Range	VDS(V)							
	MeV/(mg/cm ²))	(MeV)	(µm)	@VGS=0V	@VGS=-5V	@VGS=-10V	@VGS=-15V	@VGS=-20V			
Cu	28	285	43	100	100	100	80	60			
Br	36.8	305	39	100	90	70	50	—			

Table 2. Single Event Effect Safe Operating Area



For footnotes refer to the last page

Post-Irradiation

IRH7150

Voltage Vs. Total Dose Exposure

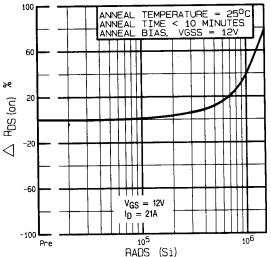


Fig 1. Typical Response of Gate Threshhold Fig 2. Typical Response of On-State Resistance Vs. Total Dose Exposure

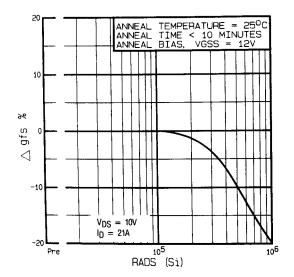


Fig 3. Typical Response of Transconductance Vs. Total Dose Exposure

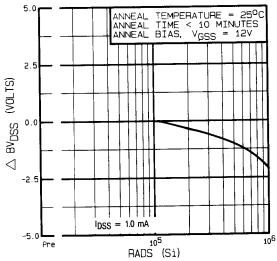
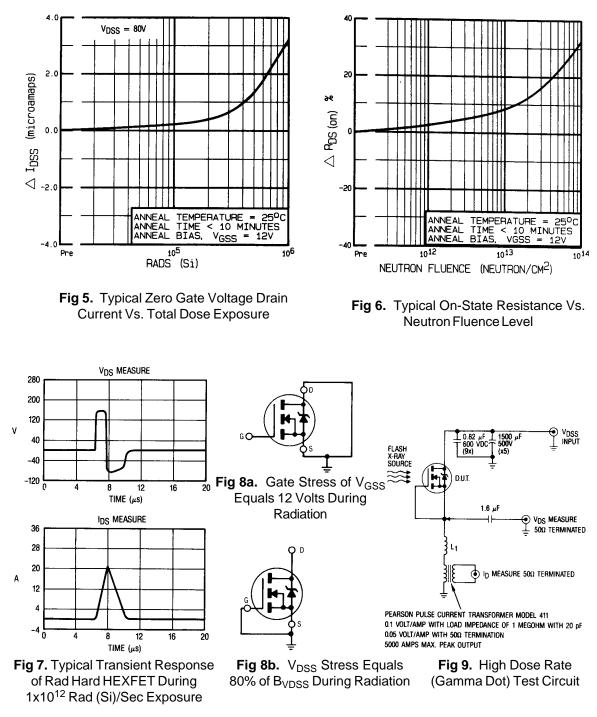
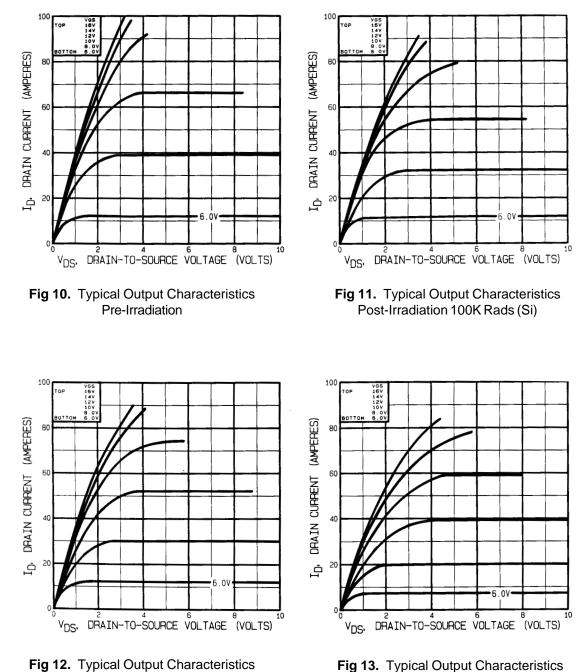
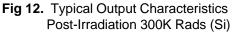



Fig 4. Typical Response of Drain to Source Breakdown Vs. Total Dose Exposure

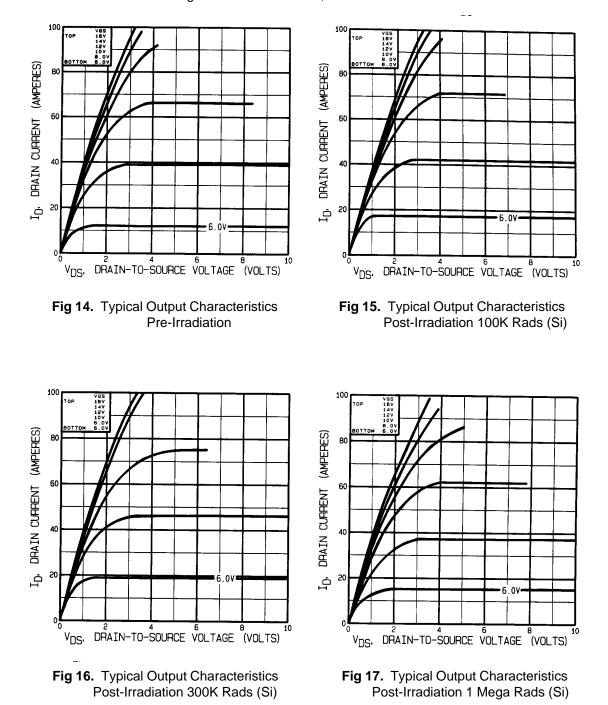

Post-Irradiation

IRH7150



Radiation Characteristics

IRH7150



Note: Bias Conditions during radiation: $V_{GS} = 12$ Vdc, $V_{DS} = 0$ Vdc

Post-Irradiation 1 Mega Rads (Si)

Radiation Characteristics

Note: Bias Conditions during radiation: VGS = 0 Vdc, VDS = 160 Vdc

Pre-Irradiation

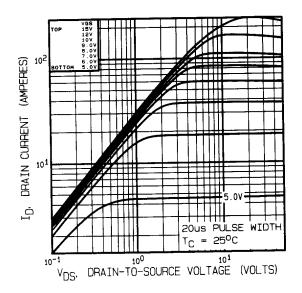


Fig 18. Typical Output Characteristics

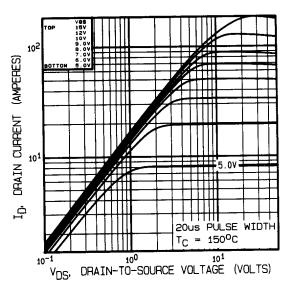


Fig 19. Typical Output Characteristics

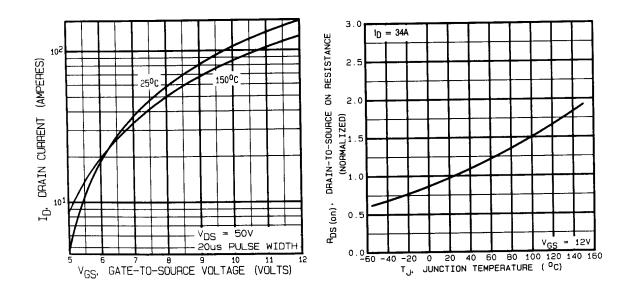


Fig 20. Typical Transfer Characteristics

Fig 21. Normalized On-Resistance Vs. Temperature

Pre-Irradiation

IRH7150

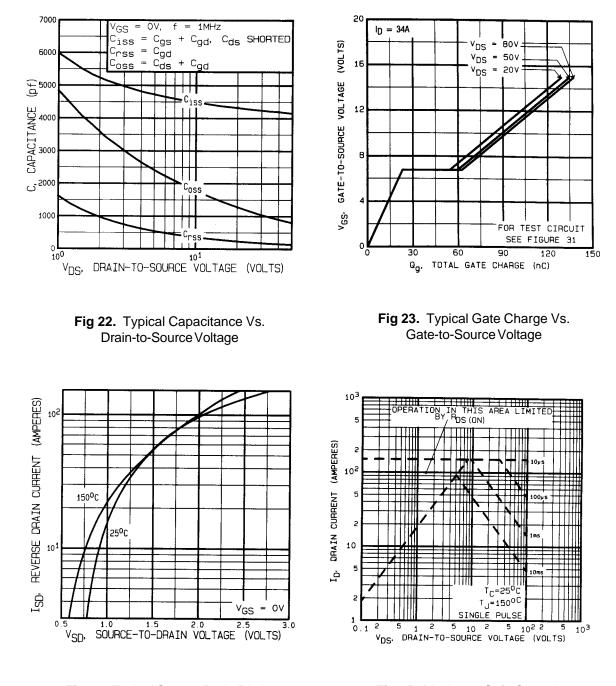
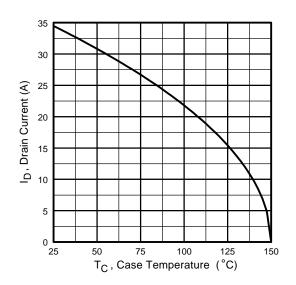



Fig 24. Typical Source-Drain Diode Forward Voltage

Fig 25. Maximum Safe Operating Area

www.irf.com

Pre-Irradiation

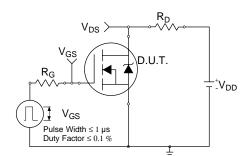


Fig 27a. Switching Time Test Circuit

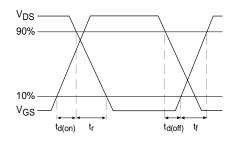


Fig 27b. Switching Time Waveforms

Fig 28. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Pre-Irradiation

IRH7150

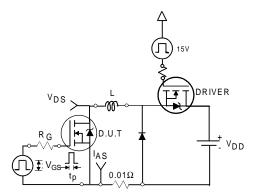


Fig 29a. Unclamped Inductive Test Circuit

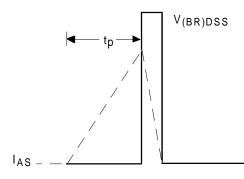


Fig 29b. Unclamped Inductive Waveforms

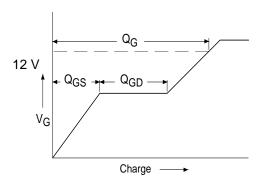


Fig 30a. Basic Gate Charge Waveform

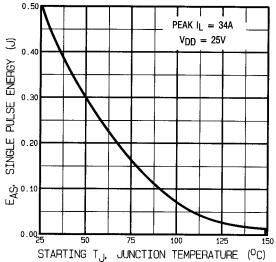


Fig 29c. Maximum Avalanche Energy Vs. Drain Current

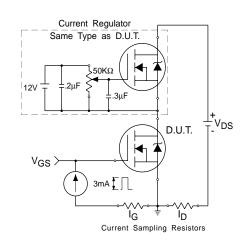
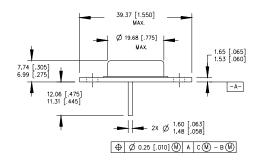
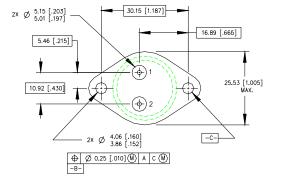


Fig 30b. Gate Charge Test Circuit


Pre-Irradiation


Foot Notes:

- Repetitive Rating; Pulse width limited by maximum junction temperature.
- \odot V_{DD} = 25V, starting T_J = 25°C, L=0.86mH Peak I_L = 34A, V_{GS} =12V

- ④ Pulse width \leq 300 μ s; Duty Cycle \leq 2%
- Total Dose Irradiation with VGS Bias.
 12 volt VGS applied and VDS = 0 during irradiation per MIL-STD-750, method 1019, condition A.
- Total Dose Irradiation with V_{DS} Bias.
 80 volt V_{DS} applied and V_{GS} = 0 during irradiation per MIL-STD-750, method 1019, condition A.

Case Outline and Dimensions — TO-204AE

PIN ASSIGNMENTS

2 - GATE

3 - DRAIN (CASE)

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE TO-204AE.

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 03/01