

172-pin Unbuffered DDR MicroDIMM Based on DDR333/266 16Mx16 SDRAM

Features

- 172-pin Micro Dual In-Line Memory Module (MicroDIMM)
- 16Mx64 Double Unbuffered DDR MicroDIMM based on 16Mx16 DDR SDRAM.
- Performance:

	PC2700	PC2100	
Speed Sort	-6K	-75B	Unit
DIMM CAS Latency	2.5	2.5	
f CK Clock Frequency	166	133	MHz
t CK Clock Cycle	6	7.5	ns
f DQ DQ Burst Frequency	333	266	MHz

- Intended for 133 MHz and 166 MHz applications
- Inputs and outputs are SSTL-2 compatible
- VDD = 2.5Volt \pm 0.2, VDDQ = 2.5Volt \pm 0.2
- SDRAMs have 4 internal banks for concurrent operation
- Module has two physical banks
- Differential clock inputs
- Data is read or written on both clock edges

- DRAM DLL aligns DQ and DQS transitions with clock transitions.
- Address and control signals are fully synchronous to positive clock edge
- Programmable Operation:
 - DIMM CAS Latency: 2, 2.5
 - Burst Type: Sequential or Interleave
 - Burst Length: 2, 4, 8
 - Operation: Burst Read and Write
- Auto Refresh (CBR) and Self Refresh Modes
- Automatic and controlled precharge commands
- 13/9/1 Addressing (row/column/bank)
- 7.8 μs Max. Average Periodic Refresh Interval
- Serial Presence Detect
- Gold contacts
- SDRAMs in 66-pin TSOP Type II Package

Description

NT128D64SH4B0GA is an unbuffered 172-pin Double Data Rate (DDR) Synchronous DRAM Micro Dual In-Line Memory Module (MicroDIMM), organized as a one-bank 16Mx64 high-speed memory array. The module uses four 16Mx16 DDR SDRAMs in 400 mil TSOP-II packages. All NANYA DDR SDRAM DIMMs provide a high-performance, flexible 8-byte interface in a 45.5mm long space-saving footprint.

The DIMM is intended for use in applications operating up to 166 MHz clock speeds and achieves high-speed data transfer rates of up to 333 MHz. Prior to any access operation, the device CAS latency and burst type/ length/operation type must be programmed into the DIMM by address inputs A0-A12 and I/O inputs BA0 and BA1 using the mode register set cycle.

The DIMM uses serial presence-detect implemented via a serial 2,048-bit EEPROM using a standard IIC protocol. The first 128 bytes of serial PD data are programmed and locked during module assembly. The remaining 128 bytes are available for use by the customer.

Ordering Information

Part Number	Spe	ed		Organization	Leads	Power
	166MHz (6ns @ CL = 2.5)		D 00700			
NT128D64SH4B0GA-6K	133MHz (7.5ns @ CL = 2)	DDR333	PC2700		Gold	0.51/
	133MHz (7.5ns @ CL = 2.5)		DO 0400	16Mx64		2.5V
NT128D64SH4B0GA-75B	100MHz (10ns @ CL = 2)	DDR266B	PC2100			

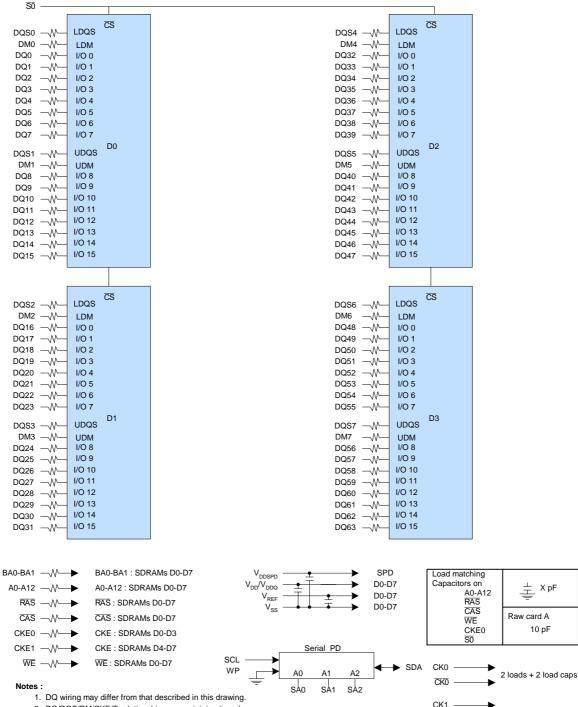
Pin Description

CK0, CK1, CK0, CK1	Differential Clock Inputs	DQ0-DQ63	Data input/output
CKE0	Clock Enable	DQS0-DQS7	Bi-directional data strobes
RAS	Row Address Strobe	DM0-DM7	Input Data Mask
CAS	Column Address Strobe	VDD	Power (2.5V)
WE	Write Enable	Vddq	Supply voltage for DQs (2.5V)
SO	Chip Selects	Vss	Ground
A0-A9, A11, A12	Address Inputs	NC	No Connect
A10/AP	Address Input/Autoprecharge	SCL	Serial Presence Detect Clock Input
BA0, BA1	SDRAM Bank Address Inputs	SDA	Serial Presence Detect Data input/output
VREF	Ref. Voltage for SSTL_2 inputs	SA0-2	Serial Presence Detect Address Inputs
Vddd	VDD Identification flag (Not used when VDD=VDDQ)	VDDSPD	Serial EEPROM positive power supply (2.5V)

Pinout

Pin	Front	Pin	Back	Pin	Front	Pin	Back	Pin	Front	Pin	Back	Pin	Front	Pin	Back
1	V_{REF}	2	V_{REF}	45	V_{DD}	46	V_{DD}	89	V_{DD}	90	V_{DD}	133	V _{SS}	134	CK1
3	V_{SS}	4	V_{SS}	47	DQS2	48	DM2	91	BA0	92	RAS	135	V _{SS}	136	V_{SS}
5	DQ0	6	DQ4	49	DQ18	50	DQ22	93	WE	94	CAS	137	DQ48	138	DQ52
7	DQ1	8	DQ5	51	Vss	52	V_{SS}	95	SO	96	NC	139	DQ49	140	DQ53
9	V_{DD}	10	V_{DD}	53	DQ19	54	DQ23	97	A13	98	RFU	141	V_{DD}	142	V_{DD}
11	DQS0	12	DM0	55	DQ24	56	DQ28	99	Vss	100	V_{SS}	143	DQS6	144	DM6
13	DQ2	14	DQ6	57	V_{DD}	58	V_{DD}	101	DQ32	102	DQ36	145	DQ50	146	DQ54
15	V_{SS}	16	V_{SS}	59	DQ25	60	DQ29	103	DQ33	104	DQ37	147	Vss	148	V_{SS}
17	DQ3	18	DQ7	61	DQS3	62	DM3	105	V_{DD}	106	V_{DD}	149	DQ51	150	DQ55
19	DQ8	20	DQ12	63	V _{ss}	64	V_{SS}	107	DQS4	108	DM4	151	DQ56	152	DQ60
21	V_{DD}	22	V_{DD}	65	DQ26	66	DQ30	109	DQ34	110	DQ38	153	V_{DD}	154	V_{DD}
23	DQ9	24	DQ13	67	DQ27	68	DQ31	111	V_{SS}	112	V_{SS}	155	DQ57	156	DQ61
25	DQS1	26	DM1	69	V_{DD}	70	V_{DD}	113	DQ35	114	DQ39	157	DQS7	158	DM7
27	V_{SS}	28	V_{SS}	71	NC	72	CKE0	115	DQ40	116	DQ44	159	V _{ss}	160	V_{SS}
29	DQ10	30	DQ14	73	A12	74	A11	117	V_{DD}	118	V_{DD}	161	DQ58	162	DQ62
31	DQ11	32	DQ15	75	A9	76	A8	119	DQ41	120	DQ45	163	DQ59	164	DQ63
33	V_{DD}	34	V_{DD}	77	A7	78	A6	121	DQS5	122	DM5	165	V _{DD}	166	V_{DD}
35	CK0	36	V_{DD}	79	V_{SS}	80	V_{SS}	123	V_{SS}	124	V_{SS}	167	SDA	168	SA0
37	<u>CK0</u>	38	V_{SS}	81	A5	82	A4	125	DQ42	126	DQ46	169	SCL	170	SA1
39	V_{SS}	40	V_{SS}	83	A3	84	A2	127	DQ43	128	DQ47	171	$V_{\text{DD}}\text{SPD}$	172	SA2
41	DQ16	42	DQ20	85	A1	86	A0	129	V_{DD}	130	V_{DD}				
43	DQ17	44	DQ21	87	A10/AP	88	BA1	131	V_{DD}	132	CK1				

Note: All pin assignments are consistent for all 8-byte unbuffered versions.



Input/Output Functional Description

Symbol	Туре	Polarity	Function
CK0, CK1	(SSTL)	Positive Edge	The positive line of the differential pair of system clock inputs. All the DDR SDRAM address and control inputs are sampled on the rising edge of their associated clocks.
CKO, CK1	(SSTL)	Negative Edge	The negative line of the differential pair of system clock inputs.
CKE0	(SSTL)	Active High	Activates the SDRAM CK signal when high and deactivates the CK signal when low. By deactivating the clocks, CKE low initiates the Power Down mode, or the Self-Refresh mode.
SO	(SSTL)	Active Low	Enables the associated SDRAM command decoder when low and disables the command decoder when high. When the command decoder is disabled, new commands are ignored but previous operations continue.
RAS, CAS, WE	(SSTL)	Active Low	When sampled at the positive rising edge of the clock, \overline{RAS} , \overline{CAS} , \overline{WE} define the operation to be executed by the SDRAM.
VREF	Supply		Reference voltage for SSTL-2 inputs
VDDQ	Supply		Isolated power supply for the DDR SDRAM output buffers to provide improved noise immunity
BA0, BA1	(SSTL)	-	Selects which SDRAM bank is to be active.
A0 - A9 A10/AP A11, A12	(SSTL)	-	During a Bank Activate command cycle, A0-A12 defines the row address (RA0-RA12) when sampled at the rising clock edge. During a Read or Write command cycle, A0-A8 defines the column address (CA0-CA8) when sampled at the rising clock edge. In addition to the column address, AP is used to invoke Auto-precharge operation at the end of the Burst Read or Write cycle. If AP is high, auto-precharge is selected and BA0/BA1 define the bank to be precharged. If AP is low, auto-precharge command cycle, AP is used in conjunction with BA0/BA1 to control which bank(s) to precharge. If AP is high all 4 banks will be precharged regardless of the state of BA0/BA1. If AP is low, then BA0/BA1 are used to define which bank to pre-charge.
DQ0 - DQ63	(SSTL)	-	Data and Check Bit input/output pins operate in the same manner as on conventional DRAMs.
DQS0 - DQS7	(SSTL)	Active High	Data strobes: Output with read data, input with write data. Edge aligned with read data, centered on write data. Used to capture write data.
DM0 - DM7	Input	Active High	The data write masks, associated with one data byte. In Write mode, DM operates as a byte mask by allowing input data to be written if it is low but blocks the write operation if it is high. In Read mode, DM lines have no effect. DM8 is associated with check bits CB0-CB7, and is not used on x64 modules.
VDD, VSS	Supply		Power and ground for the DDR SDRAM input buffers and core logic
SA0 - SA2		-	Address inputs. Connected to either VDD or VSS on the system board to configure the Serial Presence Detect EEPROM address.
SDA		-	This bi-directional pin is used to transfer data into or out of the SPD EEPROM. A resistor must be connected from the SDA bus line to V DD to act as a pullup.
SCL		-	This signal is used to clock data into and out of the SPD EEPROM. A resistor may be connected from the SCL bus time to V DD to act as a pullup.
V DDSPD	Supply		Serial EEPROM positive power supply.

Functional Block Diagram (1 Bank, 16Mx16 DDR SDRAMs)

- 2. DQ/DQS/DM/CKE/S relationships are maintained as shown.
- 3. DQ/DQS/DM/DQS resistors are 22+/- 5% Ohms.

CK1

2 loads + 2 load caps

Serial Presence Detect -- Part 1 of 2

16Mx64 SDRAM DIMM based on 16Mx16, 4Banks, 8K Refresh, 2.5V DDR SDRAMs with SPD

Byte	Description	SPD Er	trv Value		Data Entry lecimal)	Note		
Буте	Description	DDR333 -6K	DDR266B -75B	DDR333 DDR266B -6K -75B				
0	Number of Serial PD Bytes Written during Production	1	28	80				
1	Total Number of Bytes in Serial PD device	256		08		08		
2	Fundamental Memory Type	SDRAM DDR		07		07		
3	Number of Row Addresses on Assembly	13		0D				
4	Number of Column Addresses on Assembly	9		09				
5	Number of DIMM Bank		1	C)1			
6	Data Width of Assembly	×	(64	40				
7	Data Width of Assembly (cont')	×	(64	C	00			
8	Voltage Interface Level of this Assembly	SSTL 2.5V		C)4			
9	DDR SDRAM Device Cycle Time at CL=2.5	6ns	7.5ns	60	75			
10	DDR SDRAM Device Access Time from Clock at CL=2.5	0.7ns	0.75ns	70	75			
11	DIMM Configuration Type	Non	-Parity	C	00			
12	Refresh Rate/Type		(7.8us)	82				
13	Primary DDR SDRAM Width		(16	10		,		
14	Error Checking DDR SDRAM Device Width		J/A	00				
15	DDR SDRAM Device Attr: Min CLK Delay, Random Col Access		Clock)1			
16	DDR SDRAM Device Attributes: Burst Length Supported	2	4,8	0)E			
17	DDR SDRAM Device Attributes: Number of Device Banks		4	04				
18	DDR SDRAM Device Attributes: CAS Latencies Supported	2/2.5	2/2.5	0C	0C			
19	DDR SDRAM Device Attributes: CS Latency		0	01				
20	DDR SDRAM Device Attributes: WE Latency		1	02				
21	DDR SDRAM Device Attributes:	Differen	tial Clock	20				
22	DDR SDRAM Device Attributes: General		age Tolerance					
23	Minimum Clock Cycle at CL=2	7.5ns	10ns	75	A0			
24	Maximum Data Access Time from Clock at CL=2	0.70ns	0.75ns	70	75			
25	Minimum Clock Cycle Time at CL=1		V/A		00			
26	Maximum Data Access Time from Clock at CL=1		V/A		00			
27	Minimum Row Precharge Time (tRP)	18ns	20ns	48	50			
28	Minimum Row Active to Row Active delay (tRRD)	12ns	15ns	30	3C			
29	Minimum RAS to CAS delay (tRCD)	12/13 18ns	20ns	48	50	-		
30	Minimum RAS Pulse Width (tRAS)	42ns	45ns	40 2A	2D	-		
31	Module Bank Density		8MB		20	-		
32	Address and Command Setup Time Before Clock	0.75ns	0.9ns	75	90	-		
33	Address and Command Hold Time After Clock	0.75ns	0.9ns	75	90	-		
34	Data Input Setup Time Before Clock	0.45ns	0.5ns	45	50			
35	Data Input Hold Time After Clock	0.45hs	0.5hs	45	50	-		
36-61	Reserved		efined)0			
62	SPD Revision	Initial		00	00			
62 63	Checksum Data	IIIIudi	Initial	 F1	A6			

Serial Presence Detect -- Part 2 of 2

16Mx64 SDRAM DIMM based on 16Mx16, 4Banks, 8K Refresh, 2.5V DDR SDRAMs with SPD

33 DDR266B -75B NANYA N/A	-	DDR266B -75B 300000000	Note
NANYA	7F7F7F0	300000000	
	-		
N/A	C		
	00		
N/A	00	00	
N/A		00	
r/Week Code	yy/ww		1, 2
rial Number	(00	
Undefined 00			
r	N/A r/Week Code rial Number	N/A (r/Week Code yy, rial Number (N/A 00 r/Week Code yy/ww rial Number 00

2. ww= Binary coded decimal year code, 01-52(Decimal), 01-34(Hex)

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V _{IN} , V _{OUT}	Voltage on I/O pins relative to Vss	-0.5 to VDDQ+0.5	V
V _{IN}	Voltage on Input relative to Vss	-0.5 to +3.6	V
V _{DD}	Voltage on VDD supply relative to Vss	-0.5 to +3.6	V
V _{DDQ}	Voltage on VDDQ supply relative to Vss	-0.5 to +3.6	V
T _A	Operating Temperature (Ambient)	0 to +70	°C
T _{STG}	Storage Temperature (Plastic)	-55 to +150	°C
PD	Power Dissipation	4	W
IOUT	Short Circuit Output Current	50	mA

Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Capacitance

Parameter	Symbol	Max.	Units	Notes
Input Capacitance: CK0, CK0, CK1, CK1, CK2, CK2	CI1	TBD	pF	1
Input Capacitance: A0-A12, BA0, BA1, WE, RAS, CAS, CKE0, SO	CI2	TBD	pF	1
Input Capacitance: SA0-SA2, SCL	CI4	TBD	pF	1
Input/Output Capacitance: DQ0-63; DQS0-7	CIO1	TBD	pF	1, 2
Input/Output Capacitance: SDA	Сюз	TBD	pF	

1. VDDQ = VDD = 2.5V ± 0.2V, f = 100 MHz, TA = 25 °C, VOUT (DC) = VDDQ/2, VOUT (Peak to Peak) = 0.2V.

2. DQS inputs are grouped with I/O pins reflecting the fact that they are matched in loading to DQ and DQS to facilitate trace matching at the board level.

DC Electrical Characteristics and Operating Conditions

(TA = 0 °C ~ 70 °C; V_{DDQ} = 2.5V ± 0.2V; V_{DD} = 2.5V ± 0.2V, See AC Characteristics)

Symbol	Parameter	Min	Max	Units	Notes
Vdd	Supply Voltage	2.3	2.7	V	1
Vddq	I/O Supply Voltage	2.3	2.7	V	1
VSS, VSSQ	Supply Voltage, I/O Supply Voltage	0	0	V	
Vref	I/O Reference Voltage	0.49 x Vddq	0.51 x Vddq	V	1, 2
VTT	I/O Termination Voltage (System)	Vref - 0.04	Vref + 0.04	V	1, 3
VIH (DC)	Input High (Logic1) Voltage	Vref + 0.15	Vddq + 0.3	V	1
VIL (DC)	Input Low (Logic0) Voltage	-0.3	Vref - 0.15	V	1
VIN (DC)	Input Voltage Level, CK and CK Inputs	-0.3	Vddq + 0.3	V	1
VID (DC)	Input Differential Voltage, CK and CK Inputs	0.30	V ddq + 0.6	V	1, 4
lı	Input Leakage Current Any input $0V \le VIN \le VDD$; (All other pins not under test = 0V)	-5	5	uA	1
loz	Output Leakage Current (DQs are disabled; $0V \le V_{out} \le V_{DDQ}$	-5	5	uA	1
Іон	Output High Current (VOUT = VDDQ -0.373V, min VREF, min VTT)	-16.8	-	mA	1
IOL	Output Low Current (VOUT = 0.373, max VREF, max VTT)	16.8	-	mA	1

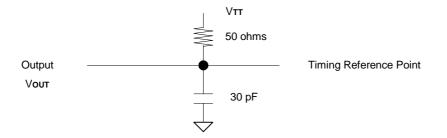
1. Inputs are not recognized as valid until VREF stabilizes.

2. VREF is expected to be equal to 0.5 V DDQ of the transmitting device, and to track variations in the DC level of the same.

Peak-to-peak noise on VREF may not exceed 2% of the DC value.

3. VTT is not applied directly to the DIMM. VTT is a system supply for signal termination resistors, is expected to be set equal to VREF, and must track variations in the DC level of VREF.

4. VID is the magnitude of the difference between the input level on CK and the input level on CK.



AC Characteristics

(Notes 1-5 apply to the following Tables; Electrical Characteristics and DC Operating Conditions, AC Operating Conditions, Operating, Standby, and Refresh Currents, and Electrical Characteristics and AC Timing.)

- Conditions, Operating, Standby, and Refresh Currents, and Electrical Characteristics and
- 1. All voltages referenced to Vss.
- 2. Tests for AC timing, IDD, and electrical, AC and DC characteristics, may be conducted at nominal reference/supply voltage levels, but the related specifications and device operation are guaranteed for the full voltage range specified.
- 3. Outputs measured with equivalent load. Refer to the AC Output Load Circuit below.
- 4. AC timing and IDD tests may use a VIL to VIH swing of up to 1.5V in the test environment, but input timing is still referenced to VREF (or to the crossing point for CK, \overline{CK}), and parameter specifications are guaranteed for the specified AC input levels under normal use conditions. The minimum slew rate for the input signals is 1V/ns in the range between VIL (AC) and VIH (AC) unless otherwise specified.
- 5. The AC and DC input level specifications are as defined in the SSTL_2 Standard (i.e. the receiver effectively switches as a result of the signal crossing the AC input level, and remains in that state as long as the signal does not ring back above (below) the DC input LOW (HIGH) level.

AC Output Load Circuits

AC Operating Conditions

(TA = 0 °C ~ 70 °C; V_{DDQ} = 2.5V ± 0.2V; V_{DD} = 2.5V ± 0.2V, See AC Characteristics)

Symbol	Parameter/Condition	Min	Max	Unit	Notes
VIH (AC)	Input High (Logic 1) Voltage	V ref + 0.31		V	1, 2
VIL (AC)	Input Low (Logic 0) Voltage		V ref - 0.31	V	1, 2
VID (AC)	Input Differential Voltage, CK and CK Inputs	0.62	V DDQ + 0.6	V	1, 2, 3
VIX (AC)	Input Differential Pair Cross Point Voltage, CK and $\overline{\text{CK}}$ Inputs	(0.5*VDDQ) - 0.2	(0.5*VDDQ) + 0.2	V	1, 2, 4

1. Input slew rate = 1V/ns.

2. Inputs are not recognized as valid until V REF stabilizes.

3. V ID is the magnitude of the difference between the input level on CK and the input level on CK.

4. The value of V IX is expected to equal 0.5*V DDQ of the transmitting device and must track variations in the DC level of the same.

Operating, Standby, and Refresh Currents

(TA = 0 °C ~ 70 °C; V_{DDQ} = 2.5V ± 0.2V; V_{DD} = 2.5V ± 0.2V, See AC Characteristics)

Operating Current: one bank; active/precharge; tRC = tRC (MIN); tCK = tCK MIN); DQ, DM, and DQS inputs changing twice per clock cycle; address nd control inputs changing once per clock cycle Operating Current: one bank; active/read/precharge; Burst = 2; tRC = tRC MIN); CL=2.5; tCK = tCK (MIN); IOUT = 0mA; address and control inputs	460	380	mA	1, 2
MIN); CL=2.5; tCK = tCK (MIN); IOUT = 0mA; address and control inputs		1		., 2
hanging once per clock cycle	700	520	mA	1, 2
recharge Power-Down Standby Current: all banks idle; power-down node; CKE \leq VIL (MAX); tCK = tCK (MIN)	50	50	mA	1, 2
dle Standby Current: CS \geq VIH (MIN); all banks idle; CKE \geq VIH (MIN); tCK = CK (MIN); address and control inputs changing once per clock cycle	220	180	mA	1, 2
active Power-Down Standby Current: one bank active; power-down mode; CKE \leq VIL (MAX); tCK = tCK (MIN)	50	50	mA	1, 2
ctive Standby Current: one bank; active/precharge; CS \geq VIH (MIN); CKE \geq /IH (MIN); trC = trAS (MAX); tcK = tcK (MIN); DQ, DM, and DQS inputs hanging twice per clock cycle; address and control inputs changing once er clock cycle	280	240	mA	1, 2
Operating Current: one bank; Burst = 2; reads; continuous burst; address nd control inputs changing once per clock cycle; DQ and DQS outputs hanging twice per clock cycle; $CL = 2.5$; tcK = tcK (MIN); IOUT = 0mA	1400	1160	mA	1, 2
Derating Current: one bank; Burst = 2; writes; continuous burst; address nd control inputs changing once per clock cycle; DQ and DQS inputs hanging twice per clock cycle; CL=2.5; tCK = tCK (MIN)	680	560	mA	1, 2
uto-Refresh Current: tRC = tRFC (MIN)	900	760	mA	1, 2, 4
self-Refresh Current: CKE \leq 0.2V	12	12	mA	1, 2
Derating Current: four bank; four bank interleaving with BL = 4, address nd control inputs randomly changing; 50% of data changing at every ansfer; tRC = tRC (min); IOUT = 0mA.	1680	1440	mA	1, 2
	le Standby Current: CS \geq VIH (MIN); all banks idle; CKE \geq VIH (MIN); tCK = K (MIN); address and control inputs changing once per clock cycle stive Power-Down Standby Current: one bank active; power-down mode; KE \leq VIL (MAX); tCK = tCK (MIN) stive Standby Current: one bank; active/precharge; CS \geq VIH (MIN); CKE \geq H (MIN); tRC = tRAS (MAX); tCK = tCK (MIN); DQ, DM, and DQS inputs anging twice per clock cycle; address and control inputs changing once er clock cycle berating Current: one bank; Burst = 2; reads; continuous burst; address and control inputs changing once per clock cycle; DQ and DQS outputs anging twice per clock cycle; CL = 2.5; tCK = tCK (MIN); IOUT = 0mA berating Current: one bank; Burst = 2; writes; continuous burst; address and control inputs changing once per clock cycle; DQ and DQS outputs anging twice per clock cycle; CL = 2.5; tCK = tCK (MIN); to-Refresh Current: tRC = tRFC (MIN) eff-Refresh Current: tRC = tRFC (MIN) eff-Refresh Current: CKE \leq 0.2V berating Current: four bank; four bank interleaving with BL = 4, address ad control inputs randomly changing; 50% of data changing at every	Dde; CKE \leq VIL (MAX); tCK = tCK (MIN)220e Standby Current: CS \geq VIH (MIN); all banks idle; CKE \geq VIH (MIN); tCK = K (MIN); address and control inputs changing once per clock cycle220trive Power-Down Standby Current: one bank active; power-down mode; KE \leq VIL (MAX); tCK = tCK (MIN)50trive Standby Current: one bank; active/precharge; CS \geq VIH (MIN); CKE \geq H (MIN); tRC = tRAS (MAX); tCK = tCK (MIN); DQ, DM, and DQS inputs anging twice per clock cycle; address and control inputs changing once er clock cycle280berating Current: one bank; Burst = 2; reads; continuous burst; address id control inputs changing once per clock cycle; DQ and DQS outputs anging twice per clock cycle; CL = 2.5; tCK = tCK (MIN); IOUT = 0mA1400berating Current: one bank; Burst = 2; writes; continuous burst; address id control inputs changing once per clock cycle; DQ and DQS inputs anging twice per clock cycle; CL = 2.5; tCK = tCK (MIN) to-Refresh Current: tRC = tRFC (MIN)900elf-Refresh Current: tRC = tRFC (MIN) to-Refresh Current: CKE \leq 0.2V12berating Current: four bank; four bank interleaving with BL = 4, address id control inputs randomly changing; 50% of data changing at every unsfer; tRC = tRC (min); IOUT = 0mA.1680	bde; CKE \leq VIL (MAX); tCK = tCK (MIN)1111e Standby Current: CS \geq VIH (MIN); all banks idle; CKE \geq VIH (MIN); tCK = K (MIN); address and control inputs changing once per clock cycle220180trive Power-Down Standby Current: one bank active; power-down mode; KE \leq VIL (MAX); tCK = tCK (MIN)5050trive Standby Current: one bank; active/precharge; CS \geq VIH (MIN); CKE \geq H (MIN); tCC = tRAS (MAX); tCK = tCK (MIN); DQ, DM, and DQS inputs anging twice per clock cycle; address and control inputs changing once er clock cycle280240berating Current: one bank; Burst = 2; reads; continuous burst; address anging twice per clock cycle; CL = 2.5; tCK = tCK (MIN); IOUT = 0mA14001160berating Current: one bank; Burst = 2; writes; continuous burst; address anging twice per clock cycle; CL = 2.5; tCK = tCK (MIN); IOUT = 0mA680560berating Current: one bank; Burst = 2; writes; continuous burst; address anging twice per clock cycle; CL = 2.5; tCK = tCK (MIN) tto-Refresh Current: tRC = tRFC (MIN)900760eff-Refresh Current: tRC = tRFC (MIN)9007601212berating Current: four bank; four bank interleaving with BL = 4, address ad control inputs randomly changing; 50% of data changing at every unsfer; tRC = tRC (min); IOUT = 0mA.16801440	bde; CKE \leq VIL (MAX); tCK = tCK (MIN)mAe Standby Current: CS \geq VIH (MIN); all banks idle; CKE \geq VIH (MIN); tCK = K (MIN); address and control inputs changing once per clock cycle220180mAtitve Power-Down Standby Current: one bank active; power-down mode; CE \leq VIL (MAX); tCK = tCK (MIN)5050mAtitve Standby Current: one bank; active/precharge; CS \geq VIH (MIN); CKE \geq H (MIN); tRC = tRAS (MAX); tCK = tCK (MIN); DQ, DM, and DQS inputs anging twice per clock cycle; address and control inputs changing once r clock cycle280240mAperating Current: one bank; Burst = 2; reads; continuous burst; address anging twice per clock cycle; CL = 2.5; tCK = tCK (MIN); IOUT = 0mA1160mAperating Current: one bank; Burst = 2; writes; continuous burst; address anging twice per clock cycle; CL = 2.5; tCK = tCK (MIN); tot-Refresh Current: tRC = tRFC (MIN)900760mAeff-Refresh Current: tRC = tRFC (MIN)900760mAmAeff-Refresh Current: CKE \leq 0.2V1212mAperating Current: four bank; four bank interleaving with BL = 4, address d control inputs randomly changing; 50% of data changing at every unsfer; tRC = tRC (min); IOUT = 0mA.16801440mA

AC Timing Specifications for DDR SDRAM Devices Used on Module

(TA = 0 °C ~ 70 °C; V_{DDQ} = 2.5V ± 0.2V; V_{DD} = 2.5V ± 0.2V, See AC Characteristics) (Part 1 of 2)

Symbol	Parameter		-6K		-75B		Unit	Notes
Cymbol			Min.	Min. Max. Min. Max	Max.	Onit	NOLES	
tAC	DQ output access time from CK/CK		-0.7	+0.7	-0.75	+0.75	ns	1-4
t DQSCK	DQS output access time from CK/CK		-0.7	+0.7	-0.75	+0.75	ns	1-4
tСH	CK high-level width		0.45	0.55	0.45	0.55	tCK	1-4
tCL	CK low-level width		0.45	0.55	0.45	0.55	tCK	1-4
tCK		CL=2.5	6	12	7.5	12	ns	1-4
tCK	Clock cycle time	CL=2	7.5	12	10	12	ns	1-4
tDH	DQ and DM input hold time		0.45		0.5		ns	1-4, 15, 10
tDS	DQ and DM input setup time		0.45		0.5		ns	1-4, 15, 16
tDIPW	DQ and DM input pulse width (ea	ich input)	1.75		1.75		ns	1-4
tHZ	Data-out high-impedance time from CK/CK		-0.7	+0.7	-0.75	+0.75	ns	1-4, 5
t∟z	Data-out low-impedance time from CK/CK		-0.7	+0.7	-0.75	+0.75	ns	1-4, {
tDQSQ	DQS-DQ skew (DQS & associate	ed DQ signals)		0.45		0.5	ns	1-4
tHP	Minimum half clk period for any given cycle; defined by clk high (tCH) or clk low (tCL) time		tCH or tCL		tCH or tCL		tСK	1-4
tQH	Data output hold time from DQS		tHP - tQHS		tHP - tQHS		tСK	1-4
t QHS	Data hold Skew Factor			0.55ns		0.75ns	tCK	1-4
t DQSS	Write command to 1st DQS latch	ing transition	0.75	1.25	0.75	1.25	tCK	1-4
tDQSL,H	DQS input low (high) pulse width (write cycle)		0.35		0.35		tСK	1-4
tDSS	DQS falling edge to CK setup time (write cycle)		0.2		0.2		tСK	1-4
tDSH	DQS falling edge hold time from CK (write cycle)		0.2		0.2		tСK	1-4
tMRD	Mode register set command cycle	e time	2		2		tCK	1-4
tWPRES	Write preamble setup time		0		0		ns	1-4, 7
tWPST	Write postamble		0.40	0.60	0.40	0.60	tCK	1-4, 6
tWPRE	Write preamble		0.25		0.25		tCK	1-4
tін	Address and control input hold time (fast slew rate)		0.75		0.9		ns	2-4, 9 11, 12
tıs	Address and control input setup time (fast slew rate)		0.75		0.9		ns	2-4, 9 11, 12
tін	Address and control input hold time (slow slew rate)		0.8		1.0		ns	2-4, 10, 11 12, 14

AC Timing Specifications for DDR SDRAM Devices Used on Module

(TA = 0 °C ~ 70 °C; V_{DDQ} = 2.5V ± 0.2V; V_{DD} = 2.5V ± 0.2V, See AC Characteristics) (Part 2 of 2)

Cumhal	Parameter	-6K		-75B		Unit	Natas
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit	Notes
tis	Address and control input setup time (slow slewrate)	0.8		1.0		ns	2-4, 10-12, 14
tIPW	Input pulse width	2.2		2.2		ns	2-4, 12
tRPRE	Read preamble	0.9	1.1	0.9	1.1	tCK	1-4
tRPST	Read postamble	0.40	0.60	0.40	0.60	tСK	1-4
tRAS	Active to Precharge command	42	120,000	45	120,000	ns	1-4
tRC	Active to Active/Auto-refresh command period	60		65		ns	1-4
tRFC	Auto-refresh to Active/Auto-refresh command period	72		75		ns	1-4
tRCD	Active to Read or Write delay	18		20		ns	1-4
tRAP	Active to Read Command with Autoprecharge	18		20		ns	1-4
tRP	Precharge command period	18		20		ns	1-4
tRRD	Active bank A to Active bank B command	12		15		ns	1-4
tWR	Write recovery time	15		15		ns	1-4
tDAL	Auto precharge write recovery + precharge time	(tWR/tCK) + (tRP/tCK)		(twr/tck) + (trp/tck)		tСK	1-4, 13
tWTR	Internal write to read command delay	1		1		tCK	1-4
tPDEX	Power down exit time	6		7.5		ns	1-4
txsnr	Exit self-refresh to non-read command	75		75		ns	1-4
txsrd	Exit self-refresh to read command	200		200		tСK	1-4
tREFI	Average Periodic Refresh Interval		7.8		7.8	μs	1-4, 8

AC Timing Specification Notes

1. Input slew rate = 1V/ns.

- 2. The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross: the input reference level for signals other than CK/CK is VREF.
- 3. Inputs are not recognized as valid until VREF stabilizes.
- 4. The Output timing reference level, as measured at the timing reference point indicated in AC Characteristics (Note 3) is VTT.
- 5. tHZ and tLZ transitions occur in the same access time windows as valid data transitions. These parameters are not referred to a specific voltage level, but specify when the device is no longer driving (HZ), or begins driving (LZ).
- 6. The maximum limit for this parameter is not a device limit. The device operates with a greater value for this parameter, but system performance (bus turnaround) degrades accordingly.
- 7. The specific requirement is that DQS be valid (high, low, or some point on a valid transition) on or before this CK edge. A valid transition is defined as monotonic and meeting the input slew rate specifications of the device. When no writes were previously in progress on the bus, DQS will be transitioning from Hi-Z to logic LOW. If a previous write was in progress, DQS could be HIGH, LOW, or transitioning from high to low at this time, depending on tDQSS.

8. A maximum of eight Auto refresh commands can be posted to any given DDR SDRAM device.

9. For command/address input slew rate >= 1.0 V/ns. Slew rate is measured between VOH (AC) and VOL (AC).

10. For command/address input slew rate >= 0.5 V/ns and < 1.0 V/ns. Slew rate is measured between VOH (AC) and VOL (AC).

- 11. CK/ \overline{CK} slew rates are >= 1.0 V/ns.
- 12. These parameters guarantee device timing, but they are not necessarily tested on each device, and they may be guaranteed by design or tester characterization.
- 13. For each of the terms in parentheses, if not already an integer, round to the next highest integer. t CK is equal to the actual system clock cycle time. For example, for PC2100 at CL= 2.5, t DAL = (15ns/7.5ns) +(20ns/7.0ns) = 2 + 3 = 5.

14. An input setup and hold time derating table is used to increase t IS and t IH in the case where the input slew rate is below 0.5 V/ns.

Input Slew Rate	Delta (tIS)	Delta (tIH)	Unit	Note
0.5 V/ns	0	0	ps	1, 2
0.4 V/ns	+50	0	ps	1, 2
0.3 V/ns	+100	0	ps	1, 2

1. Input slew rate is based on the lesser of the slew rates determined by either V IH (AC) to V IL (AC) or V IH (DC) to V IL (DC), similarly for rising transitions.

2. These derating parameters may be guaranteed by design or tester characterization and are not necessarily tested on each device.

15. An input setup and hold time derating table is used to increase t DS and t DH in the case where the I/O slew rate is below 0.5 V/ns.

Input Slew Rate	Delta (tDS)	Delta (tDH)	Unit	Note	
0.5 V/ns	0	0	ps	1, 2	
0.4 V/ns	+75	+75	ps	1, 2	
0.3 V/ns	+150	+150	ps	1, 2	

1. I/O slew rate is based on the lesser of the slew rates determined by either V IH (AC) to V IL (AC) or V IH (DC) to V IL (DC), similarly for rising transitions.

2. These derating parameters may be guaranteed by design or tester characterization and are not necessarily tested on each device.

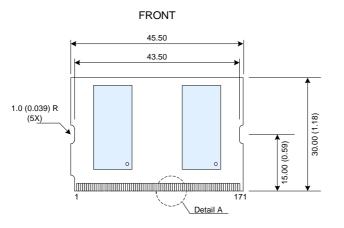
16. An I/O Delta Rise, Fall Derating table is used to increase t DS and t DH in the case where DQ, DM, and DQS slew rates differ.

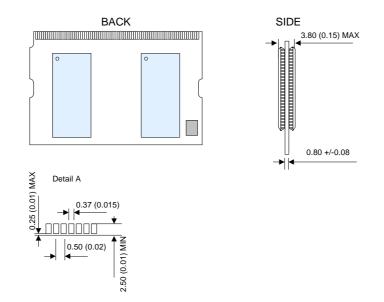
Delta Rise and Fall Rate	Delta (tDS)	Delta (tDH)	Unit	Note
0.0 ns/V	0	0	ps	1-4
0.25 ns/V	+50	+50	ps	1-4
0.5 ns/V	+100	+100	ps	1-4

1. Input slew rate is based on the lesser of the slew rates determined by either V IH (AC) to V IL (AC) or V IH (DC) to V IL (DC), similarly for rising transitions.

2. Input slew rate is based on the larger of AC to AC delta rise, fall rate and DC to DC delta rise, fall rate.

3. The delta rise, fall rate is calculated as: [1/(slew rate 1)] - [1/(slew rate 2)]


For example: slew rate 1 = 0.5 V/ns; slew rate 2 = 0.4 V/ns. Delta rise, fall = (1/0.5) - (1/0.4) [ns/V] = -0.5 ns/V


Using the table above, this would result in an increase in t DS and t DH of 100 ps.

4. These derating parameters may be guaranteed by design or tester characterization and are not necessarily tested on each device.

Package Dimensions

Note: All dimensions are typical with tolerances of +/- 0.15 unless otherwise stated. Units: Millimeters (Inches)

Revision Log

Rev	Date	Modification	
0.1	12/2002	Preliminary Release	
0.2	01/2003	Added Serial Presence Detect Table	
1.0 06/2003	Updated I_{DD} currents in Operating, Standby, and Refresh Currents table		
1.0	00/2003	Official Release	