Lithium Ion Battery Charging Control

Monolithic IC MM1485

Outline

This IC is a lithium ion battery charging controller, with protection circuits such as constant-current, constant-voltage charging and pre-charge, battery temperature detection function and others all on one chip. The timer function on charging IC MM1475 has been omitted to achieve a smaller package.

Features

1. Output voltage (Ta = $0 \sim +50^{\circ}$ C) 4.120±30mV

2. Consumption current 1 1.5mA typ.

Pre-charge function

Adaptor (primary side) abnormality detection function

3. Battery temperature detection function

Package

TSOP-16A

Applications

1. Lithium ion battery charging control

Absolute Maximum Ratings (Ta=25°C)

Item	Symbol	Ratings	Unit
Storage temperature	Tstg	-40~+125	°C
Operating temperature	Topr	-20~+70	°C
Power supply voltage	VCCMAX	-0.3~+15	V
Allowable loss	PD	250	mW

Block Diagram

SW1 and SW2 Specifications

SW1	SW2	Charge Current Limit			
L	Н	OFF			
Н	Н	ON	Controlled by the IC (current limit 2:25mV)		
L	L	ON	Controlled by the adaptor (current limit 1:450mV)		
Н	L	ON	Controlled by the adaptor (current limit 1:450mV)		

Pin Assignment

1	SW1	9	BAT
2	SW2	10	CFB
3	$ m V_{REF}$	11	CNT
4	GND	12	CS
5	ADJ	13	Vcc
6	CDO	14	Vout2
7	Тоит	15	Vout1
8	Трет	16	V _{DET} -TD

Pin Description

Pin No.	Pin Name	I/O	Function		
1	SW1	Input	Charging control switching pin.		
2	SW2	Input	Switches charging ON/OFF and charging current by combinations of SW1 and SW2 L and H.		
3	Vref	Output	Reference power supply output pin. Outputs 1.2V typ. reference voltage.		
4	GND	Input	GROUND pin.		
5	ADJ	Input	Pre-charge current adjustment pin. Pin voltage is set at 100mV typ. Pre-charge current can be adjusted by adjusting the pin voltage with an external resistor, etc. Pre-charge current is controlled by comparing the ADJ pin voltage and voltage drop value of 12dB between Vcc-CS.		
6	Сро	Output	Current detection output pin. Outputs current difference value of 18dB between Vcc-CS.		
7	Тоит	Output	Temperature detection output pin. Normal temperature: Output Tr OFF High temperature detection: Output Tr ON		
8	Трет	Input	Temperature detection input pin. Use external resistor and thermistor to apply resistance-divided potential from reference voltage.		
9	BAT	Input	Battery voltage input pin. Detects battery voltage and controls charging.		
10	CFB	Input	Constant-current control phase compensation pin. Connect an external capacitor (around 100pF) between CFB and CNT to perform phase compensation for improved oscillation.		
11	CNT	Output	Charging control output pin. Controls external PNP-Tr base and performs constant-current, constant-voltage charging.		
12	CS	Input	Current detection pin. Current is detected by voltage drop at external resistor between Vcc-CS and charging current is controlled.		
13	Vcc	Input	Power supply input pin.		
14	Vout2	Output	Adaptor unplugged detection output pin. Vcc low voltage input: Output Tr OFF Vcc recommended operating voltage: Output Tr ON		
15	Vouti	Output	Overvoltage detection output pin. Vcc overvoltage input: Output Tr OFF Vcc recommended operating voltage: Output Tr ON		
16	VDET-TD	Input	Overvoltage detection delay time setting pin. Delay time can be set by connecting an external capacitor.		

Pin Description The following value is typical

Pin No.	Pin name	Internal equivalent circuit diagram	Pin No.	Pin name	Internal equivalent circuit diagram
2	SW1	100k 1.2V	9	BAT	¥ ¥ 8
2	WDEE	100k \$ 10k \$	10	CFB	
3	VREF	Vcc	11	CNT	
5	ADJ	1.2V \$ 177k \$ 16k	12	CS VOUT2	
6	CDO	Vcc	15	VOUT1	
7	TOUT		16	VDET-TD	
8	TDET	Vcc			230k \ 80k \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

Electrical Characteristics (Except where otherwise indicated Ta=25°C, Vcc=5V)

Item	Symbol	Conditions	Measurement pin	Min.	Тур.	Max.	Unit
Consumption current 1	Icc1	SW1, 2 : H	13		1.5	2.3	mA
Consumption current 2	Icc2	SW1, 2 : L	13		3.5	5.3	mA
Reference voltage	Vref		3		1.207		V
ADP detection voltage L	VADPL	Vcc : H→L	14	2.70	2.80	2.90	V
ADP detection voltage L	Vadplw		14	50	100	150	mV
hysteresis voltage width	V ADPLW		14	50	100	130	111 V
ADP detection voltage H	VADPH	Vcc : L→H	15	5.8	6.0	6.2	V
ADP detection voltage H	VADPHW		15	50	100	150	mV
hysteresis voltage width	V ADPHW		15	50	100	130	111 V
BAT pin leak current	I BAT		9			1	μA
BAT pin output voltage	VBAT	Ta=0~+50°C	9	4.090	4.120	4.150	V
CNT pin output voltage	VCNT	Icnt=20mA	11			0.5	V
SW1 pin input current	Isw ₁		1	40	60	80	μA
SW1 pin input voltage H	Vsw1H		1	0.6		1.20	V
SW1 pin input voltage L	V _{SW1L}		1			0.25	V
SW2 pin input current	Isw2		2	40	60	80	μA
SW2 pin input voltage H	Vsw2H		2	0.6		1.20	V
SW2 pin input voltage L	V _{SW2L}		2			0.25	V
Current limit 1	V _{L1}	Quick charge	12,13	0.35	0.45	0.55	V
Current limit 2	V_{L2}	Pre-charge	12,13	20	25	30	mV
Current detection amp gain	Gı		6	17.5	18.0	18.5	dB
Current detection amp output offset voltage	Voff		6	-4.5	0	4.5	mV
Current detection amp output current outflow	Icdo		6	0.5	1.0		mA
Vоит1 pin output voltage	Vout1	Iout1=0.12mA	15		0.2	0.4	V
Vout2 pin output voltage	V _{OUT2}	Iout2=0.12mA	14		0.2	0.4	V
Battery temperature detection voltage	V _{TDET}	$V_{TDET}: H \rightarrow L$	8	0.390	0.413	0.435	V
Battery temperature detection voltage	Varrani		8	30	60	90	mV
hysteresis voltage width	VTDETW		0	30	00	90	mV
Touт pin output voltage	VTOUT	Ітоит=0.12mА	7		0.2	0.4	V
TDET input bias current	Iτ		8		30	150	nA

^{*} Current limits 1 and 2 are prescribed by the amount of current detection resistor voltage drop.

^{*} Safety can not be guaranteed if this IC is damaged and control no longer is possible. Please protect with something other than this IC.

Measuring Circuit

Measurement Procedures (Except where otherwise indicated Ta = 25°C, Vcc = 5V, Vcc: current limit 0.5A, V1 = V2 = 0V, V9 = 4.2V, S6, 7, 8, 11, 14, 15: A)

Item	Measurement Procedure		
Consumption current 1	Measure A13 current value Icc1 at V1 = V2 = 1.2V.		
Consumption current 2	Measure A13 current value Icc2.		
Reference voltage	Measure T3 potential V _{REF} .		
ADP detection voltage L	Gradually lower Vcc from 5V. Vcc potential is VADPL when T14 potential goes above Vcc – 0.5V.		
ADP detection voltage L	Gradually raise Vcc from 2V. Vcc potential is VADP12 when T14 potential goes		
hysteresis voltage width	under 0.5V. Vadplw = Vadpl2 – Vadpl		
ADP detection voltage H	Gradually raise Vcc from 5V. Vcc potential is VADPH when T15 potential goes above Vcc – 0.5V.		
ADP detection voltage H	Gradually lower Vcc from 7V. Vcc potential is VADPH2 when T15 potential goes		
hysteresis voltage width	under 0.5V. Vadphw = Vadph – Vadph2.		
BAT pin leak current	Vcc = 0V, S11: B, V11 = 0V. Measure A9 current value I _{BAT} .		
BAT pin output voltage	Gradually raise V9 from 3.5V. T9 potential is V _{BAT} when the potential difference between T13–T12 is 20mV or less.		
CNT pin output voltage	V9 = 3.5V, S11: B. Gradually raise V11 from 0V. T11 potential is VCNT when A11		
	current value is 20mA.		
SW1 pin input current	Measure A1 current value Iswı.		
SW1 pin input voltage H	V9 = 3.5V, V2 = 1.2V. Raise V1 from 0V to 1.2V. Identify Vsw1 H or L; when A9		
SW1 pin input voltage L	is 50mA or higher, charging ON at current limit 2, and when A9 is 1mA or		
	lower, charging is OFF. Measure A2 current value Isw2.		
SW2 pin input current	V9 = 3.5V. Raise V2 from 0V to 1.2V. Identify Vsw ₂ H or L; when A9 is 450mA		
SW2 pin input voltage H	or higher, charging ON at current limit 1, and when A9 is 1mA or lower,		
SW2 pin input voltage L	charging is OFF.		
	V9 = 3.5V. Gradually raise Vcc current limit value and measure the potential		
Current limit 1	difference between T13–T12, V _{L1} .		
Current limit 2	$V9 = 2.5V$, $V1 = V2 = 1.2V$. Potential difference between T13–T12 is V_{12} .		
	V9 = 3.5V. The potential difference fluctuation between T13–T12 when Vcc		
Current detection amp gain	current limit value is changed from 100mA to 200mA is ∠Va and the T6		
Current detection amp gain	potential fluctuation is⊿Vb.		
	$G_1 = 20\log \triangle Vb/\triangle Va $		
Current detection amp	V9 = 4.0V. T6 potential is Vb2 when Vcc current limit is 100mA.		
output offset voltage	Voff = Vb2/8 - 30mV		
Current detection amp	V9 = 3.5V, Vcc current limit value is 300mA, S6: B, V6 = 0V. Measure A6		
output current outflow	current value. S15: B. Gradually raise V15 from 0V. T15 potential is Vout when A15 current		
Vоитт pin output voltage	value is 0.12mA.		
Vout2 pin output voltage	S14: B. Gradually raise V14 from 0V. T14 potential is Vout2 when A14 current value is 0.12mA.		
Battery temperature detection	S8: B. Gradually lower V8 from 0.6V. T8 potential is VTDET when T7 potential is		
voltage hysteresis voltage width	0.3V or under.		
Battery temperature detection	S8: B. Gradually raise V8 from 0V. T8 potential is VTDET2 when T7 potential is		
voltage hysteresis voltage width	0.8V or higher. Vtdetw = Vtdetz - Vtdet.		
Тоит pin output voltage	S8: B, V8 = 0V, S7: B. Gradually raise V7 from 0V. T7 potential is V _{TOUT} when A7 current value is 0.12mA.		
TDET input bias current	S8: B, V8 = 0V. Measure A8 potential value IT.		

Timing Chart

Application Circuits

