

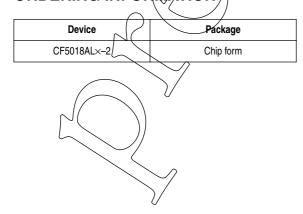
2.5V 3rd Overtone Crystal Oscillator Module ICs

OVERVIEW

The CF5018 series are crystal oscillator ICs that operate from 2.5V. Devices are available that provide 3rd overtone oscillation in the range 30MHz to 80MHz. They are optimized for 2.5V operation, resulting in stable oscillator startup characteristics and output duty stability. They feature a large reduction in chip surface area compared to existing devices, making possible the construction of small-sized crystal oscillator.

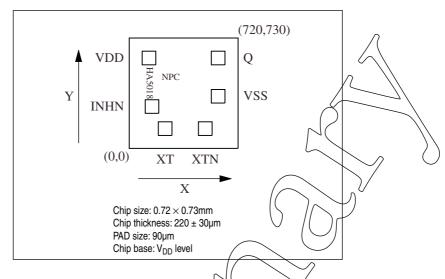
FEATURES (design target)

- 2.25 to 2.75V operating supply voltage range
- 30MHz to 80MHz oscillation frequency range (varies with version)
- -40 to 85°C operating temperature range
- Oscillation capacitors C_G, C_D built-in
- Inverter amplifier feedback resistor built-in
- Standby function
 - · High impedance in standby mode, oscillator stops
- Low standby current
 - Power-save pull-up resistor built-in

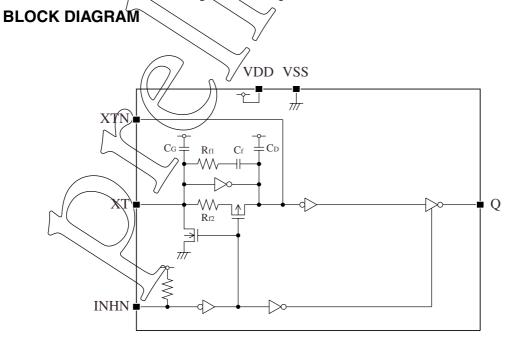

- f_O output frequency (oscillation frequency)
- 8mA output drive capability (V_{DD} = 2.25V) CMOS output duty level (1/2VDD)
- $50 \pm 5\%$ output duty/(at 1/2)/DD)
- 30pF output load
- Molybdenum-gate CMOS process
- Chip form (CF5018AL×)

SERIES CONFIGURATION

	Operating	Recommended operating	ed operating		Built-in capacitance [pF]		
Version	supply voltage [V]	frequency range [MHz]	gm ratio	C _G	C _D	[kΩ]	
CF5018ALA		30 to 36	0.50			4.7	
CF5018ALB		36 to 40	0.50		15	3.5	
CF5018ALC	2.25 to 2.75	40 to 50	0.75	8	15	3.5	
CF5018ALD		50 to 60	1.00			3.0	
CF5018ALE		60 to 89	1.50		10	3.5	


^{1.} The recommended operating frequency is a yardstick value derived from the crystal used for NPC characteristics authentication. However, the oscillator frequency band is not guaranteed. Specifically, the characteristics can vary greatly due to crystal characteristics and mounting conditions, so the oscillation characteristics of components must be carefully evaluated.

ORDERING INFORMATION


PAD LAYOUT

(Unit: µm)

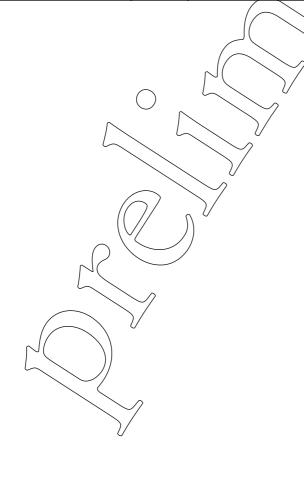
PIN DESCRIPTION and PAD DIMENSIONS

Name I/O		Decayintton	Pad dimen	Pad dimensions [µm]	
Name	1/0	Description	Х	Y	
INHN	I	Output state control input. High impedance when LOW (oscillator stops). Power-saving pull-up resistor built-in.	151	277	
XT	I	Amplifier input Crystal connection pins	238	131	
XTN	0	Amplifier output Crystal is connected between XT and XTN.	503	131	
VSS	-	Ground	588	345	
Q	0	Output. Output frequency (to). High impedance of standby mode	588	598	
VDD	-	Supply voltage	131	598	

INHN = LOW active

SPECIFICATIONS

Absolute Maximum Ratings


 $V_{SS} = 0V$

Parameter	Symbol	Condition	Rating	Unit
Supply voltage range	V _{DD}		-0.5 to +7.0	V
Input voltage range	V _{IN}		-0.5 to V _{DD} + 0.5	V
Output voltage range	V _{OUT}		$-0.5 \text{ to V}_{DD} + 0.5$	V
Operating temperature range	T _{opr}		-40 (0 +85	//°c
Storage temperature range	T _{STG}		-65 to +150	Oc
Output current	I _{OUT}		25	mA

Recommended Operating Conditions

 $V_{SS} = 0V$

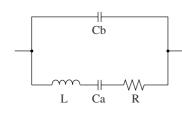
		/		
Parameter	Symbol	Condition	Rating	Unit
Supply voltage	V _{DD}		2.25 to 2.75	٧
Input voltage	V _{IN}		V _{SS} to V _{DD}	٧
Operating temperature	T _{OPR}		-40 to +85	°C
Operating frequency	fosc	$C_L \le 30pF$	30 to 80	MHz

Electrical Characteristics

 V_{DD} = 2.25 to 2.75V, V_{SS} = 0V, Ta = -40 to +85°C unless otherwise noted.

Dovometer	Cumbal	Condition		Rating			1114
Parameter	Symbol			min	typ	max	Unit
HIGH-level output voltage	V _{OH}	Q: Measurement cct 1, V _{DD} = 2.25V, I _{OH} = 8mA			1.95	_	٧
LOW-level output voltage	V _{OL}	Q: Measurement cct 1, V _{DD} = 2.25V, I _{OL} =	8mA	-	0.3	Q.4	٧
HIGH-level input voltage	V _{IH}	INHN		0.7V _D 0		7 1/	٧
LOW-level input voltage	V _{IL}	INHN		7	-	0.3V _{DD} \	V
Output leakage current	I _Z	Q: Measurement cct 2, INHN = LOW	$V_{OH} = V_{DD}$ $V_{OL} = V_{SS}$	-	-	10	μA μA
Current consumption	I _{DD}	Measurement cct 3, load cct 1, INHN = open, f = 80MHz	$C_L = 15pF$ $C_L = 30pF$	-	12	-	mA mA
Standby current	I _{ST}	Measurement cct 3, INHN = LOW			-	3	μA
INILINI mullum vanistamas	R _{UP1}	Management and d		2	6	12	МΩ
INHN pull-up resistance	R _{UP2}	Measurement cct 4		20	100	200	kΩ
			CF5018ALA	3.99	4.7	5.41	kΩ
	R _{f1}	Design value. A monitor pattern on a wafer is tested.	CF5018ALB	2.97	3.5	4.03	kΩ
AC feedback resistance			CF5018ALC	2.97	3.5	4.03	kΩ
			CF5018ALD	2.55	3.0	3.45	kΩ
			CF5018ALE	2.97	3.5	4.03	kΩ
DC feedback resistance	R _{f2}	Measurement cct 5		50	1	150	kΩ
AC feedback capacitance	C _f	Design value. A monitor pattern on a water	is tested.	8.5	10	11.5	pF
	C _G	Design value. A monitor pattern on a wafer	is tested.	6.8	8	9.2	pF
Built-in capacitance	C_{D}	Design value. A monitor pattern on a wafer is tested.	CF5018ALA CF5018ALB CF5018ALC CF5018ALD	12.7	15	17.3	pF
			CF5018ALE	8.5	10	11.5	pF

Switching Characteristics


 $V_{DD} = 2.25$ to 2.75V, $V_{SS} = 0$ V, Ta = -40 to +85°C unless otherwise noted.

Parameter	Symbol	Condition			Rating		
Faiailietei	Syllibol	Condition		min	typ	max	Unit
Output rise time	t _{r1}	Measurement cct 3, load cct 1,	C _L = 15pF	-	1.5	-	ns
Output rise time	t _{r2}	0.1V _{DD} to 0.9V _{DD}	C _L = 30pF	- /	/ \	7/-	ns
Output fall time	t _{f1}	0.0V +0.0.1V	C _L = 15pF	- (1.5		ns
Output fail time	t _{f2}		C _L = 30pF	7	3	- //	ns
Output duty cycle ¹	Duty1	Measurement cct 3, load cct 1,	C _L = 15pF	<u>_</u>	50	, - () %
Output duty cycle	Duty2	$V_{DD} = 2.5V$, Ta = 25°C, f = 80MHz	C _L = 30pF		50	-	%
Output disable delay time ²	t _{PLZ}	Measurement cct 6, load cct 1, V _{DD} = 2.5V,	Ta = 25°C,	>-	5	100	ns
Output enable delay time ²	t _{PZL}	C _L = 15pF		<i>[</i>) -	100	ns

1. The duty cycle characteristic is checked the sample chips of each production lot.

2. Oscillator stop function is built-in. When INHN goes LOW, normal output stops. When NHN goes HIGH, normal output is not resumed until after the oscillator start-up time has elapsed.

Current consumption and Output waveform with NPC's standard crystal

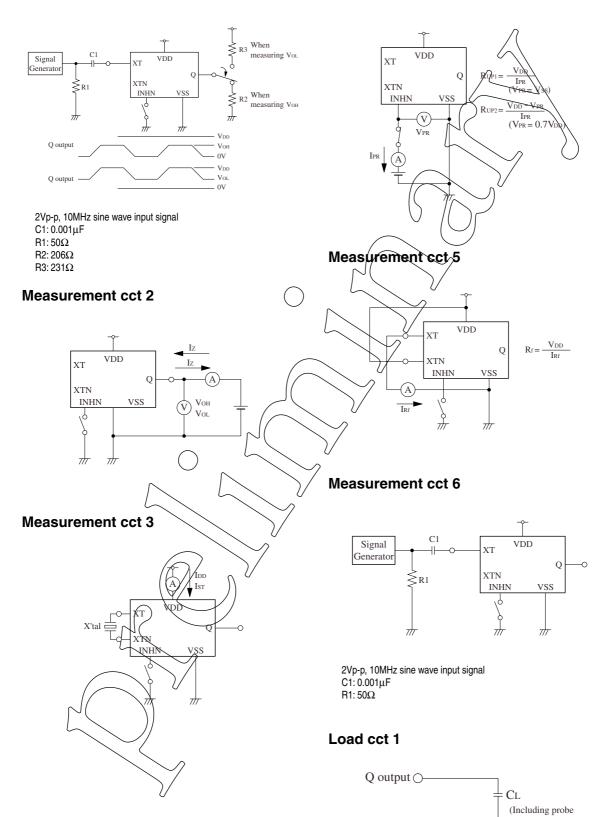
f [MHz]	$\mathbf{R}\left[\Omega\right]$	/L [mH]	Ca [fF]	Cb [pF]			
30	18.62	16.24	1.733	5.337			
40 ∫(20.53	11.34	1.396	3.989			
50	22.17	7.40	1.370	4.105			
60	15/37	3.83	1.836	5.191			
70	25.42	4.18	1.254	5.170			

FUNCTIONAL DESCRIPTION

Standby Function

When INHN goes LOW, the oscillator stops and the oscillator output on Q becomes high impedance.

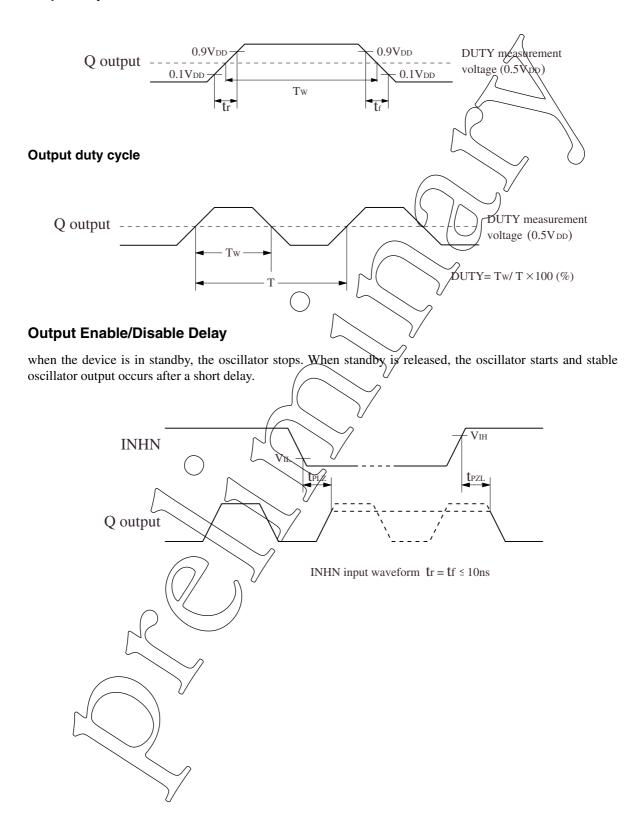
INHN	(//a)) `	Oscillator
HIGH (or open)	fo output frequency	Normal operation
LOW	High impedance	Stopped


Power-save Pull-up Resistor

The INHN pull-up resistance changes in response to the input level (HIGH or LOW). When INHN goes LOW (standby state), the pull-up resistance becomes large to reduce the current consumption during standby.

MEASUREMENT CIRCUITS

Measurement cct 1


Measurement cct 4

capacitance)

Switching Time Measurement Waveform

Output duty level

Please pay your attention to the following points at time of using the products shown in this document.

The products shown in this document (hereinafter "Products") are not intended to be used for the apparatus that exerts harmful influence on human lives due to the defects, failure or malfunction of the Products. Customers are requested to obtain prior written agreement for such use from NIPPON PRECISION CIRCUITS INC. (hereinafter "NPC"). Customers shall be solely responsible for, and indemnify and hold NPC free and harmless from, any and all claims, damages, losses, expenses or lawsuits, due to such use without such agreement. NPC reserves the right to change the specifications of the Products in order to improve the characteristic or reliability thereof. NPC makes no claim or warranty that the contents described in this document dose not infringe any intellectual property right or other similar right owned by third parties. Therefore, NPC shall not be responsible for such problems, even if the use is in accordance with the descriptions provided in this document. Any descriptions including applications, circuits, and the parameters of the Products in this document are for reference to use the Products, and shall not be guaranteed free from defect, inapplicability to the design for the mass-production products without further testing or modification. Customers are requested not to export or re-export, directly or indirectly, the Products to any country or any entity not in compliance with or in violation of the national export administration laws, treaties, orders and regulations. Customers are requested appropriately take steps to obtain required permissions or approvals from appropriate government agencies.

NIPPON PRECISION CIRCUITS INC.

4-3, Fukuzumi 2-chome, Koto-ku, Tokyo 135-8430, Japan Telephone: +81-3-3642-6661 Facsimile: +81-3-3642-6698 http://www.npc.co.jp/ Email: sales@npc.co.jp

NP0215AE 2003.03