

3.3V, PRECISION, 33MHz to 500MHz PROGRAMMABLE LVPECL AND LVDS BUS CLOCK SYNTHESIZER

Precision Edge™ SY89534L SY89535L

FEATURES

- Integrated synthesizer plus fanout buffers, clock dividers, and translator in a single 64-pin package
- Accepts any reference input between 14MHz to 160MHz (single-ended or differential)
- 33MHz to 500MHz output frequency range
- LVPECL outputs (SY89534L) LVPECL and LVDS outputs (SY89535L)
- **■** 3.3V ±10% power supply
- Low jitter: <50ps cycle-to-cycle
- Low pin-to-pin skew: <50ps
- **TTL/CMOS** compatible control logic
- 3 independently programmable output frequency banks:
 - 9 differential output pairs @BankB (LVPECL/LVDS)
 - 2 differential output pairs @BankA (LVPECL)
 - 2 differential output pairs @BankC (LVPECL)
- Available in 64-pin EPAD-TQFP

Precision Edge™

DESCRIPTION

The SY89534L and SY89535L programmable clock synthesizers are a 3.3V, high-frequency, precision PLL-based family optimized for multi-frequency, large clock-tree applications that require the highest precision. These devices integrate the following blocks into a single monolithic IC:

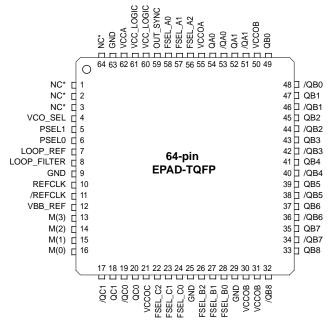
- PLL (Phase-Lock-Loop)-based synthesizer
- · Fanout buffer
- Clock generator (divider)
- Logic translation (LVPECL, LVDS)

The SY89534L and SY89535L includes a flexible input design that accepts any reference input; single-ended LVTTL/CMOS, SSTL and differential LVPECL, LVDS, HSTL and CML.

This level of integration minimizes the additive jitter and part-to-part skew associated with the discrete alternative, resulting in superior system-level timing as well as reduced board space and power. For applications that must interface to a crystal oscillator, see the SY89532/33.

Data sheets and support documentation can be found on Micrel's web site at www.micrel.com.

APPLICATIONS


- Servers
- Workstations
- Parallel processor-based systems
- Other high-performance computing
- Communications

PRODUCT SELECTION GUIDE

	Inj	out	Output					
Device	Crystal	Reference	BankA	BankB	BankC			
SY89532L*	Х		LVPECL	LVPECL	LVPECL			
SY89533L*	Х		LVPECL	LVDS	LVPECL			
SY89534L		Х	LVPECL	LVPECL	LVPECL			
SY89535L		Х	LVPECL	LVDS	LVPECL			

^{*}Refer to SY89532/33L data sheet for details.

PACKAGE/ORDERING INFORMATION

Ordering Information

Part Number	Package Type	Operating Range	Package Marking
SY89534LHC	H64-1	Commercial	SY89534LHC
SY89535LHC	H64-1	Commercial	SY89535LHC

64-Pin EPAD-TQFP (H64-1)

*NC: Do not connect, leave floating.

FUNCTIONAL BLOCK DIAGRAM FSEL OUT_SYNC V_{cc}_LOGIC FSEL_A1 _A0 (LSB) VccoA GND V_{cc}A QA0 /QA0 QA1 /QA1 S S NC S S 64 63 62 61 60 59 58 57 55 54 52 51 50 . 49 QB0 56 53 48 /QB0 47 QB1 VCO_SEL 4 /QB1 46 5 PESL1 45 QB2 PSEL0 6 0 = Use Internal PLL 1 = Bypass Internal PLL (default) 44 /QB2 3-Bit Divider A 2, 4, 6, 8, 10, 12,18 LOOPREF 7 43 QB3 LOOPFILTER 8 42 /QB3 Mux 1 QB4 GND 9 41 Clock 40 /QB4 Phase Detecto REFCLK 10 → Pre Divider Charge Pump VCO 3-Bit Divider B 2, 4, 6, 8, 10, 12,18 600MHz to 1000MHz) 39 QB5 1, 2, 4, 8 /REFCLK ΕN 600MHz to 38 /QB5 M-Divide VBB_REF 12 37 QB6 14MHz to 20MHz 30, 32, 34, 36, 38, 40, 42, 44, 48, 50, 52, 54, 56, 60, 62, 66 36 /QB6 3-Bit (MSB) M3 13 Divider C 2, 4, 6, 8, 10, 12,18 35 QB7 M2 14 EN 34 /QB7 M1 15 33 QB8 (LSB) M0 16 2x 32 /QB8 31 V_{cco}B 30 V_{cco}B 29 17 18 19 20 21 22 25 28 23 26 27 24 FSEL_C1 GND FSEL_B1 GND FSEL_C2 FSEL_C0 (LSB) FSEL_B2 FSEL_B0 (LSB) ΩC1 /QC0

PIN DESCRIPTION

Power

Pin Number	Pin Name	Functional Description
60, 61	V_{CC_Logic}	Power for Core Logic: Connect to 3.3V supply. 3.3V power pins are not internally connected on the die, and must be connected together on the PCB.
62	V _{CCA}	Power for PLL: Connect to "quiet" 3.3V supply. 3.3V power pins are not internally connected on the die, and must be connected together on the PCB.
55 30, 31, 50 21	V _{CCO} A V _{CCO} B V _{CCO} C	Power for Output Drivers: Connect all $V_{\rm CCO}$ pins to 3.3V supply. $V_{\rm CCO}$ pins are not connected internally on the die.
4, 9, 25, 63, 29 (exposed pad)	GND	Ground. All GND pins must be tied together on the PCB. Exposed pad must be soldered to a ground plane.

Configuration

Pin Number	Pin Name	Functional Description
4	VCO_SEL	LVTTL/CMOS Compatible Input: Selects between internal or external VCO. When tied LOW (GND) internal VCO is selected. For external VCO, leave floating (default condition is logic HIGH). Internal 25k Ω pull-up.
5, 6	PSEL(1:0)	LVTTL/CMOS Compatible Input: Controls input frequency pre divider. Internal $25k\Omega$ pull-up. Default is logic HIGH. See <i>"Pre-Divide Frequency Select"</i> table.
7	LOOP REF	Analog Input/Output: Provides the reference voltage for PLL loop filter.
8	LOOP FILTER	Analog Input/Output: Provides the loop filter for PLL. See "External Loop Filter Considerations" for loop filter values.
13,14,15,16	M (3:0)	LVTTL/CMOS Compatible Input: Used to change the PLL (Phase-Lock Loop) feedback divider. Internal $25k\Omega$ pull-up. (M0 = LSB). Default is logic HIGH. See "Feedback Divide Select" table.
22, 23, 24	FSEL_C (2:0)	LVTTL/CMOS Compatible Input: Bank C post divide select. Internal $25k\Omega$ pull-up. Default is logic HIGH. See "Post-Divide Frequency Select" table.
26, 27, 28	FSEL_B (2:0)	LVTTL/CMOS Compatible Input: Bank B post divide select. Internal $25k\Omega$ pull-up. Default is logic HIGH. See "Post-Divide Frequency Select" table.
56, 57, 58	FSEL_A (2:0)	LVTTL/CMOS Compatible Input: Bank A post divide select. Internal $25k\Omega$ pull-up. Default is logic HIGH. See "Post-Divide Frequency Select." FSEL_A0 = LSB.
59	OUT_SYNC	Banks A,B,C output synchronous control: (LVTTL/CMOS compatible). Internal $25k\Omega$ pull-up. After any bank has been programmed, toggle with a HIGH-LOW-HIGH pulse to resynchronize all output banks.

Input/Output

Pin Number	Pin Name	Functional Description
1, 2, 3	NC	No Connect: Leave floating.
10, 11	REFCLK, /REFCLK	Reference Input: This flexible input accepts any input TTL/CMOS, LVPECL, LVDS, HSTL, SSTL. See <i>"Input Interface"</i> section.
12	VBB_REF	Reference Output Voltage. Used for single-ended input. Maximum sink/source current = 0.5mA.
51, 52, 53, 54	QA1 to QA0	Bank A 100k LVPECL Output Drivers: Output frequency is controlled by FSEL_A (0:2). Terminate outputs with 50Ω to V_{CC} –2V. See "Output Termination Recommendations" section for termination detail.
32–49	QB8 to QB0	Bank B Output Drivers: SY89534: 100k LVPECL output drivers. SY89535: Differential LVDS outputs. See "Output Termination Recommendations" section for termination detail. Output frequency is controlled by FSEL_B (0:2).
17, 18, 19, 20	QC1 to QC0	Bank C 100k LVPECL Output Drivers: Output frequency is controlled by FSEL_C (0:2). Terminate outputs with 50Ω to V_{CC} -2V. See "Output Termination Recommendations" section.
64	NC	No Connect: Leave floating.

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Rating		Value	Unit
All V _{CC}	V _{CC} Pin Potential to Ground Pin		-0.5 to +4.0	V
V _{IN}	Input Voltage		–0.5 to V _{CCI}	V
I _{OUT}	DC Output Current	-LVPECL outputs -LVDS outputs	−50 ±10	mA mA
T _{store}	Storage Temperature		-65 to +150	°C
θ_{JA}	Package Thermal Resistance (Junction-to With Die attach soldered to GND:	o-Ambient) -Still-Air (TQFP) -200lfpm (TQFP) -500lfpm (TQFP)	23 18 15	°C/W °C/W °C/W
	With Die attach NOT soldered to GND:(2)	-Still-Air (TQFP) -200lfpm (TQFP) -500lfpm (TQFP)	44 36 30	°C/W °C/W °C/W
θ _{JC}	Package Thermal Resistance (Junction-to-Case)		4.4	°C/W

DC ELECTRICAL CHARACTERISTICS

Power Supply

		$T_A = 0^{\circ}C$			T _A = +25°C			T			
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
V _{CCA} ⁽³⁾ V _{CC_LOGIC}	PLL and Logic Supply Voltage	3.0	3.3	3.6	3.0	3.3	3.6	3.0	3.3	3.6	V
V _{CCO} A/C	Bank A and C V _{CC} Output	3.0	3.3	3.6	3.0	3.3	3.6	3.0	3.3	3.6	V
V _{CCO} B	Bank B V _{CC} Output LVPECL/LVDS	3.0	3.3	3.6	3.0	3.3	3.6	3.0	3.3	3.6	\ \
I _{CC}	Total Supply Current ⁽⁴⁾ SY89534L PECL SY89535L LVDS		— 275	260 330		— 285	260 330		— 300	260 330	mA mA

LVCMOS/LVTTL Input Control Logic (All V_{CC} pins = +3.3V ±10%)

		$T_A = 0^{\circ}C$			$T_A = +25^{\circ}C$			Т			
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
V _{IH}	Input HIGH Voltage	2.0	_	_	2.0	_	_	2.0	_	_	V
V _{IL}	Input LOW Voltage	_	_	0.8	_	_	0.8	_	_	0.8	V
I _{IH}	Input HIGH Current	_	_	_	_	_	150	_	_	_	μΑ
I _{IL}	Input LOW Current	_	_	_	-300	_	_	_	_	_	μΑ

- 1. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to ABSOLUTE MAXIMUM RATING conditions for extended periods may affect device reliability.
- 2. It is recommended that the user always solder the exposed die pad to a ground plane for enhanced heat dissipation.
- V_{CCA}, V_{CC_LOGIC}, V_{CCO}A/C. V_{CCO}B are <u>not</u> internally connected together inside the device. They must be connected together on the PCB.
 No load. Outputs floating, Banks A, B, and C enabled.

DC ELECTRICAL CHARACTERISTICS

REFCLK (pins 10, 11) INPUT (All V_{CC} pins = +3.3V $\pm 10\%$)

		$T_A = 0^{\circ}C$			$T_A = +25^{\circ}C$			T,			
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
V _{ID}	Differential Input Voltage	100 ⁽⁵⁾ 200 ⁽⁶⁾			100 ⁽⁵⁾ 200 ⁽⁶⁾	_		100 ⁽⁵⁾ 200 ⁽⁶⁾	_	_	mV mV
V _{IH}	Input HIGH Voltage		-	V _{CC} +0.3	_	_	V _{CC} +0.3		_	V _{CC} +0.3	V
V _{IL}	Input LOW Voltage	-0.3	_	_	-0.3	_	_	-0.3	_	_	V

100K LVPECL Outputs (All V_{CC} pins = +3.3V ±10%)

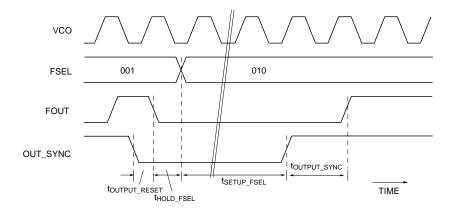
		-	$T_A = 0^\circ$		T	$T_A = +25^{\circ}C$			$T_A = +85^{\circ}C$		
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
V _{OH}	Output HIGH Voltage ⁽⁷⁾	V _{CC} -1.075	_	V _{CC} -0.830	V _{CC} -1.075	_	V _{CC} -0.830	V _{CC} -1.075	_	V _{CC} -0.830	V
V _{OL}	Output LOW Voltage ⁽⁷⁾	V _{CC} -1.860	_	V _{CC} -1.570	V _{CC} -1.860	_	V _{CC} -1.570	V _{CC} -1.860	_	V _{CC} -1.570	V
V _{ID}	Differential Input Voltage ⁽⁸⁾	100 ⁽³⁾ 200 ⁽⁴⁾	_		100 ⁽³⁾ 200 ⁽⁴⁾	_		100 ⁽³⁾ 200 ⁽⁴⁾	_		mV mV
V _{IH}	Input HIGH Voltage ⁽⁸⁾	_	_	V _{CC} +0.3	_	_	V _{CC} +0.3	_	_	V _{CC} +0.3	V
V _{IL}	Input LOW Voltage ⁽⁸⁾	-0.3	_	_	-0.3	_	_	-0.3	_	_	V
I _{IH}	Input HIGH Current	-600	_	-300	-600	_	-300	-600	_	-300	μΑ
I _{IL}	Input LOW Current	-1200	_	-700	-1200	_	-700	-1200	_	-700	μΑ
V _{BB}	Output Reference Voltage	V _{CC} -1.26	V _{CC} -1.32	V _{CC} -1.38	V _{CC} -1.26	V _{CC} -1.32	V _{CC} -1.38	V _{CC} -1.26	V _{CC} -1.32	V _{CC} -1.38	V

LVDS Outputs (SY89535L) Bank B QB0:8⁽⁹⁾ (All V_{CC} pins = +3.3V ±10%)

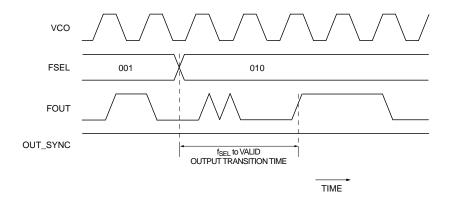
		$T_A = 0^{\circ}C$			$T_A = +25^{\circ}C$			T,			
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
V _{OD}	Output Voltage Swing ^(9, 10)	250	_	450	250	_	450	250	_	450	mV
V _{OH}	Output HIGH Voltage		-	1.475	_	_	1.475	_	_	1.475	V
V _{OL}	Output LOW Voltage	0.925	_	_	0.925	_	_	0.925	_	_	٧
V _{OCM}	Output Common Mode Voltage ⁽⁹⁾	1.125	_	1.375	1.125	_	1.375	1.125	_	1.375	V
ΔV_{OCM}	Change in Common Mode Voltage ⁽⁹⁾	-50	_	50	-50	_	50	- 50	_	50	mV

- 5. $V_{IN} < 2.4V$ 6. $V_{IN} < V_{CC} + 0.3V$ 7. 50Ω to $V_{CC} 2V$. Banks A, B, and C enabled. 8. $V_{CC} = 3.0V$ to 3.6V.
- 9. 100Ω termination across differential pair.

AC ELECTRICAL CHARACTERISTICS


All V_{CC} pins = +3.3V ±10%

			$T_A = 0^{\circ}C$;	T,	A = +25°	C	Т	A = +85°	C	
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
f _{IN}	Reference Input Frequency		_		14	_	160			_	MHz
f _{OUT}	Output Frequency Range		_		33.33	_	500			_	MHz
t _{VCO}	Internal VCO Frequency Range	600	_	1000	600	_	1000	600		1000	MHz
t _{skew}	Within Device ⁽¹¹⁾ Within Bank Bank-to-Bank	_	25 60	50 150	_	0 60	50 150		0 60	50 150	ps ps
	Part-to-Part Skew ⁽¹²⁾	_	_	_	_	_	200	_	_	200	ps
t _{LOCK}	Maximum PLL Lock Time	_	_	_	_	_	10	1	_	10	ms
t _{JITTER}	Cycle-to-Cycle Jitter ⁽¹³⁾ (Pk-to-Pk)	_	_	_	_	_	50	_	_	_	ps
	Period Jitter ⁽¹⁴⁾ (rms)	_	_	50	_	_	50	_	_	50	ps
t _{pw} (min)	Minimum Pulse Width	_	_	_	50	_	_	50	_	_	ns
	Target PLL Loop Bandwidth Feedback Divider Ratio: 66 ⁽¹⁵⁾ Feedback Divider Ratio: 30 ⁽¹⁵⁾	_	1.0 2.0		_	1.0 2.0			1.0 2.0	_	MHz MHz
t _{DC}	f _{OUT} Duty Cycle	_	_	_	45	50	55	45	50	55	%
t _r , t _f	Output Rise/Fall Time (20% to 80%) LVPECL_Out (SY89535L) LVDS_Out	_ _	_	400 450	_	250 300	400 450	_	_	400 450	ps
t _{OUTPUT_F}	RESET ⁽¹⁶⁾	_	_	_	_	_	10	_	_	_	ns
t _{HOLD_FSE}			_	_	5	_	_	1	_	_	ns
t _{SETUP_FS}	SEL ⁽¹⁶⁾	-	_		5	_	_		_	_	ns
t _{OUTPUT_} s		_	_	_	1	_	_		_	_	VCO clock cycle
FSEL-to-\	/alid Output Transition Time	_	_	_	_	50	_	_	_	_	ns


- 11. The within-device skew is defined as the worst case difference between any two similar delay paths within a single device operating at the same voltage and temperature.
- 12. The part-to-part skew is defined as the absolute worst case difference between any two delay paths on any two devices operating at the same voltage and temperature.
- 13. Cycle-to-cycle jitter definition: The variation in period between adjacent cycles over a random sample of adjacent cycle pairs. T_{JITTER_CC} =T_n-T_{n+1} where T is the time between rising edges of the output signal.
- 14. Period Jitter definition: For a specified amount of time (i.e., 1ms), there are N periods of a signal, and T_n is defined as the average period of that signal. Period jitter is defined as the variation in the period of the output signal for corresponding edges relative to T_n. Parameter guaranteed by design and characterization.
- 15. Using recommended loop filter components.
- 16. See "Timing Diagrams."

TIMING DIAGRAMS

(Conditions: Internal VCO, unless otherwise stated.)

Frequency Programming

Output Frequency Updates to Valid Output

FUNCTIONAL DESCRIPTION

At the core of the SY89534/35L clock synthesizer is a precision PLL driven by a differential or single-ended reference input. For users who wish to supply a crystal input, please use the SY89532L or SY89533L. The PLL output is sent to three banks of outputs. Each bank has its own programmable frequency divider, and the design is optimized to provide very low skew between banks, and very low jitter.

PLL Programming and Operation

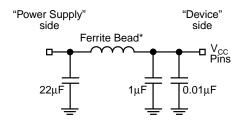
The internal VCO range is 600MHz to 1000MHz, and the feedback ratio is selectable via the MSEL divider control (M3:0 pins). The feedback ratio can be changed without powering the chip down. The PLL output is fed to three banks of outputs: Bank A, Bank B, and Bank C. Banks A and C each have two differential LVPECL output pairs. Bank B has nine differential output pairs. On the SY89534L, Bank B is LVPECL. On the SY89535L, Bank B is LVDS.

Each bank has a separate frequency divider circuit that can be reprogrammed on the fly. The FSEL_x0:2 (where x is A, B, or C) pins control the divider value. The FSEL divider can be programmed in ratios from 2 to 18, and the outputs of Banks A, B, and C can be synchronized after programming by pulsing the OUT_SYNC pin HIGH-LOW-HIGH.

To determine the correct settings for SY89534/35L follow these steps:

- 1. Refer to the "Suggested Selections for Specific Customer Applications" section for common applications, as well as the formula used to compute the output frequency.
- 2. Determine the desired output frequency, such as 66MHz.
- 3. Choose a reference input frequency between 14MHz and 20MHz. The user can also choose a higher input frequency, and use the PSEL pre-divider to divide it down to the 14MHz to 20MHz range. In this example, we choose 18MHz for the reference input frequency. This results in an input/output ratio of 66/18.
- 4. Refer to the "Feedback Divide Select Table" and the "Post-Divide Frequency Select Table" to find values for MSEL and FSEL such that MSEL/FSEL equals the same 66/18 ratio. In this example, values of MSEL=44 and FSEL=12 work.
- 5. Make sure that REFCLK \div PSEL \times MSEL is between 600MHz and 1000MHz.

The user may need to experiment with different REFCLK input frequencies to satisfy these requirements.


Figure 1. External Loop Filter Connection

External Loop Filter Considerations

The SY89534/35L features an external PLL loop filter that allows the user to tailor the PLL's behavior to their application and operating environment. We recommend using ceramic capacitors with NPO or X7R dielectric, as they have very low effective series resistance. For applications that require ultralow cycle-to-cycle jitter, use the components shown in Figure 1. The PLL loop bandwidth is a function of feedback divider ratio, and the external loop filter allows the user to compensate. For instance, the PLL's loop bandwidth can be decreased by using a smaller resistor in the loop filter. This results in less noise from the PLL input, but potentially more noise from the VCO. Refer to "AC Electrical Characteristics" for target PLL loop bandwidth. The designer should take care to keep the loop filter components on the same side of the board and as close as possible to the SY89534/35L's LOOP REF and LOOP_FILTER pins. To insure minimal noise pick-up on the loop filter, it is desirable to cut away the ground plane directly underneath the loop filter component pads and traces. However, the benefit may not be significant in all applications and one must be careful to not alter the characteristic impedance of nearby traces.

Power Supply Filtering Techniques

As with any high-speed integrated circuit, power supply filtering is very important. At a minimum, $V_{CC}A$, $V_{CC}Logic$, and all V_{CCO} pins should be individually connected using a via to the power supply plane, and separate bypass capacitors should be used for each pin. To achieve optimal jitter performance, each power supply pin should use separate instances of the circuit shown in Figure 2.

*For Vcc_Analog,Vcc_ττι, Vcc1, use ferrite bead = 200mA, 0.45Ω DC, Murata P/N BLM21A1025

*For Vcc_out use ferrite bead = 3A, 0.025Ω DC, Murata, P/N BLM31P005

*Component size: 0805

Figure 2. Power Supply Filtering

Output Logic Characteristics

See "Output Termination Recommendations" for illustrations. In cases where single-ended output is desired, the designer should terminate the unused complimentary output in the same manner as the normal output that is being used. Unused LVPECL output pairs can be left floating. Unused LVDS output pairs should be terminated w/100 Ω across the pair.

LVPECL operation:

- Typical voltage swing is 700mV_{PP} to 800mV_{PP} into 50Ω.
- Common mode voltage is V_{CC}-1.3V, typical.
- 100Ω termination across the output pair is NOT recommended for LVPECL. See "Output Termination" section, Figures 3 to 5.

LVDS operation (SY89535L, Bank B)

- Typical voltage swing is 250mV_{PP} to 450mV_{PP} into effective 50Ω.
- Common mode voltage is 1.25V, typical.
- 100Ω termination across differential output pair is fine.

Thermal Considerations

This part has an exposed die pad for enhanced heat dissipation. We strongly recommend soldering the exposed die pad to a ground plane. Where this is not possible, we recommend maintaining at least 500lfpm air flow around the part.

REFCLK Input Interface

The flexible REFCLK inputs are designed to accept any differential to single-ended input signal within 300mV above $V_{\rm CC}$ and 300mV below ground.

Do not leave unused REFCLK inputs floating. Tie either the true or complement inputs to ground, but not both. A logic zero is achieved by connecting the complement input to ground with the true input floating. For a TTL input, tie a $2.5 \mathrm{k}\Omega$ resistor between the complement input and ground. See "Input Interface" section, Figures 4a through 4j.

Input Levels

LVDS, CML and HSTL differential signals may be connected directly to the REFCLK inputs. Depending on the actual worst case voltage seen, the minimum input voltage swing varies as illustrated in the following table:

Input Voltage Range	Minimum Voltage Swing		
0 to 2.4V	100mV		
0 to V _{CC} +0.3	200mV		

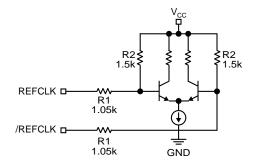


Figure 3. Simplified Input Structure

PRE-DIVIDE FREQUENCY SELECT TABLE (PSEL)

PSEL1 (MSB)	PSEL0	Reference Input Frequency
0	0	REFCLK ÷ 8
0	1	REFCLK ÷ 4
1	0	REFCLK ÷ 2
1	1	REFCLK ÷ 1

POST-DIVIDE FREQUENCY SELECT TABLE (FSEL)

FSEL_A2 ⁽¹⁾ (MSB)	FSEL_A1 ⁽¹⁾	FSEL_A0 ⁽¹⁾ (LSB)	Output Divider
0	0	0	TDB
0	0	1	VCO ÷ 2
0	1	0	VCO ÷ 4
0	1	1	VCO ÷ 6
1	0	0	VCO ÷ 8
1	0	1	VCO ÷ 10
1	1	0	VCO ÷ 12
1	1	1	VCO ÷ 18

^{1.} Same dividers apply to FSEL_B (0:2) and FSEL_C (0:2).

FEEDBACK DIVIDE SELECT TABLE (MSEL)

М3	M2	M1	МО	VCO Frequency ⁽¹⁾
0	0	0	0	REFCLK ÷ PSEL × 34
0	0	0	1	REFCLK ÷ PSEL × 36
0	0	1	0	REFCLK ÷ PSEL × 38
0	0	1	1	REFCLK ÷ PSEL × 40
0	1	0	0	REFCLK ÷ PSEL × 42
0	1	0	1	REFCLK ÷ PSEL × 44
0	1	1	0	REFCLK ÷ PSEL × 48
0	1	1	1	REFCLK ÷ PSEL × 50
1	0	0	0	REFCLK ÷ PSEL × 52
1	0	0	1	REFCLK ÷ PSEL × 54
1	0	1	0	REFCLK ÷ PSEL × 56
1	0	1	1	REFCLK ÷ PSEL × 60
1	1	0	0	REFCLK ÷ PSEL × 62
1	1	0	1	REFCLK ÷ PSEL × 66
1	1	1	0	REFCLK ÷ PSEL × 30
1	1	1	1	REFCLK ÷ PSEL × 32

SUGGESTED SELECTIONS FOR SPECIFIC CUSTOMER APPLICATIONS

Protocol	Rate (MHz)	FSEL (Post Divider)	MSEL (Feedback Div.)	REFCLK (MHz)	PSEL	FOUT
PCI	33	18	36	16.67	1	33
Fast Ethernet	100	6	40	15	1	100
1/8 FC	133	6	52	15.36	1	133
ESCON	200	4	50	16	1	200

 $FOUT = \frac{\left(REFCLK \div PSEL \times MSEL \right)}{FSEL}$

- 1. $600MHz < (REFCLK \div PSEL \times MSEL) < 1000MHz$.
- 2. $14MHz \le (REFCLK \div PSEL) \le 20MHz$.
- 3. Where two settings provide the user with the identical desired frequency, the setting with the higher PLL input reference frequency (and lower feedback divider) will usually have lower output jitter. However, the reference input frequency, as well as the VCO frequency, must be kept within their respective ranges.

INPUT INTERFACE

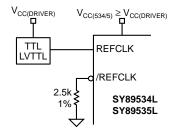


Figure 4a. 5V, 3.3V "TTL"

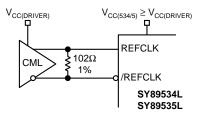


Figure 4b. CML-DC Coupled

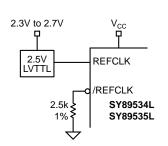


Figure 4c. 2.5V "LVTTL"

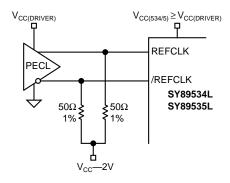


Figure 4d. 3.3V LVPECL-DC Coupled

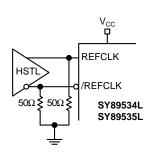


Figure 4e. HSTL

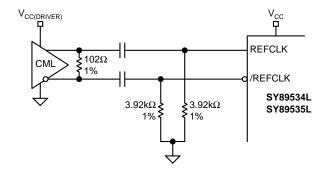


Figure 4f. CML-AC Coupled-Short Trace Lengths

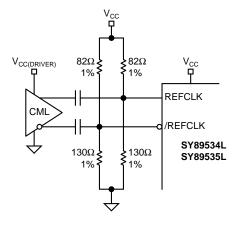


Figure 4g. CML-AC Coupled-Long Trace Lengths

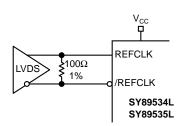


Figure 4h. LVDS

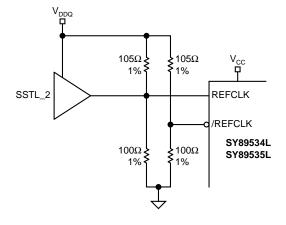


Figure 4i. SSTL_2

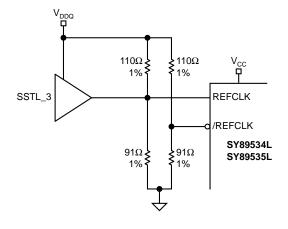


Figure 4j. SSTL_3

OUTPUT TERMINATION RECOMMENDATIONS

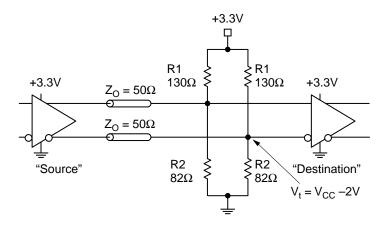


Figure 5. PECL Parallel Termination-Thevenin Equivalent

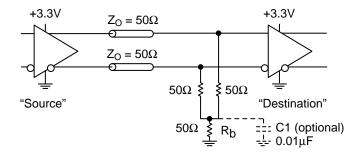


Figure 6. PECL Three-Resistor "Y-Termination"

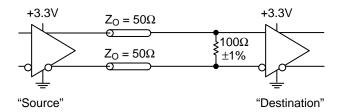
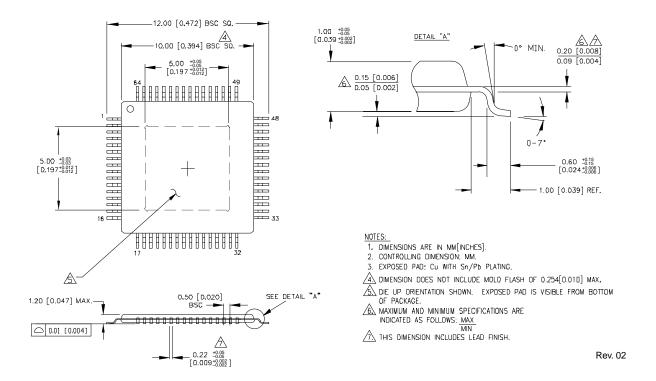
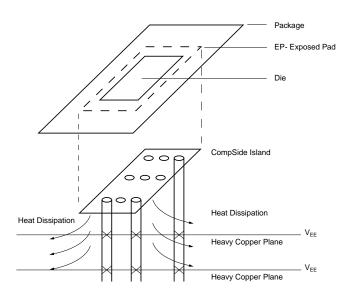




Figure 7. LVDS Differential Termination

- 1. PECL Y-termination is a power-saving alternative to Thevenin termination.
- 2. Place termination resistors as close to destination inputs as possible.
- 3. R_b resistor sets the DC bias voltage, equal to V_t . For +3.3V systems R_b = 46 Ω to 50 Ω .

64 LEAD EPAD-TQFP (DIE UP) (H64-1)

PCB Thermal Consideration for 64-Pin EPAD-TQFP Package

Micrel

MICREL, INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com

The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.

Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2003 Micrel, Incorporated.