53252

90V - 0.8A DUAL POWER MOSFET OPTOCOUPLERS DSCC DWG #5962-03247

Features:

- 8-Pin Dual-In-Line Hermetic Package
- Performance over –55°C to +125°C
- Compact Isolation Solid State Switches
- Continuous Output Current: 0.8 A (1)
- Optically Coupled between Input and Output
- Isolation Tested to 1000 VDC
- High Level of Transient Immunity
- 3 A Output Surge Current
- Shock and Vibration Resistant
- MIL-PRF-38534 screening optional

Applications:

- Military/High Reliability Systems
- Standard 28 VDC and 48 VDC Load Driver
- Aircraft Controls
- Electromechanical and Solid State Relay Replacement
- I/O Modules
- Switching Heaters

DESCRIPTION

The 53252 is two power MOSFET optocouplers in a single 8-pin dual-in-line package suitable for applications where two independent switches are required. The popular hermetic eight-pin dual-in-line ceramic package combined with 1000 VDC isolation between input and output and between two isolated relays, makes this device ideal for solid-state relay applications. Performance is specified over the full military temperature range. This device is available in a variety of quality levels from COTS to class H including any custom screening requirements. Gold plated leads are standard, but other lead finishes per MIL-PRF-38534 are also available.

Functionally, the device operates as two SPST, normally open (2 Form "A") solid-state relays. Each relay is actuated by an input current, which can be driven from a standard TTL device. The input current biases a light emitting diode that is optically coupled to an integrated photovoltaic diode array. The photovoltaic diode array energizes control circuitry that operates the output MOSFET.

ABSOLUTE MAXIMUM RATINGS: (Per relay unless otherwise noted)

RECOMMENDED OPERATING CONDITIONS:

Parameter	Symbol	Min.	Max.	Units
Input Current (ON)	I _{F (ON)}	10	20	mA
Input Voltage (OFF)	V _{F (OFF)}	0	0.6	VDC
Operating Temperature	T _A	-55	+125	°C

ELECTRICAL SPECIFICATIONS

		Conditions	Group A	Device	Limits			
Test	Symbol	$-55^{\circ}C \le T_A \le +125^{\circ}C$ unless otherwise specified.	subgroups	type	Min	Max	Unit	
Output Withstand Voltage	$V_{O(OFF)}$	$V_{FOFF} = 0.6 \text{ V}, I_{O} = 10 \mu\text{A}$	1, 2, 3	All	90		V	
Output On-Resistance 2/	R _(ON)	I_{FON} = 10 mA, I_{O} = 800 mA, pulse duration \leq 30 ms, duty cycles $<$ 10%	1, 2, 3	All		1.2	Ω	
Output Leakage Current	I _{O (OFF)}	V _{FOFF} = 0.6 V, V _O = 90 V	1, 2, 3	All		10	μА	
Input Forward Voltage	V _{FOFF}	I _{FON} = 10 mA	1, 2, 3	All	1.0	1.7	V	
Input Reverse Breakdown Voltage	V _R	I _R = 10 μA	1, 2, 3	All	5.0		V	
Input-Output Isolation Current 3/	I _{I-O}	V_{I-O} = 1000 V dc, t = 5 s, RH \leq 45%, T _A = +25°C	1, 2, 3	All		1.0	μА	
Channel-Channel Isolation Current 3/	I _{ISO}	V_{ISO} = 1000 V dc, t = 5 s, RH \leq 45%, T _A = +25°C	1, 2, 3	All		1.0	μА	
Turn-On Time 2/	t _{ON}	I_{FON} = 10 mA, I_{O} = 800 mA, Pulse duration \leq 30 ms, duty cycles $<$ 10%	1, 2, 3	All		6.0	ms	
Turn-Off time 2/	t _{OFF}	I_{FON} = 10 mA, I_{O} = 800 mA, pulse duration \leq 30 ms, duty cycles < 10%	1, 2, 3	All		2.0	ms	

Notes:

- 1. Maximum average current rating where the case temperature (T_C) is maintained below 120°C.
- 2. During the pulsed R_{ON} measurement (I_O duration < 30 ms), ambient (T_A) and case temperature (T_C) are equal.
- 3. This is a momentary withstand test, not a continuous operating condition.
- Typical junction to case thermal resistance (θ_{JC}) for the device is 15°C/W, where case temperature (T_C) is measured at the center of the package bottom.

CAUTION:

Care should be taken not to exceed the maximum output power dissipation, maximum case temperature, and maximum junction temperature when repetitively switching loads.

Case outlines	X, Y	
Terminal number	Terminal symbol	
1	+ IN 1	
2	- IN 1	
3	- OUT 2	
4	+ OUT 2	
5	+ IN 2	
6	- IN 2	
7	- OUT 1	
8	+ OUT 1	

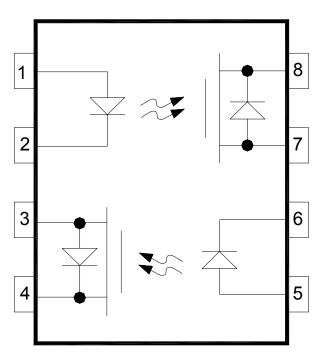
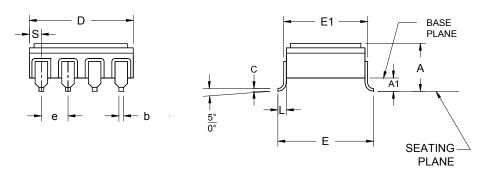
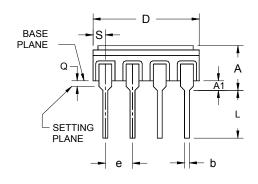
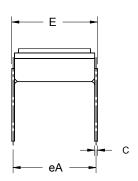



FIGURE 2. Terminal connections.

Input	Output
OFF	OFF
ON	ON


FIGURE 3. Truth table(s).


Case outline X

Symbol	Millimeters		Inches	
Syllibol	Min	Max	Min	Max
Α		6.99		.275
A1	1.40	1.65	.055	.065
b	0.41	0.53	.016	.021
С	0.18	0.33	.007	.013
D	9.40	9.91	.370	.390
е	2.29	2.79	.090	.110
E	9.65	9.91	.380	.390
E1		8.13		.320
Ĺ	1.07	1.32	.042	.052
S	0.89	1.27	.035	.050

Case outline Y

Symbol	Millimeters		Inches		
Syllibol	Min	Max	Min	Max	
Α		6.60		.260	
A1	0.76	1.27	.030	.050	
b	0.41	0.53	.016	.021	
С	0.18	0.33	.007	.013	
D	9.40	9.91	.370	.390	
е	2.29	2.79	.090	.110	
E		8.13		.320	
eA	7.37	7.87	.290	.310	
Ĺ		12.70		.500	
Q	0.51		.020		
S	0.89	1.27	.035	.050	

NOTES:

- 1. The U.S. government preferred system of measurement is the metric SI. This item was designed using inch-pound units of measurement. In case of problems involving conflicts between the metric and in-pound units, the inch-pound units shall rule.
- 2. Pin 1 is indicated by the ESD triangle(s) marked on top of the package.

The following chart explains the ordering procedure for Micropac Part Numbers. Please contact Micropac for other desired options.

Mii DASH NO.	CASE OUTLINE	LEAD FINISH	SCREENING LEVEL PER MIL-PRF-38534
53252-101	Y	SOLDER DIP	NO SCREENING
53252-102	Y	GOLD PLATE	NO SCREENING
53252-103	Y	SOLDER DIP	SCREENING PER TABLE C1X H LEVEL
53252-104	Y	GOLD PLATE	SCREENING PER TABLE C1X H LEVEL
53252-105	Y	SOLDER DIP	SCREENING PER TABLE C1X K LEVEL
53252-106	Y	GOLD PLATE	SCREENING PER TABLE C1X K LEVEL
53252-107	Y	SOLDER DIP	COMPLIANT TO H LEVEL
53252-108	Y	GOLD PLATE	COMPLIANT TO H LEVEL
53252-111	X	SOLDER DIP	SCREENING PER TABLE C1X H LEVEL
53252-112	X	GOLD PLATE	SCREENING PER TABLE C1X H LEVEL
53252-113	X	SOLDER DIP	SCREENING PER TABLE C1X K LEVEL
53252-114	X	GOLD PLATE	SCREENING PER TABLE C1X K LEVEL
53252-115	X	SOLDER DIP	NO SCREENING
53252-116	X	GOLD PLATE	NO SCREENING
53252-117	X	SOLDER DIP	COMPLIANT TO H LEVEL
53252-118	Х	GOLD PLATE	COMPLIANT TO H LEVEL