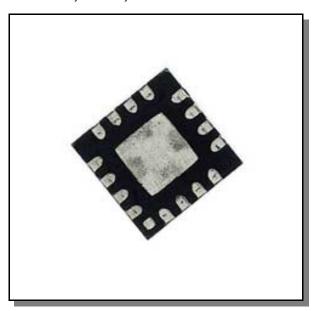
MADCSM0012

MACOM PCS LNA/Downconverter, 1800 - 2000 MHz

Features

- Highly Integrated LNA and Downconverter
- 3mm FQFP-N Plastic Package
- Operates Over 2.7 V to 5 V Supply Voltage
- Low Noise Figure: 2.3 dB Typical
- High Input Intercept Point: -9 dBm Typical
- Continuous Current Control Downconverter
- Low LO Drive Level: -10 dBm


Description

M/A-COM's MADCSM0012 integrated downconverter combines a low noise amplifier, a RF amplifier, a downconverting mixer, an IF amplifier and LO buffer amplifier. The MADCSM0012 is packaged in a low cost 3mm FQFP-N plastic package with an exposed pad for improved high frequency grounding.

M/A-COM designed the MADCSM0012 for handsets requiring wide dynamic range and low power consumption. By application of a suitable control voltage to pin 6, the linearity of the device can be controlled in real time to keep the current as low as possible.

The MADCSM0012 is fabricated using M/A-COM's 0.5-micron low noise E/D GaAs MESFET process. The process features full passivation for increased performance and reliability.

FQFP-N, 3mm, 16 Lead

Electrical Specifications - Korean Band PCS: Test Conditions: VDD = 3.0 V, RF = 1855 MHz, IF = 210 MHz, LO = 1645 MHz, LO = -10 dBm, $T_A = 25^{\circ}\text{C}$

Low Noise Amplifier

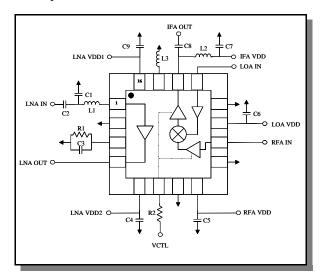
Parameter	Test Conditions	Units	Min	Тур	Max
Gain	_	dB	_	15	_
Noise Figure	_	dB	_	1.35	_
VSWR In/Out	_	Ratio	_	2:1	_
Input IP3	_	dBm	_	6	_
ldd	_	mA	_	15	_

Cascaded LNA/Downconverter ¹

Parameter	Test Conditions	Units	Min	Тур	Max
Conversion Gain	V _{CTL} = 3.0 V V _{CTL} = 1.0 V	dB dB	22.5 —	25 21	27.5 —
Noise Figure	V _{CTL} = 3.0 V	dB	_	2.3	3.2
Input IP3	RF Input = -30 dBm, V _{CTL} = 3.0V	dBm	-11	-9	_
Isolation	LO to RF, V_{CTL} = 3.0 V LO to IF, V_{CTL} = 3.0 V RF to IF, V_{CTL} = 3.0 V	dB dB dB		50 31 18	_ _ _
ldd	V _{CTL} = 3.0 V	mA	_	25	37

1. Complete cascaded measurements taken with 3 dB pad between LNA output and Downconverter input (RFA IN).

Pin Configuration


Pin	Pin	Description
No.	Name	Bescription
1	LNA IN	Input to LNA; RF matching required
2	GND	DC and RF Ground
3	LNA SRC	Source of LNA output stage FET. RF bypassing required. Off-chip resistor may be used to increase IIP3
4	LNA OUT	50 Ohm LNA output; DC Blocked
5	LNA V _{DD2}	LNA second stage supply voltage; RF bypassing required
6	V _{CTL}	Downconverter bias control. 0 to 3.0 V allowed
7	GND	DC and RF Ground
8	RFA V _{DD}	RFA supply voltage; RF bypassing required
9	GND	DC and RF Ground
10	RFA IN	50 Ohm RFA Input; DC Blocked
11	LOA V _{DD}	LOA supply voltage; RF bypassing required
12	GND	DC and RF Ground
13	LOA IN	Local oscillator input (-10 to -5 dBm)
14	IF OUT	IF Output of downconverter; IF matching required
15	IFA MATCH	IF matching between mixer and IFA; required an inductor to ground
16	LNA V _{DD1}	LNA first stage supply voltage; RF bypassing required

Absolute Maximum Ratings ²

Parameter	Absolute Maximum		
Voltage	6 V		
Input Power	0 dBm		
Operating Temperature	-30°C to +85°C		
Storage Temperature	-65°C to +150°C		

2. Exceeding any one or combination of these limits may cause permanent damage to this device.

Sample Board Schematic

External Circuitry Parts List (Korean Band PCS)

Part	Value	Purpose
C1	10 pF	LNA Input Matching
C2	1.2 pF	LNA Input Matching
C3	0.1 μF	LNA Source Bypass
C4, C5, C6, C9	0.1 μF	RF Bypass
C7	0.1 μF	IF Bypass
C8	6.8 pF	IF Matching
L1	6.2 nH	LNA Matching
L2	47 nH	IF Output Matching
L3	120 nH	IF Mixer Matching
R1		Optional Resistor to increase LNA IIP3
R2	3000 Ohms	Voltage Control Resistor

M/A-COM Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

North America: Tel. (800) 366-2266

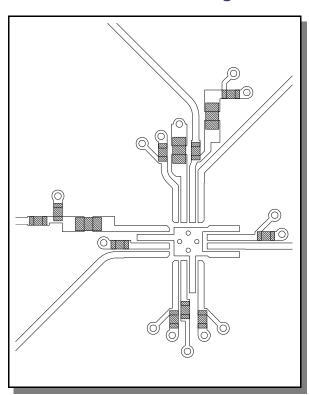
■ **Asia/Pacific:** Tel.+81-44-844-8296, Fax +81-44-844-8298

Operating Instructions

M/A-COM's MADCSM0012 is a highly integrated MMIC LNA/downconverter for operation in the 1800-2000 MHz PCS frequency band. The downconverter provides exceptional RF performance while consuming low DC current and is packaged in a low cost plastic package. It is ideal for lightweight battery operated portable radio systems.

The MADCSM0012 consists of an LNA, RFA, singleended mixer and single-ended IF output buffer as shown in the block diagram. Surface mount resistors, inductors and capacitors are used in conjunction with the LNA/ downconverter to optimize the trade-offs among performance, tunability and ease of use. The sample board schematic shows the LNA/downconverter and required off-chip components.

The input of the LNA is matched externally with a series inductor (L1) and a shunt capacitor (C1) to provide a low loss match to the optimum noise impedance in the band of interest. A high Q inductor such as Coilcraft's 0402CS series must be used if the specified noise figures are to be achieved. The series capacitor, C2, is a DC blocking and input matching capacitor. The LNA is nominally biased with 15 mA to give an input IP3 of +6 dBm. An external resistor, R1, may be used to increase the LNA bias current and thus increase the IP3. An external image reject filter is required between the LNA output and RFA input to prevent downconversion of noise at the image frequency to the IF. This filter should have a 50-ohm input and output impedance.


The mixer is a single-ended floating FET mixer that provides exceptional linearity and isolation with low loss and no DC current. An off-chip inductor, L3, is required to match the output of the mixer to the input of the IF buffer amplifier. The case size of L3 is typically 0603 but if more gain is needed, use a 0805 case size.

The IF output port is the open drain of the IF buffer amplifier. This allows maximum flexibility of the intermediate frequency and also IF filter. A matching network such as that shown herein can be used to match to 50 ohms from the output impedance of the buffer to the input impedance of the filter at the 210 MHz intermediate frequency. The inductor also acts as a choke for the DC supply line. Elements L2 and C8 provide the necessary impedance transformation.

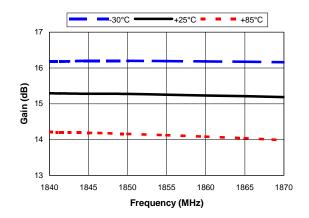
The LO input port is matched on-chip to 50 ohms. An LO buffer amplifier amplifies the -10 dBm input signal to the level required to drive the mixer. Performance is optimum with a drive level of -7 dBm.

All DC supply lines must be properly bypassed at RF frequencies to obtain optimum performance and at lower frequency to maintain unconditional stability. Capacitors C4, C5, C6, C7 and C9 are RF bypass capacitors for the LNA, RFA and LOA. The value and placement of these capacitors is critical in determining the frequency response of these amplifiers. Capacitor C3 is a source bypass capacitor for the second stage of the low noise amplifier. The placement of this capacitor will affect the gain of the LNA. For best performance, all the RF bypass capacitors should be placed as close to the device as possible.

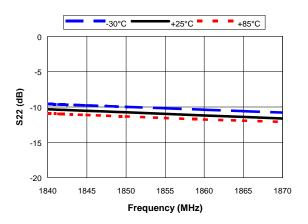
Recommended PCB Configuration

M/A-COM Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

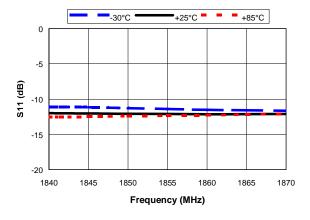
Visit www.macom.com for additional data sheets and product information.

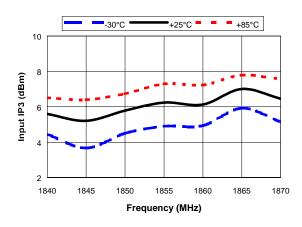

North America: Tel. (800) 366-2266

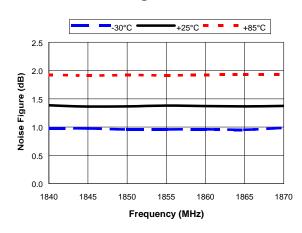
Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298

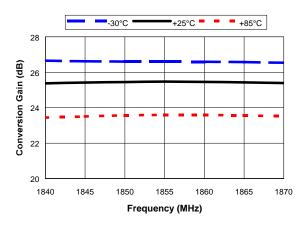


Typical Performance Curves vs. Temperature


LNA Gain


LNA Output Return Loss


LNA Input Return Loss


LNA Input IP3

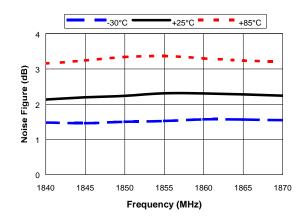
LNA Noise Figure

Full Chain Conversion Gain

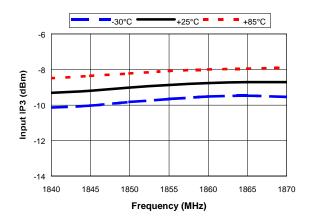
M/A-COM Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

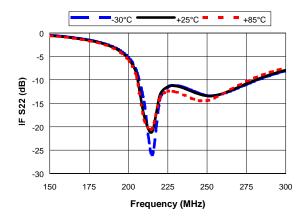
tyco | Electronics

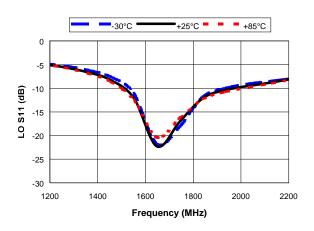

North America: Tel. (800) 366-2266

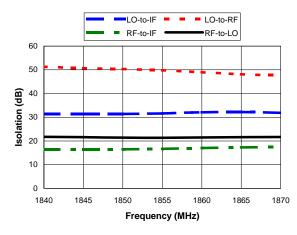
■ Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298

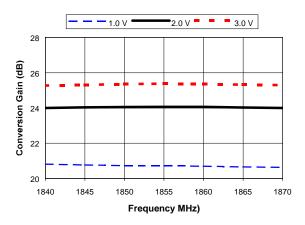


Typical Performance Curves vs. Temperature


Full Chain Noise Figure


Full Chain Input IP3


Full Chain IF Return Loss

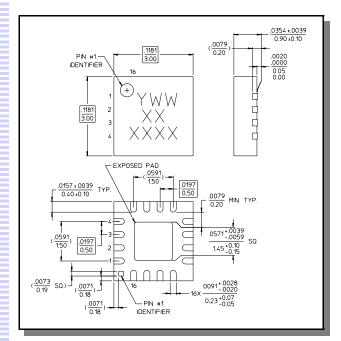

Full Chain LO Return Loss

Full Chain Port to Port Isolation

Full Chain Conversion Gain vs. V_{CTL}

M/A-COM Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.


tyco | Electronics

North America: Tel. (800) 366-2266

■ **Asia/Pacific:** Tel.+81-44-844-8296, Fax +81-44-844-8298

FQFP-N, 3mm, 16 Lead

Ordering Information

Part Number	Package	
MADCSM0012	Bulk Packaging	
MADCSM0012TR	Tape and Reel (1K Reel)	
MADCSM0012SMB	Sample Test Board	

Note: Reference Application Note M513 for reel size information.

M/A-COM Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

■ North America: Tel. (800) 366-2266

Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298

