

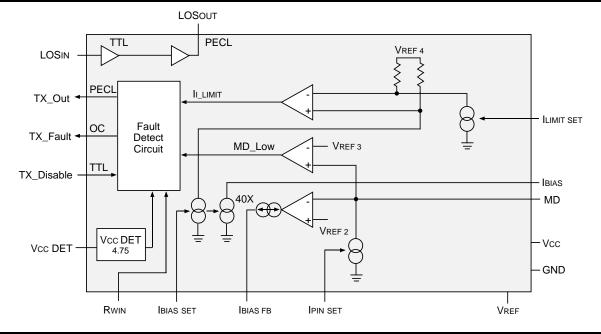
FIBER OPTIC MODULE CONTROLLER WITH APC

FEATURES

- DC bias current adjustable to 25mA
- Buffered Loss-of-Signal output when used with SY88903
- Controlled laser diode turn on
- Laser diode over-current detect
- Monitor diode power control circuit
- Laser diode driver enable
- Designed for use with SY88902 and SY88903
- Single power supply
- Available in 16-pin MSOP

PIN CONFIGURATION

BLOCK DIAGRAM


DESCRIPTION

The SY88904 is an integrated controller for the SY88902 Laser Driver and SY88903 Laser Receiver that provides power control and system interface functions for a complete module solution. The SY88904 is designed to provide the laser diode with an independent DC threshold current (IBIAS) source to assure optimum laser diode performance. It has special safety features which disable the currents to the laser diode if certain faults are detected in the module. The SY88904 also provides buffered Loss-of-Signal (LOS) output in open collector level. The device is designed for fast and accurate calibration of the laser diode as well as deriving the control signals for system integration.

The SY88904 provides for delayed turn on of the laser diode on system start up, chatter-free Loss-of-Signal, Low Vcc detect and laser diode over-current situations. Once the optimal operating point is determined and set for a specific laser diode, the threshold current (IBIAS) is designed to automatically compensate for laser diode aging and module temperature.

APPLICATIONS

- Controller for High Speed Optical Data Transmission
- 1.25Gbps Gigabit Ethernet
- 531 Mbps and 1062Mbps Fibre Channel
- 622Mbps SONET
- Gigabit Interface Converter

PIN DEFINITIONS

Pin	Туре	Description				
Vcc	Power Supply	Positive Power supply				
GND	Ground	Ground				
TX_Out	PECL Output	Transmitter Enable				
TX_Fault	Open Collector Output	Module Fault				
TX_Disable	TTL Input	Transmitter Disable and Fault Reset				
LOSIN	TTL Input	Loss-of-Signal Input from Limiting Post Amplifier				
Vref	Analog Output	Reference Voltage				
IPIN SET	Analog Input	Adjustable, Resistor to VREF sets Min. Monitor Diode Photo Current				
RWIN	Analog Input	Restart Window				
LOSOUT	PECL Output	Loss-of-Signal PECL output				
I BIASFB	Analog Output	Monitor Diode Feedback				
IBIASSET	Analog Input	Adjustable, Resistor to VREF sets the DC bias current for the Laser Diode				
MD	Analog Input	Monitor Diode Connection				
IBIAS	Analog Input	DC bias current for the Laser Diode				
LIMIT SET	Analog Input	Adjustable, Resistor to VREF sets Laser Diode over current fail point.				

DC ELECTRICAL CHARACTERISTICS

VCC = +5V, RLOAD = 50 Ω to 3V, TA = 0°C to +85°C

		TA = 0°C		TA = +25°C			TA = +85°C					
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	Conditions
Icc	Power Supply Current	_	_	60	_	_	60			60	mA	No output load
IBIAS	IBIAS Output Current	2	_	25	2	_	25	2	_	25	mA	
IBIAS SET	IBIAS SET Input Current	_	_	0.625	_	_	0.625	_		0.625	mA	

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Rating	Value	Unit	
Vcc	Power Supply Voltage	0 to +7.0	V	
TX_Disable, LOS	Input Voltage	0 to Vcc	V	
LOSOC, IPIN SET, ILIMIT SET IBIASFB, IBIAS SET	Others; I/O Voltage	–0.3V, Vcc +0.3V	V	
TX_Out	Output Voltage (with 50 Ω load)	Vcc -2.5V, Vcc +0.3V	V	
CA Operating Temperature Range		0°C to +85°C	°C	
Tstore	Storage Temperature Range	–55°C to +125°C	°C	
	Theta Junction to Ambient	93	°C/W	

NOTE:

1. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to ABSOLUTE MAXIMUM RATING conditions for extended periods may affect device reliability.

DETAILED DESCRIPTION

The SY88904 is an integrated control circuit for laser diode modules intended for high-frequency fiber-optic applications. The device is designed to operate with the SY88902 laser diode driver providing Automatic Power Control (APC) which provides bias and modulation current control, laser diode driver enable and monitor diode interface. The device also interfaces with the SY88903 high-speed limiting amplifier providing chatter-free Loss of Signal function. The system functions provided include laser diode over-current detection, module fault signal and transmit disable control. The SY88904 also provides power up cycling of laser diode current and the fault detect signal.

Laser Diode Supply Current

The SY88904 provides the adjustable drive current for the laser diode, DC bias.

Laser Diode Over-Current Detection

The SY88904 provides the ability to set an upper limit fail point for the laser diode. ILIMIT SET sets an upper limit for the average current present at the IBIAS pin.

Monitor Diode

The MD pin on the SY88904 provides low frequency light intensity, laser power out feedback from the monitor diode in the laser diode package. This feedback is used to adjust the IBIAS level through the Automatic Power Control circuit to maintain a near constant power output from the laser diode. The SY88904 will also generate a fault if the MD pin receives photo current less than IPINSET or is no longer connected to the monitor diode.

Laser Diode Driver Enable

The SY88904 provides a TX_Out pin used to control the output of the laser diode driver, through the Enable pin , of the SY88902. This is a single ended PECL output.

Module Fault

The SY88904 provides an open collector output, TX_Fault, that indicates to the host system that the module is in a fault condition. The SY88904 will assert TX_Fault when a low Vcc condition is detected, when the monitor diode is not connected or when a laser diode over-current condition is detected. The SY88904 will attempt to clear a TX_Fault condition if the device is power cycled or a reset cycle is initiated with TX_Disable. When the SY88904 is in a TX_Fault condition Ibias will be removed, TX_Out will be negated and fault detection will be disabled.

Power Up Sequence, TX_Disable asserted

The SY88904 will power up in a TX_Fault condition and will remain in a fault condition while TX_Disable is asserted.

Power Up Sequence, TX_Disable negated

The SY88904 will power up in a TX_Fault condition and will remain in a fault condition until Vcc is within operational limits, at which time an initialization sequence will be started.

TX_Disable Cycle, TX_Fault Negated

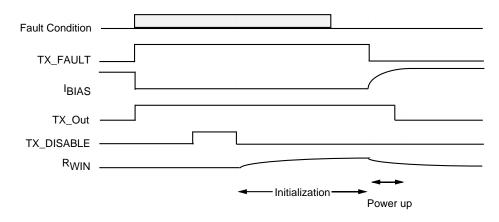
When the SY88904 is not in a TX_Fault condition, a rising edge of TX_Disable will cause the SY88904 to enter a TX_Fault condition. The falling edge of TX_Disable will cause a power up sequence to be started.

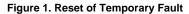
TX_Disable Cycle, TX_Fault Asserted

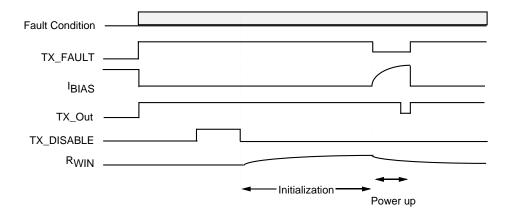
When the SY88904 is in a TX_Fault condition, the falling edge of TX_Disable will cause an initialization sequence to be started.

TX_Disable Cycle, during an initialization cycle

A rising edge of TX_Disable will cause the SY88904 to terminate the current initialization cycle and remain in a TX_Fault condition. The falling edge of TX_Disable will cause the initialization sequence to be restarted.


Initialization Sequence


The initialization sequence consists of a delay, set by the RC time constant on the Rwin input, followed by a power up sequence.


Power Up Sequence

A power up sequence will negate TX_Fault and then ramp up Ibias, controlled by the capacitor on the Rwin input and an internal 1mA current, followed by TX_OUT being negated and fault checking. If a fault occurs at this time the module will enter a TX_Fault conditions, otherwise the module will be ready for operation.

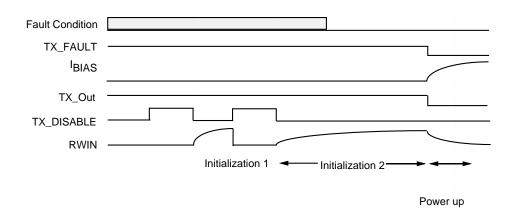
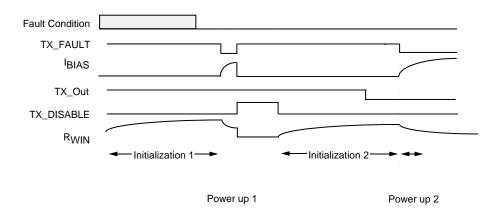



Figure 3. Reset During Initilization

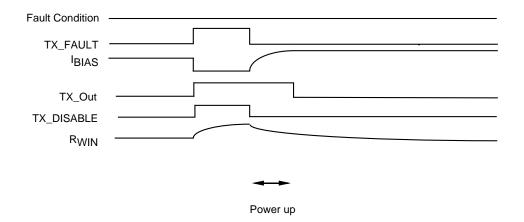
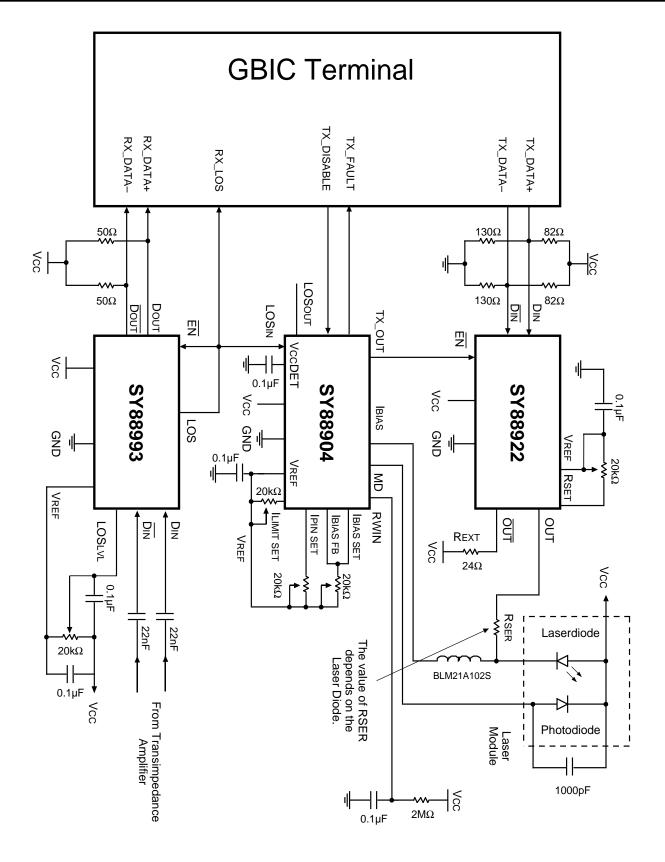
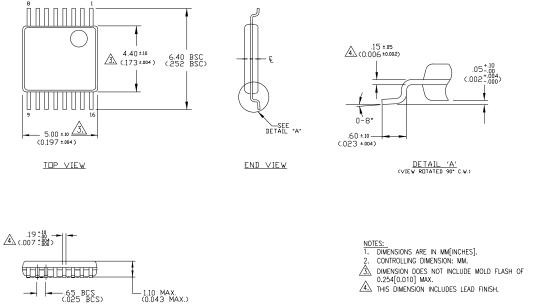



Figure 5. Reset Cycle


PRODUCT ORDERING CODE

Ordering	Package	Operating			
Code	Type	Range			
SY88904KC	K16-1	Commercial			

APPLICATION EXAMPLE FOR 3-CHIP SET SOLUTION

16 LEAD MSOP (K16-1)

-1.10 MAX. (0.043 MAX.)

<u>SIDE VIEW</u>

Rev. 01

MICREL-SYNERGY 3250 SCOTT BOULEVARD SANTA CLARA CA 95054 USA TEL + 1 (408) 980-9191 FAX + 1 (408) 914-7878 WEB http://www.synergysemi.com http://www.micrel.com

This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc. © 1999 Micrel Incorporated