International **IGR** Rectifier

SCHOTTKY RECTIFIER

MBRS130TR

1 Amp

$$I_{F(AV)} = 1.0 \text{ Amp}$$

 $V_R = 30 \text{ V}$

Major Ratings and Characteristics					
Characteristics	Value	Units			
I _{F(AV)} Rectangular waveform	1.0	А			
V _{RRM}	30	V			
I_{FSM} @t _p =5µs sine	230	А			
V _F @1.0Apk, T _J =125°C	0.42	V			
T _J range	- 55 to 125	°C			

.... D.C.

Description/ Features

The MBRS130TR surface-mount Schottky rectifier has been designed for applications requiring low forward drop and small foot prints on PC boards. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- Small foot print, surface mountable
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

Case Styles	
MBRS130TR	
	Cathode oo Anode
SMB	

MBRS130TR

Bulletin PD-20584 rev. E 07/04

International **IOR** Rectifier

Voltage Ratings

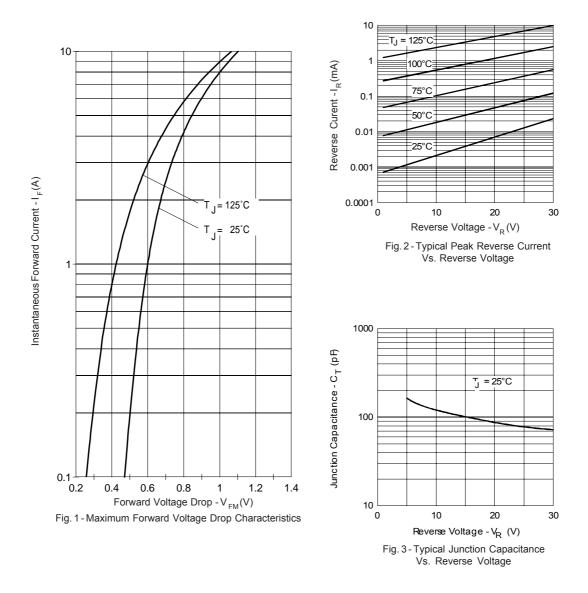
Part number	MBRS130TR	
V _R Max. DC Reverse Voltage (V)		
V_{RWM} Max. Working Peak Reverse Voltage (V)	30	

Absolute Maximum Ratings

_					
	Parameters	Value	Units	Conditions	
I _{F(AV)}	Max. Average Forward Current	1.0	A	50% duty cycle @ $T_L = 147 °C$,	rectangular wave form
I _{FSM}	Max. Peak One Cycle Non-Repetitive	870	A	5µs Sine or 3µs Rect. pulse	Following any rated load condition and
	Surge Current, $T_J = 25^{\circ}C$	50		10ms Sine or 6ms Rect. pulse	with rated V _{RRM} applied
E _{AS}	Non-Repetitive Avalanche Energy	3.0	mJ	$T_{J} = 25 \text{ °C}, I_{AS} = 1A, L = 6mH$	
I _{AR}	Repetitive Avalanche Current	1.0	A	Current decaying linearly to zero in 1 μ sec Frequency limited by T _J max. Va = 1.5 x Vr typical	

Electrical Specifications

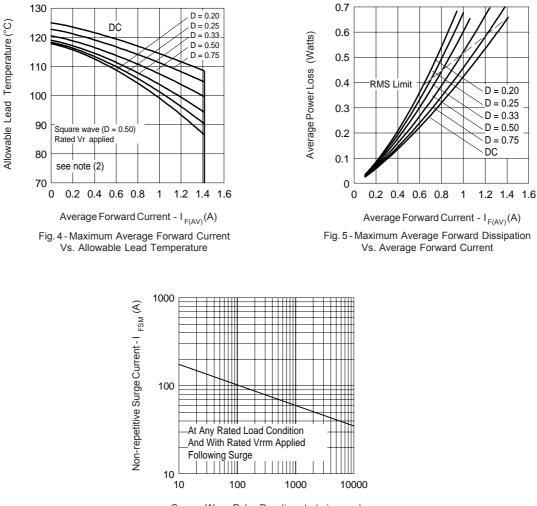
	Parameters	Value	Units		Conditions
V _{EM}	Max. Forward Voltage Drop (1)	0.6	V	@ 1A	T,= 25 °C
		0.67	V	@ 2A	1 ₁ - 25 C
		0.42	V	@ 1A	T,= 125 °C
		0.52	V	@ 2A	1, 120 0
I _{RM}	Max. Reverse Leakage Current (1)	0.5	mA	T _J = 25 °C	
		5.0	mA	T _J = 100 °C	V _R = rated V _R
		15	mA	T _J = 125 °C	
C _T	Max. Junction Capacitance	200	pF	$V_{R} = 5V_{DC}$ (test signal range 100KHz to 1Mhz) 25°C	
Ls	Typical Series Inductance	2.0	nH	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Change	10000	V/µs		
	(Rated V _R)				


(1) Pulse Width < 300 μ s, Duty Cycle < 2%

Thermal-Mechanical Specifications

	Parameters	Value	Units	Conditions
TJ	Max. Junction Temperature Range (*)	-55 to 125	°C	
T _{stg}	Max. Storage Temperature Range	-55 to 150	°C	
R _{thJL}	Max.Thermal Resistance Junction to Lead (**)	25	°C/W	DC operation
R _{thJA}	Max. Thermal Resistance Junction to Ambient	80	°C/W	DC operation
wt	Approximate Weight	0.10(0.003)	g(oz.)	
	Case Style	SMB		Similar to DO-214AA
	Device Marking	IR13		

 $\binom{(*)}{dTj} < \frac{1}{Rth(j-a)}$ thermal runaway condition for a diode on its own heatsink


(**) Mounted 1 inch square PCB

MBRS130TR

Bulletin PD-20584 rev. E 07/04

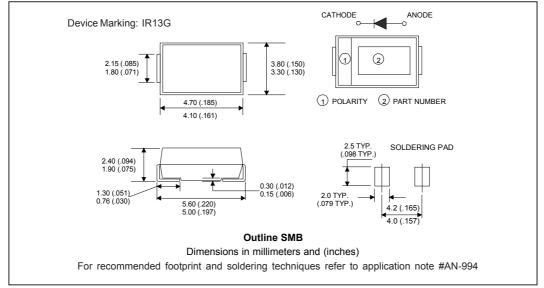
International

Square Wave Pulse Duration - t_p (microsec)

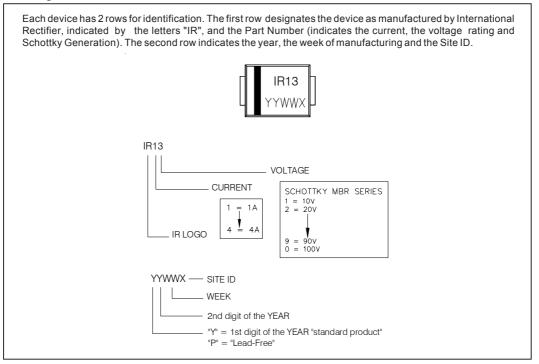
Fig. 6 - Maximum Peak Surge Forward Current Vs. Pulse Duration

```
(2) Formula used: T_{c} = T_{J} - (Pd + Pd_{REV}) \times R_{thJC};

Pd = Forward Power Loss = I_{F(AV)} \times V_{FM} @ (I_{F(AV)} / D) (see Fig. 6);

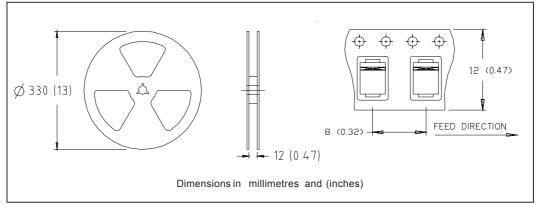

Pd_{REV} = Inverse Power Loss = V_{R1} \times I_{R} (1 - D); I_{R} @ V_{R1} = 80\% rated V_{R}
```

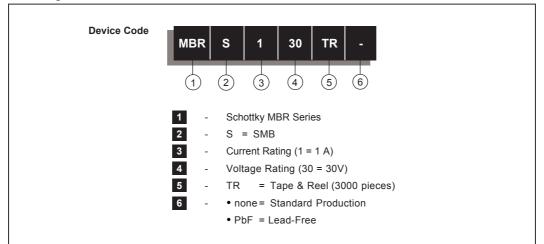
International


MBRS130TR

Bulletin PD-20584 rev. E 07/04

Outline Table


Marking & Identification


MBRS130TR

Bulletin PD-20584 rev. E 07/04

Tape & Reel Information

Ordering Information Table

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level. Qualification Standards can be found on IR's Web site.

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309 Visit us at www.irf.com for sales contact information. 07/04

www.irf.com