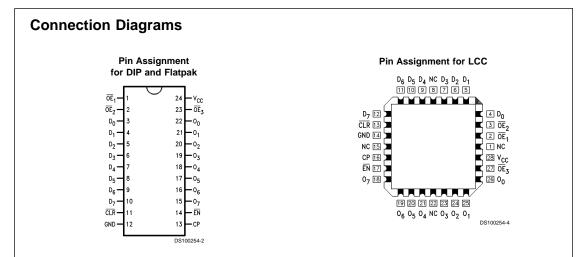
February 1999

54ACT825 8-Bit D Flip-Flop

National Semiconductor

54ACT825 8-Bit D Flip-Flop


General Description

The 'ACT825 is an 8-bit buffered register. They have Clock Enable and Clear features which are ideal for parity bus interfacing in high performance microprogramming systems. Also included are multiple enables that allow multi-use control of the interface. The 'ACT825 has noninverting outputs and is fully compatible with AMD's Am29825.

Features

- Outputs source/sink 24 mA
- Inputs and outputs are on opposite sides
- ACT825 has TTL-compatible inputs
- Standard Microcircuit Drawing (SMD)
- 'ACT825: 5962-91611

Logic Symbols IEEE/IEC D₀ D₁ D₂ D₃ D₄ D₅ D₆ D₇ 0E1 0Ē₁ -O OE₂ -O OE₃ -O CLR \overline{OE}_2 ΕN 0E3 CLR ĒN G1 $0_1 \ 0_2 \ 0_3 \ 0_4 \ 0_5$ СР 1C2 ⊳ 00 Do Δ D₁ 01 D₂ 02 D3 03 D_4 04 D_5 05 D_6 06 D7 · 07 DS100254-3 Pin Names Description D₀-D₇ Data Inputs O₀-O₇ Data Outputs $\overline{OE}_1, \overline{OE}_2, \overline{OE}_3$ **Output Enables** ĒΝ Clock Enable CLR Clear СР Clock Input FACTTM is a trademark of Fairchild Semiconductor. TRI-STATE[®] is a registered trademark of National Semiconductor Corporation.

Functional Description

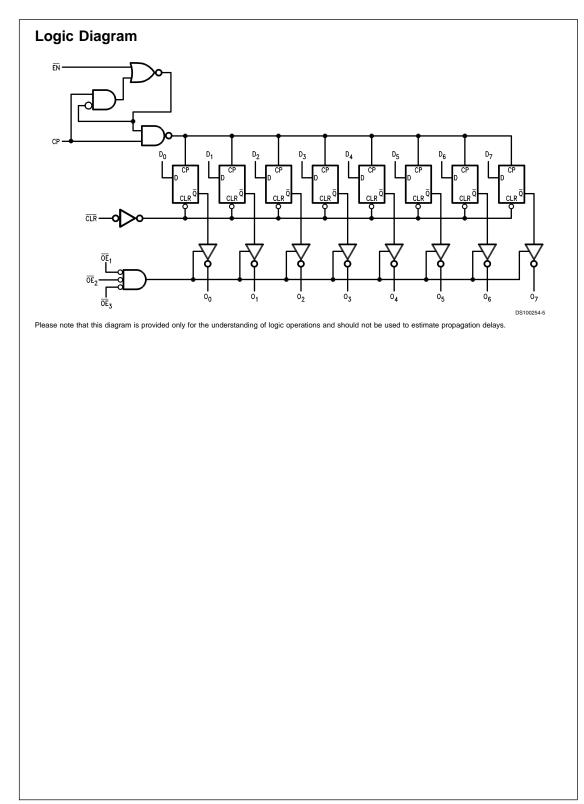
The 'ACT825 consists of eight D-type edge-triggered flip-flops. These devices have TRI-STATE* outputs for bus systems, organized in a broadside pinning. In addition to the clock and output enable pins, the buffered clock (CP) and buffered Output Enable (OE) are common to all flip-flops. The flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH CP transition. With \overline{OE}_1 , \overline{OE}_2 and \overline{OE}_3 LOW, the contents of the flip-flops are available at the outputs. When one of \overline{OE}_1 , \overline{OE}_2 or \overline{OE}_3 is HIGH, the outputs go to the high impedance state.

Operation of the $\overline{\text{OE}}$ input does not affect the state of the flip-flops. The 'ACT825 has Clear (CLR) and Clock Enable (\overline{EN}) pins. These pins are ideal for parity bus interfacing in high performance systems.

When $\overline{\text{CLR}}$ is LOW and $\overline{\text{OE}}$ is LOW, the outputs are LOW. When CLR is HIGH, data can be entered into the flip-flops. When EN is LOW, data on the inputs is transferred to the outputs on the LOW-to-HIGH clock transition. When $\overline{\text{EN}}$ is HIGH, the outputs do not change state, regardless of the data or clock input transitions.

Function Table

٠


		Inputs			Internal	Output	Function
OE	CLR	EN	СР	Dn	Q	0]
н	Х	L	~	L	L	Z	High-Z
н	Х	L	~	Н	н	Z	High-Z
н	L	Х	Х	Х	L	Z	Clear
L	L	Х	Х	Х	L	L	Clear
н	Н	Н	Х	Х	NC	Z	Hold
L	н	н	Х	Х	NC	NC	Hold
н	н	L	~	L	L	z	Load
н	Н	L	~	Н	н	Z	Load
L	н	L	~	L	L	L L	Load
L	н	L	~	н	н	н	Load

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Z = High Impedance \sim = LOW-to-HIGH Transition NC = No Change

Absolute Maximum Ratings (Note 1)

•

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.5V to 7.0V
DC Input Diode Current (IIK)	
$V_{I} = -0.5V$	–20 mA
$V_{1} = V_{CC} + 0.5V$	+20 mA
DC Input Voltage (V _I)	–0.5V to V _{CC} +0.5V
DC Output Diode Current (I _{OK})	
$V_{O} = -0.5V$	–20 mA
$V_{O} = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)	+0.5V
DC Output Source or Sink Current (I_{O})	±50 mA
DC V _{CC} or Ground Current	
Per Output Pin (I _{CC} or I _{GND})	±50 mA
Storage Temperature (T _{STG})	–65°C to +150°C

Junction Temperature (T_J) CDIP

Recommended Operating Conditions

Supply Voltage (V _{CC})	
'ACT	4.5V to 5.5V
Input Voltage (V _I)	0V to V _{CC}
Output Voltage (V _O)	0V to V_{CC}
Operating Temperature (T _A)	
54ACT	–55°C to +125°C
Minimum Input Edge Rate ($\Delta V / \Delta t$)	
'ACT Devices	
V _{IN} from 0.8V to 2.0V	
V _{CC} @ 4.5V, 5.5V	125 mV/ns
Note 1: Absolute maximum ratings are those values to the device may occur. The databook specification exception, to ensure that the system design is reliab	s should be met, without

175°C

temperature, and output/input loading variables. National does not recom-mend operation of FACT™ circuits outside databook specifications.

DC Electrical Characteristics

			54ACT			
Symbol	Parameter	V _{cc}	T _A =	Units	Conditions	
		(V)	–55°C to			
			+125°C			
			Guaranteed			
			Limits			
V _{IH}	Minimum High Level	4.5	2.0	V	$V_{OUT} = 0.1V$	
	Input Voltage	5.5	2.0		or V_{CC} –0.1V	
V _{IL}	Maximum Low Level	4.5	0.8		V _{OUT} = 0.1V	
	Input Voltage	5.5	0.8		or V _{CC} –0.1V	
V _{он}	Minimum High Level	4.5	4.4	V	Ι _{ΟUT} = –50 μΑ	
		5.5	5.4			
					(Note 2)	
					$V_{IN} = V_{IL} \text{ or } V_{IH}$	
		4.5	3.70	V	I _{OH} = -24 mA	
		5.5	4.70		I _{OH} = -24 mA	
V _{OL}	Maximum Low Level	4.5	0.1	V	Ι _{ΟUT} = 50 μΑ	
	Output Voltage	5.5	0.1			
					(Note 2)	
					$V_{IN} = V_{IL} \text{ or } V_{IH}$	
		4.5	0.50	V	I _{OL} = 24 mA	
		5.5	0.50		I _{OL} = 24 mA	
I _{IN}	Maximum Input Leakage Current	5.5	±1.0	μΑ	$V_{I} = V_{CC}, GND$	
l _{oz}	Maximum TRI-STATE Current	5.5	±10.0	μA	$V_{I} = V_{IL}, V_{IH}$	
					$V_{O} = V_{CC}, GND$	
I _{CCT}	Maximum I _{CC} /Input	5.5	1.6	mA	$V_{I} = V_{CC} - 2.1V$	
	(Note 3)					
I _{old}	Minimum Dynamic	5.5	50	mA	V _{OLD} = 1.65V Max	
I _{OHD}	Output Current	5.5	-50	mA	V _{OHD} = 3.85V Min	
I _{cc}	Maximum Quiescent	5.5	160	μΑ	$V_{IN} = V_{CC}$	
	Supply Current				or GND	

Note 3: Maximum test duration 2.0 ms, one output loaded at a time.

DC Electrical Characteristics (Continued)

Note 4: I_{CC} limit for 54ACT @ 25°C is identical to 74ACT @ 25°C.

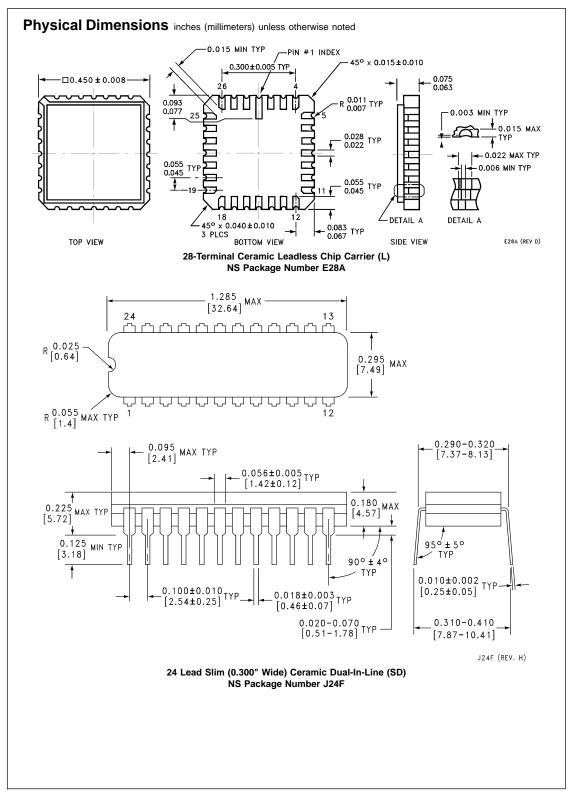
AC Electrical Characteristics

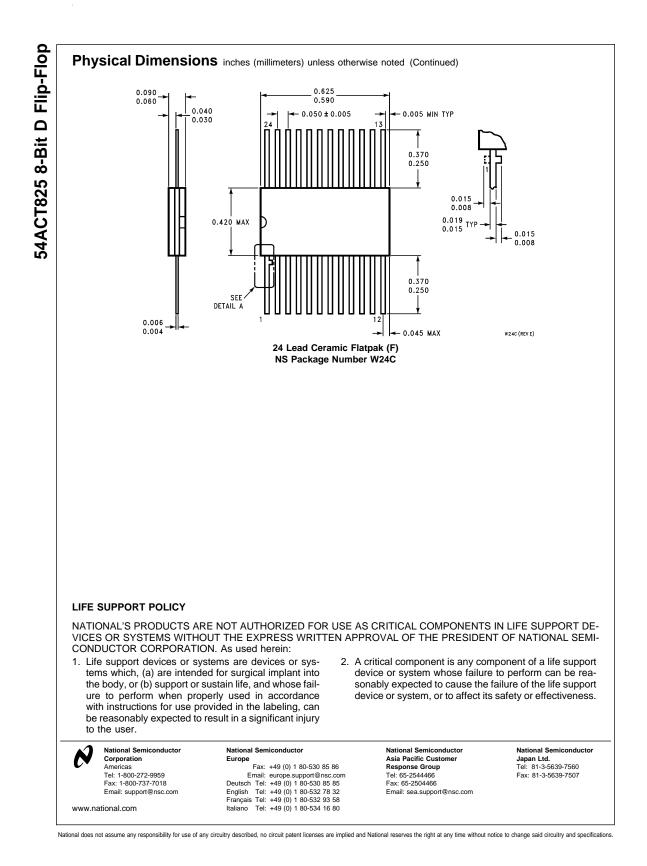
. .

		V _{cc} (V) (Note 5)	54ACT T _A = -55°C to +125°C C _L = 50 pF		Units	Fig. No.
Symbol	Parameter					
			Min	Max		
f _{max}	Maximum Clock	5.0	95		MHz	
	Frequency					
t _{PLH}	Propagation Delay	5.0	1.5	11.5	ns	
	CP to O _n					
t _{PHL}	Propagation Delay	5.0	1.5	11.5	ns	
	CP to O _n					
t _{PHL}	Propagation Delay	5.0	1.5	18.0	ns	
	CLR to On					
t _{PZH}	Output Enable Time	5.0	1.5	11.5	ns	
	OE to On					
t _{PZL}	Output Enable Time	5.0	1.5	12.5	ns	
	OE to On					
t _{PHZ}	Output Disable Time	5.0	1.5	13.5	ns	
	OE to On					
t _{PLZ}	Output Disable Time	5.0	1.5	13.0	ns	
	OE to On					

Note 5: Voltage Range 5.0 is 5.0V ±0.5V

AC Operating Requirements


Symbol	Parameter	V _{cc} (V) (Note 6)	$54ACT$ $T_A = -55°C$ to +125°C $C_L = 50 pF$ Guaranteed Minimum	Units	Fig. No.
t _s	Setup Time, HIGH or LOW D _n to CP	5.0	4.0	ns	
t _h	Hold Time, HIGH or LOW D _n to CP	5.0	2.5	ns	
t _s	Setup Time, HIGH or LOW EN to CP	5.0	4.0	ns	
t _h	Hold Time, HIGH or LOW EN to CP	5.0	2.0	ns	
t _w	CP Pulse Width HIGH or LOW	5.0	6.0	ns	
t _w	CLR Pulse Width, LOW	5.0	7.0	ns	
t _{rec}	CLR to CP Recovery Time	5.0	4.5	ns	


Note 6: Voltage Range 5.0 is 5.0V $\pm 0.5V$

Symbol	Parameter	Тур	Units	Conditions
-	Input Capacitance	4.5	pF	V _{CC} = OPEN
	Power Dissipation	44	pF	V _{CC} = 5.0V
	Capacitance			

www.national.com

· ·

