

LM4682 Boomer® Audio Power Amplifier Series

10 Watt Stereo CLASS D Audio Power Amplifier with Stereo Headphone Amplifier and DC Volume Control

General Description

The LM4682 is a fully integrated single supply, high efficiency audio power amplifier solution. The LM4682 utilizes a proprietary balanced pulse-width modulation technique that lowers output noise and THD and improves PSRR when compared to conventional pulse width modulators.

The LM4682 also features a stereo headphone amplifier that delivers 60mW into a 32 Ω headset with less than 0.5% THD.

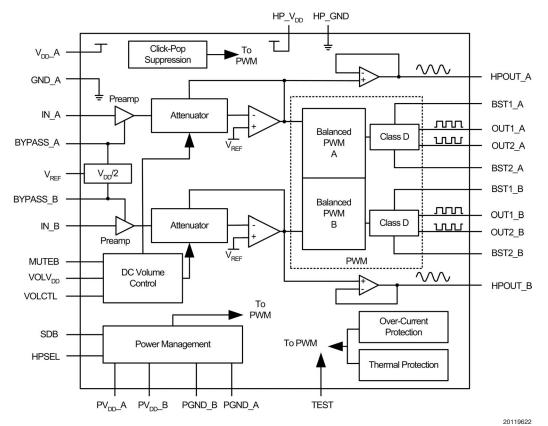
The LM4682's DC volume control has a +30dB to -48dB range when speakers are driven and a range of +13dB to -65dB when headphones are connected. All amplifiers are protected by thermal shutdown. Additionally, all amplifiers incorporate output current limiting function to protect their outputs from short circuit.

The LM4682 features a low-power consumption shutdown mode. And its efficiency reaches 85% for a 10W output power with an 8Ω load. External heatsink is not required when playing music. The IC features click and pop reduction circuitry that minimizes audible popping during device turn-on and turn-off. The LM4682 is available in a 48-lead LLP package, ideal for portable and desktop computer applications.

Key Specifications

\blacksquare P _O at THD+N = 10%, V _{DD} = 14V	10W (typ)
■ THD+N at 1kHz at 6W into 8Ω (Power Amp)	0.2% (typ)
■ Efficiency at 7W into 8Ω	84% (typ)
■ Total quiescent power supply current	52mA (typ)
■ Total shutdown power supply current	0.1mA (typ)
■ THD+N 1kHz, 20mW, 32Ω (Headphone)	0.02% (typ)
■ Single supply range	8.5V to 15V

Features


- Pulse-width modulator.
- DC Volume Control
- Stereo headphone amplifier.
- "Click and pop" suppression circuitry.
- Micropower shutdown mode.
- 48 lead LLP package (No heatsink required).

Applications

- Flat Panel Displays
- Televisions
- Multimedia Monitors

Boomer® is a registered trademark of National Semiconductor Corporation.

Block Diagram

Block Diagram for LM4682

Connection Diagram LLP Package BYPASS_B HPOUT_B HP_GND BST1_A BST1_B VREF 8 ≅ ĕ. 2 48 47 46 39 44 4 1 36 $\mathsf{PV}_\mathsf{DD}\!\!-\!\!\mathsf{B}$ PV_{DD}_A PV_{DD}_A $\mathsf{PV}_\mathsf{DD}\!\!-\!\!\mathsf{B}$ 2 35 OUT1_B OUT1_A 3 OUT1_B OUT1_A 4 OUT1_B OUT1_A 5 PGND_B PGND_A 6 PGND_B 30 PGND_A OUT2_B 8 29 OUT2_A OUT2_B 9 28 OUT2_A OUT2_B 10 27 OUT2_A $\mathsf{PV}_\mathsf{DD}\!\!-\!\!\mathsf{B}$ 11 PV_{DD}_A 12 $\mathsf{PV}_\mathsf{DD}\!\!-\!\!\mathsf{B}$ PV_{DD}_A VOLV_{DD} VOL_CTL GND_A BST2_A MUTEB SDB V_{DD-A} HPSEL 2 2 2

Top View Order Number LM4682SQ See NS Package Number SQA48A (LLP Package) 20119618

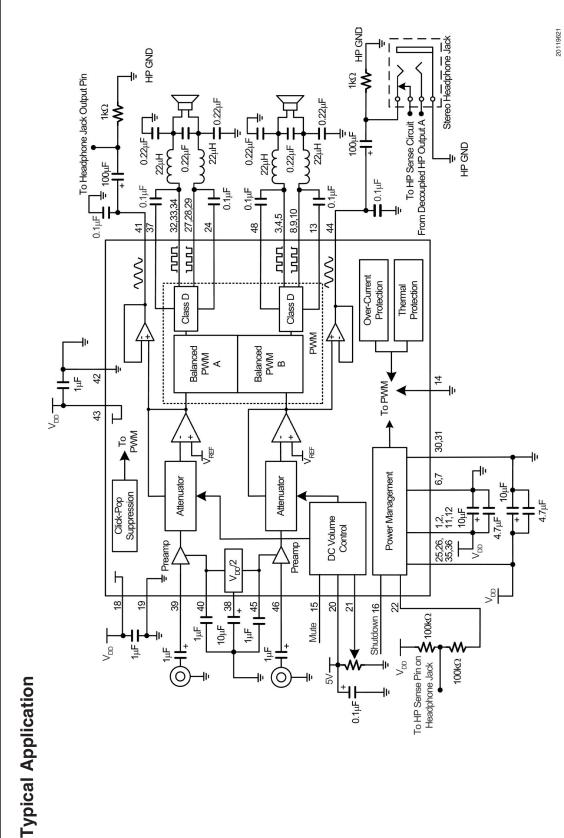


Figure 1: Typical Stereo Audio Amplifier with Headphone Selection Circuit

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Soldering Information

LLP Package

Vapor Phase (60 sec.) 215°C Infrared (15 sec.) 220°C

See AN-450 "Surface Mounting and their Effects on Product Reliability" for other methods of soldering surface mount devices.

Operating Ratings (Notes 1, 2)

Temperature Range

 $\begin{aligned} T_{MIN} &\leq T_{A} \leq T_{MAX} & -40^{\circ}C \leq T_{A} \leq +85^{\circ}C \\ \text{Supply Voltage} & 8.5V \leq V_{DD} \leq 15V \end{aligned}$

Thermal Resistance (LLP Package)

 θ_{JA} 28°C/W θ_{JC} 20°C/W

Electrical Characteristics (Notes 1, 2, 7)

The following specifications apply for V_{DD} = 12V, $VOLV_{DD}$ = 5V, R_L = 8 Ω , LC filter values as shown in Figure 1, unless otherwise specified. Limits apply for T_A = 25°C.

Symbol	Domonoston		LM4682			
	Parameter	Conditions	Typical	Typical Max Min		Units
V _{DD}	Operating Supply Voltage Range		12	15	8.5	V
I _s	Quiescent Power Supply Current, Class D Mode	V _{IN} = 0V _{RMS} , V _{HPSEL} = 0V	52	70		mA
	Quiescent Power Supply Current, Headphone Mode	$V_{IN} = 0V_{RMS}, V_{HPSEL} = 12V$	30	40		mA
SD	Quiescent Power Supply Current, Shutdown Mode	SDB = 0V	0.1			mA
R _{IN}	Input Resistance in Both Modes		8			kΩ
VOLV _{DD}	DC Reference Supply Voltage			5.5	3	V
V _{IH}	Minimum Logic High Input Voltage	CDD MUTED nine			0.7xVOLV _{DD}	٧
V _{IL}	Maximum Logic Low Input Voltage	SDB, MUTEB pins		0.3xVOLV _{DD}		V
V _{HPIH}	HP Sense High Input Voltage				V _{DD} -1	V
V _{HPIL}	HP Sense Low Input Voltage			V _{DD} /2		V
Power Ar	nplifiers		•			
PoR	Output Power, Per Channel	THD+N \leq 1%, $f_{IN} = 1kHz$	6.0		5.5	W
D1	Power Dissipation	P _O = 7W/Chan, f _{IN} = 1kHz	2.6			W
E _{FF1}	Efficiency	$P_O = 7W/Chan, f_{IN} = 1kHz$	84.4			%
THD+N	Harmonic Distortion + Noise	$P_O = 6W/Chan, f_{IN} = 1kHz$	0.2			%
V_{NOISE}	Output Noise Voltage, RMS. A-Weighted	$R_{SOURCE} = 50\Omega$, $C_{IN} = 1\mu F$, BW = 8Hz to 22kHz A-weighted, input referred	13			μV
		$V_{RIPPLE} = 200 \text{mVpp}, 1 \text{kHz},$ $V_{IN} = 0, \text{ input referred}$				
PSRR		f = 50Hz	94			
	Power Supply Rejection Ratio	f = 60Hz	94			
		f 100Hz	93			dB
		f = 120Hz	93			
		f = 1kHz	84			

leadphone Amplitiers

Electrical Characteristics (Notes 1, 2, 7) (Continued)

The following specifications apply for V_{DD} = 12V, $VOLV_{DD}$ = 5V, R_L = 8 Ω , LC filter values as shown in Figure 1, unless otherwise specified. Limits apply for T_A = 25°C.

Symbol	Parameter	Conditions	LM4682			Units
	Farameter	Conditions	Typical	Max	Min	Ullits
Po	Power Out Per Channel	THD+N \leq 1%, R _L = 32 Ω , f _{IN} = 1kHz	80		60	mW
THD+N	Distortion + Noise	$P_O = 20$ mW, $R_L = 32\Omega$, $f_{IN} = 1$ kHz	0.02			%
V _{NOISE}	Output Noise Voltage, RMS	$R_{IN} = 50\Omega, C_{IN} = 1\mu F, BW =$ 20Hz to 20kHz A-weighted, input referred	9			μV
PSRR	Power Supply Rejection Ratio (Referred to Input)	200mV, 1kHz, $V_{IN} = 0$, $R_{L} = 32\Omega$	88			dB

Electrical Characteristics for Volume Control (Notes 1, 2)

The following specifications apply for V_{DD} = 12V. Limits apply for T_A = 25°C.

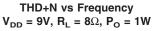
			LM4682		Units (Limits)	
Symbol	Parameter	Conditions	Typical Limit			
			(Note 8)	(Note 7)	(Lilling)	
C _{RANGE}	Gain Range	VOL_CTL voltage = VOLV _{DD} voltage,				
		No Load				
		Power Amplifier		29	dB (min)	
		Headphone Amplifier		12	dB (min)	
		VOL_CTL voltage = 0.069 x VOLV _{DD}				
		No Load				
		Power Amplifier		-46	dB (min)	
		Headphone Amplifier	-65	-63	dB (min)	
A _M	Mute Gain	V _{MUTE} voltage = 0V, No Load				
		Power Amplifier	-80	-60	dB (max)	
		Headphone Amplifier	-70	-60	dB (max)	

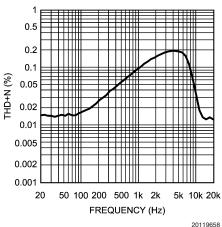
Note 1: All voltages are measured with respect to the ground pin, unless otherwise specified.

Note 2: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. "Operating Ratings" indicate conditions for which the device is functional, but do not guarantee specific performance limits. "Electrical Characteristics" state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.

Note 3: For operating at case temperatures above 25°C, the device must be derated based on a 150°C maximum junction temperature and a thermal resistance of $\theta_{JA} = 28$ °C/W (junction to ambient).

Note 4: Human body model, 100pF discharged through a 1.5k Ω resistor. Device pin 16 has ESD HBM rating = 1500V.

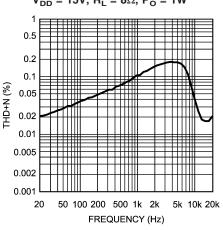

Note 5: Machine Model 220pF-240pF discharged through all pins.


Note 6: The operating junction temperature maximum is 150°C.

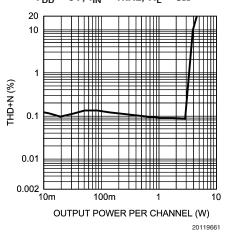
Note 7: Limits are guaranteed to National's AOQL (Average Outgoing Quality Level).

Note 8: Typicals are measured at 25°C and represent the parametric norm.

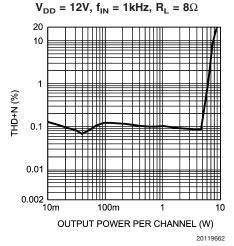
Typical Performance Characteristics (Power Amplifier)

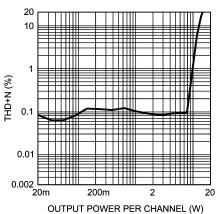


THD+N vs Frequency V_{DD} = 12V, R_L = 8 Ω , P_O = 1W

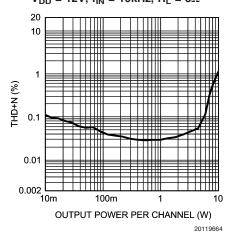


20119659

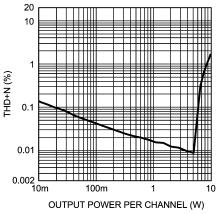

THD+N vs Frequency V_{DD} = 15V, R_L = 8 Ω , P_O = 1W


THD+N vs Output Power Per Channel $m V_{DD}$ = 9V, f_{IN} = 1kHz, R_L = 8 Ω

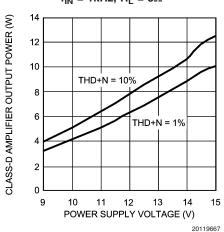
THD+N vs Output Power Per Channel

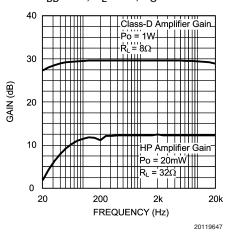


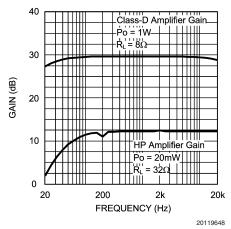
THD+N vs Output Power Per Channel V_{DD} = 15V, f_{IN} = 1kHz, R_L = 8 Ω

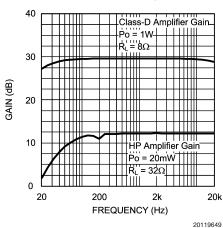


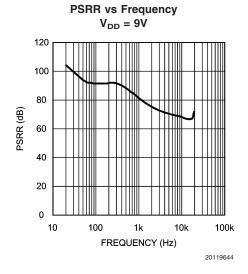
7

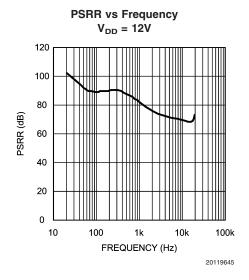

THD+N vs Output Power Per Channel V_{DD} = 12V, f_{IN} = 10kHz, R_L = 8 Ω

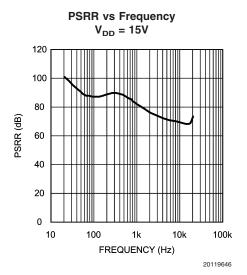

THD+N vs Output Power Per Channel V_{DD} = 12V, f_{IN} = 20Hz, R_L = 8 Ω


Output Power vs Supply Voltage $f_{IN} = 1kHz, R_L = 8\Omega$

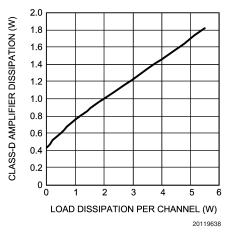

Amplifiers Gain vs Frequency $V_{DD} = 9V, R_{L} = 8\Omega, P_{O} = 1W$

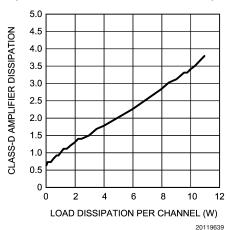


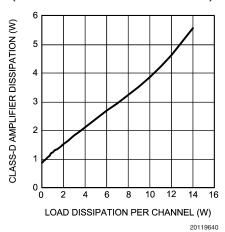

Amplifiers Gain vs Frequency V_{DD} = 12V, R_L = 8 Ω , P_O = 1W

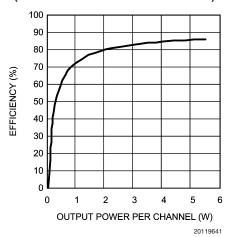


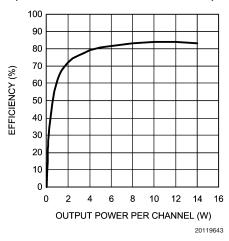
Amplifiers Gain vs Frequency V_{DD} = 15V, R_L = 8 Ω , P_O = 1W

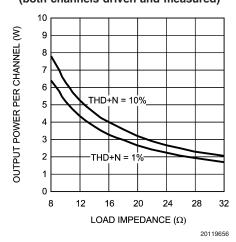


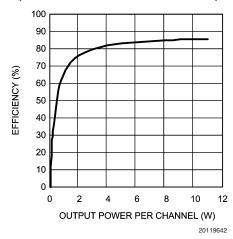


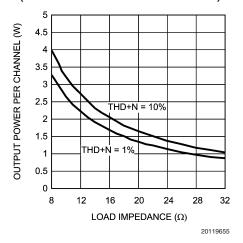

Class-D Amplifier Dissipation vs Load Dissipation Per Channel, ${\rm V_{DD}}$ = 9V, ${\rm R_L}$ = 8Ω (both channels driven and measured)

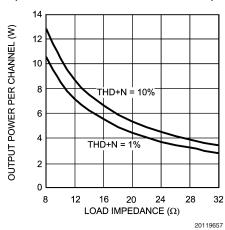

Class-D Amplifier Dissipation vs Load Dissipation Per Channel, V_{DD} = 12V, R_{L} = 8Ω (both channels driven and measured)

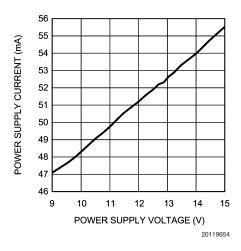

Class-D Amplifier Dissipation vs Load Dissipation Per Channel, V_{DD} = 15V, R_{L} = 8Ω (both channels driven and measured)


Efficiency vs Output Power V_{DD} = 9V, R_L = 8Ω (both channels driven and measured)

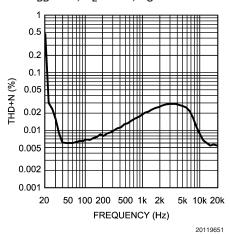

Efficiency vs Output Power $V_{DD}=15V,\,R_L=8\Omega$ (both channels driven and measured)


Output Power vs Load Resistance V_{DD} = 12V, f_{IN} = 1kHz (both channels driven and measured)

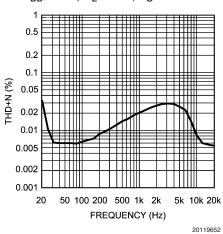

Efficiency vs Output Power $V_{DD}=12V,\,R_L=8\Omega$ (both channels driven and measured)


Output Power vs Load Resistance $V_{DD} = 9V$, $f_{IN} = 1kHz$ (both channels driven and measured)

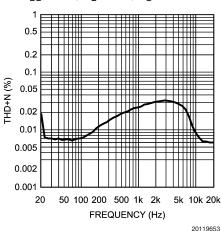
Output Power vs Load Resistance V_{DD} = 15V, f_{IN} = 1kHz (both channels driven and measured)

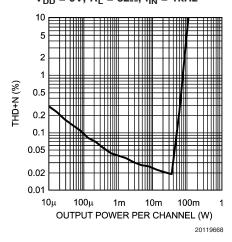


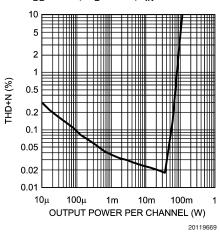
Power Supply Current vs Power Supply Voltage

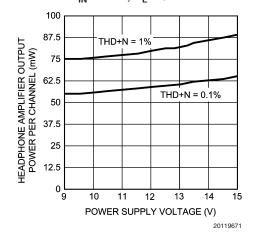


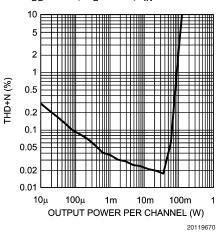
Typical Performance Characteristics (Headphone Amplifier)

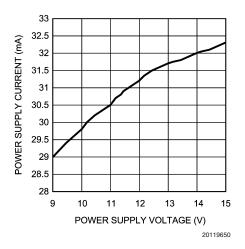

THD+N vs Frequency V_{DD} = 9V, R_L = 32 Ω , P_O = 20mW


THD+N vs Frequency $\mbox{V}_{\mbox{\scriptsize DD}} = \mbox{12V}, \mbox{ R}_{\mbox{\scriptsize L}} = \mbox{32}\Omega, \mbox{ P}_{\mbox{\scriptsize O}} = \mbox{20mW}$


THD+N vs Frequency $\label{eq:VDD} {\rm V_{DD}} = 15 {\rm V}, \, {\rm R_L} = 32 \Omega, \, {\rm P_O} = 20 {\rm mW}$


THD+N vs Output Power $\label{eq:VDD} V_{DD} = 9V, \ R_L = 32\Omega, \ f_{IN} = 1kHz$


THD+N vs Output Power $V_{DD} = 12V, \, R_L = 32\Omega, \, f_{IN} = 1kHz$


Output Power vs Supply Voltage Per Channel $f_{\text{IN}} = 1 \text{kHz}, \, R_{\text{L}} = 32 \Omega$

THD+N vs Output Power $\label{eq:VDD} V_{DD} = 15V, \ R_L = 32\Omega, \ f_{IN} = 1kHz$

Power Supply Current vs Power Supply Voltage

General Features

SYSTEM FUNCTIONAL INFORMATION

Modulation Technique

Unlike typical Class D amplifiers that use single-ended comparators to generate a pulse-width modulated switching waveform and RC timing circuits to set the switching frequency, the LM4682 uses a balanced differential floating modulator. Oscillation is a result of injecting complimentary currents onto the respective plates of a floating, on-die capacitor. The value of the floating capacitor and value of the components in the modulator's feedback network set the nominal switching frequency at 450kHz. Modulation results from imbalances in the injected currents. The amount of current imbalance is directly proportional to the applied input signal's magnitude and frequency.

Using a balanced, floating modulator produces a Class D amplifier that is immune to common mode noise sources such as substrate noise. This noise occurs because of the high frequency, high current switching in the amplifier's output stage. The LM4682 is immune to this type of noise because the modulator, the components that set its switching frequency, and even the load all float with respect to ground.

The balanced modulator's pulse width modulated output drives the gates of the LM4682's H-bridge configured output power MOSFETs. The pulse-train present at the power MOSFETs' output is applied to an LC low pass filter that removes the 450kHz energy component. The filter's output signal, which is applied to the driven load, is an amplified replica of the audio input signal.

Shutdown Function

The LM4682's active-low shutdown function allows the user to place the amplifier in a shutdown mode while the system power supply remains active. Activating shutdown stops the output switching waveform and minimizes the quiescent current. Applying logic "0" to SDB pin enables the shutdown function. Applying logic "1" to SDB pin disables the shutdown function and restores full amplifier operation.

Mute Function

The LM4682's active-low mute function allows the user to place the amplifier outputs in muted mode while the amplifier's analog input signals remain active. Activating mute internally removes the analog input signal from the Class D and headphone amplifier inputs. While muted the amplifier inputs and outputs retain in their VDD/2 operational bias. Applying logic "0" to MUTEB pin activates mute. Applying logic "1" to MUTEB pin deactivates mute. The MUTEB pin is pull-down internally to put both Class D and headphone amplifier outputs mute.

Stereo Headphone Amplifier

The LM4682's stereo headphone amplifier operates continuously, even while the Class D amplifiers are active. When using headphones to listen to program material, it is usually desirable to stop driving external speakers. This is easily achieved by using the active high HPSEL input. As shown in typical application schematic in Figure 1, with no headphones connected to the headphone jack, the input voltage applied to the HPSEL pin is a logic low. In this state, the Class D amplifiers are active and able to drive external speakers. When headphones are plugged into the headphone jack, the switch inside the jack is opened. This

changes the voltage applied to the HPSEL pin to a logic high, shutting off the LM4682's Class D amplifiers. The headphone control of the output configuration is shown in Table 1.

TABLE 1. Headphone Controls

HP Sense Pin, HPSEL	Output Stage Configuration
0	Class D Amps Active
1	Class D Amps Inactive

Under Voltage Protection

The under voltage protection disables the output driver section of the LM4682 while the supply voltage is below 8V. This condition may occur as power is first applied or during low line conditions, changes in load resistance, or when power supply sag occurs. The under voltage protection ensures that all of the LM4682's power MOSFETs are off. This action eliminates shoot-through current and minimizes output transients during turn-on and turn-off. The under voltage protection gives the digital logic time to stabilize into known states, further minimizing turn on output transients.

Power Supply Sequencing

In order to stabilize LM4682 before any operation, a power-up sequence for the power supplies is recommended. The Power $V_{\rm DD}$ should be applied first. Without deactivating the mute and shutdown function of the amplifiers, the $\rm VOLV_{\rm DD}$ is then applied. Prior to removing the two supply voltages, activate shutdown and mute.

Turn-On Time

The LM4682 has an internal timer that determines the amplifier's turn-on time. After power is first applied or the part returns from shutdown, the nominal turn-on time is 600ms. This delay allows all externally applied capacitors to charge to a final value of $V_{\rm DD}/2$. Further, during turn-on, the outputs are muted. This minimizes output transients that may occur while the part settles into its quiescent operating mode.

Output Stage Current Limit and Fault Detection Protection

The output stage MOSFETs are protected against output conditions that could otherwise compromise their operational status. The first stage of protection is output current limiting. When conditions that require high currents to drive a load, the LM4682's current limit circuitry clamps the output current at a nominal value of 2.5A. The output waveform is present, but may be clipped or its amplitude reduced. The same 2.5A nominal current limit also occurs if the amplifier outputs are shorted together or either output is shorted to $V_{\rm DD}$ or GND.

The second stage of protection is an onboard fault detection circuit that continuously monitors the signal on each output MOSFET's gate and compares it against the respective drain voltage. When a condition is detected that violates a MOSFET's Safe Operating Area (SOA) and the drive signal is disconnected from the output MOSFETs' gates. The fault detect circuit maintains this protective condition for approximately 600ms, at which time the drive signal is reconnected. If the fault condition is no longer present, normal operation resumes. If the fault condition remains, however, the drive signal is again disconnected.

General Features (Continued)

Thermal Protection

The LM4682 has thermal shutdown circuitry that monitors the die temperature. Once the LM4682 die temperature reaches 170°C, the LM4682 disables the output switching waveform and remains disabled until the die temperature falls below 140°C (typ).

Over-Modulation Protection

The LM4682's over-modulation protection is a result of the preamplifier's (AMP1 and AMP2, Figure 1) inability to produce signal magnitudes that equal the power supply voltages. Since the preamplifier's output magnitude will always be less than the supply voltage, the duty cycle of the amplifier's switching output will never reach zero. Peak modulation is limited to a nominal 95%.

DC Volume Control

The LM4682 has an internal stereo volume control whose setting is a function of the DC voltage applied to the volume control pin VOLCTL.

The LM4682 volume control consists of 31 steps, which are individually selected by a variable DC voltage level on the VOLCTL pin. The gain range of Class D amplifiers are from –48dB to 30dB. The gain range of headphone amplifiers are from –65dB to 13dB. Each gain step corresponds to specific input voltage of both Class D amplifiers and headphone amplifiers are shown in Table 2.

To minimize the effect of noise on the volume control VOLCTL pin, which can affect the selected gain level, hysteresis has been implemented. The amount of hysteresis corresponds to half of the step width. For highest accuracy, the voltage shown in the "recommended voltage" column of the table is used to select a desired gain. The recommended voltage is exactly halfway between the two closest transitions to the next highest or next lowest gain levels.

General Features (Continued)

TABLE 2. Volume Control Table

Step	Voltage Range (% of VOLVDD)			Voltage Range (V), VOLVDD = 5V		
	Low (%)	High (%)	Recommended (%)	Low (%)	High (%)	Recommended (%)
1	77.50%	100.00%	100.000%	3.875	5.000	5.000
2	75.00%	78.50%	76.875%	3.750	3.925	3.844
3	72.50%	76.25%	74.375%	3.625	3.813	3.719
4	70.00%	73.75%	71.875%	3.500	3.688	3.594
5	67.50%	71.25%	69.375%	3.375	3.563	3.469
6	65.00%	68.75%	66.875%	3.250	3.438	3.344
7	62.50%	66.25%	64.375%	3.125	3.313	3.219
8	60.00%	63.75%	61.875%	3.000	3.188	3.094
9	57.50%	61.25%	59.375%	2.875	3.063	2.969
10	55.00%	58.75%	56.785%	2.750	2.983	2.844
11	52.50%	56.25%	54.375%	2.625	2.813	2.719
12	50.00%	53.75%	51.875%	2.500	2.688	2.594
13	47.50%	51.25%	49.375%	2.375	2.563	2.469
14	45.00%	48.75%	46.875%	2.250	2.438	2.344
15	42.50%	46.25%	44.375%	2.125	2.313	2.219
16	40.00%	43.75%	41.875%	2.000	2.188	2.094
17	37.50%	41.25%	39.375%	1.875	2.063	1.969
18	35.00%	38.75%	36.875%	1.750	1.938	1.844
19	32.50%	36.25%	34.375%	1.625	1.813	1.719
20	30.00%	33.75%	31.875%	1.500	1.688	1.594
21	27.50%	31.25%	29.375%	1.375	1.563	1.469
22	25.00%	28.75%	26.875%	1.250	1.438	1.344
23	22.50%	26.25%	24.375%	1.125	1.313	1.219
24	20.00%	23.75%	21.875%	1.000	1.188	1.094
25	17.50%	21.25%	19.375%	0.875	1.063	0.969
26	15.00%	18.75%	16.875%	0.750	0.938	0.844
27	12.50%	16.25%	14.375%	0.625	0.813	0.719
28	10.00%	13.75%	11.875%	0.500	0.688	0.594
29	7.50%	11.25%	9.375%	0.375	0.563	0.469
30	5.00%	8.75%	6.875%	0.250	0.438	0.344
31	0.00%	6.25%	0.000%	0.000	0.313	0.000

Application Hints

SUPPLY BYPASSING

The major source of noises to be taken care and applying bypassing technique in using LM4682 are those transients response coming from its output stage. During the switching operations of the output stage of LM4682, the switching frequencies vary when the internal modulator react to the input signals. This creates a band of switching transients giving back to the power supply terminals of LM4682. A single capacitor may not bypass those transients well. Two capacitors which values are closed to each other are used to bypass this range of frequencies to the ground. 10µF tantalum capacitors and 4.7µF ceramic capacitors are needed for this kind of decoupling of LM4682 switching operation. This results an improvement in terms of both stability and audio performance of LM4682. In addition, these capacitors should be placed as close as possible to each IC's supply pin(s) using leads as short as possible. Apart from the power supply de-coupling capacitors, the four bootstrapping capacitors (at pins BST1_A, BST2_A, BST1_B and BST2_B) should also be placed close to their corresponding pins. This could minimize the undesirable switching noise coupled to the supply rail.

The LM4682 has two different sets of V_{DD} pins: a set for power V_{DD} (PV $_{DD}$ A and P V_{DD} B) and a set for signal V_{DD} A and HP $_{DD}$ V $_{DD}$ D. The parallel combination of the low value ceramic (4.7 μ F) and high value tantalum (10 μ F) should be used to bypass the power V_{DD} pins. A small value (1 μ F) ceramic or tantalum can be used to bypass the signal V_{DD} A and HP $_{DD}$ V $_{DD}$ pin.

OUTPUT STAGE FILTERING

The LM4682 requires a low pass filter connected between the amplifier's bridge output and the load. Figure 1 shows the recommended LC filter. A minimum value of 22µH is recommended. As shown in Figure 1, using the values of the components connected between the amplifier BTL outputs and the load achieves a 2nd-order lowpass filter response which optimizes the amplifier's performance within the audio band.

THD+N MEASUREMENTS AND OUT OF AUDIO BAND NOISE

THD+N (Total Harmonic Distortion plus Noise) is a very important parameter by which all audio amplifiers are measured. Often it is shown as a graph where either the output power or frequency is changed over the operating range. A very important variable in the measurement of THD+N is the bandwidth-limiting filter at the input of the test equipment. Class D amplifiers, by design, switch their output power devices at a much higher frequency than the accepted audio range (20Hz - 20kHz). Alternately switching the output voltage between V_{DD} and GND allows the LM4682 to operate at much higher efficiency than that achieved by traditional Class AB amplifiers. Switching the outputs at high frequency also increases the out-of-band noise. Under normal circumstances the output lowpass filter significantly reduces this out-of-band noise. If the low pass filter is not optimized for a given switching frequency, there can be significant increase in out-of-band noise. THD+N measurements can be significantly affected by out-of-band noise, resulting in a higher than expected THD+N measurement. To achieve a more accurate measurement of THD, the test equipment's input bandwidth of the must be limited. Some common upper filter points are 22kHz, 30kHz, and 80kHz. The input filter limits the noise component of the THD+N measurement to a smaller bandwidth resulting in a more real-world THD+N value.

RECOMMENDED PRINTED CIRCUIT BOARD LAYOUT

Figures 2 through 6 show the recommended four-layer PCB board layout that is optimized for the 48-pin LLP packaged LM4682 and associated external components. This circuit is designed for use with an external 12V supply and 8Ω speakers (or load resistors). Apply 12V and ground to board's $V_{\rm DD}$ and GND terminals respectively. And apply 5V to the VOLV_DD (refer to power supply sequencing for details). Connect speakers (or load resistors) between the board's OUTA+ and OUTA-, and between the board's OUTB+ and OUTB-. Apply the stereo input signals to IN_A and IN_B. When designing the layout of the PCB layout, please pay attention to the output terminals of LM4682.

Application Hints (Continued)

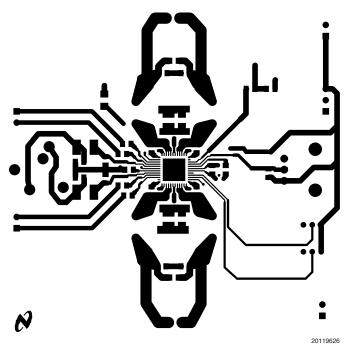


Figure 2: Top Layer

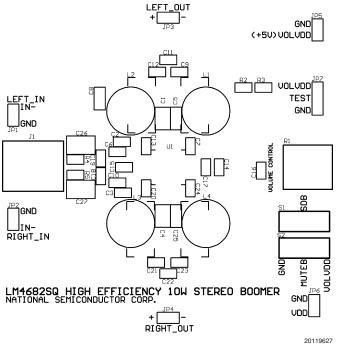


Figure 3: Top Silkscreen Layer

Application Hints (Continued)

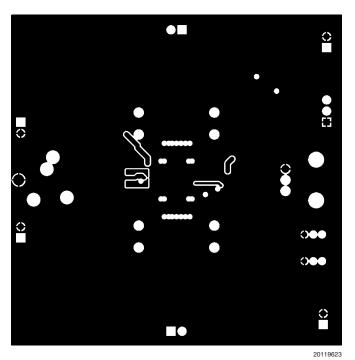


Figure 4: Upper Middle Layer

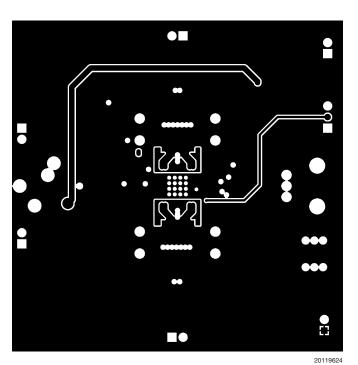


Figure 5: Lower Middle Layer

Application Hints (Continued)

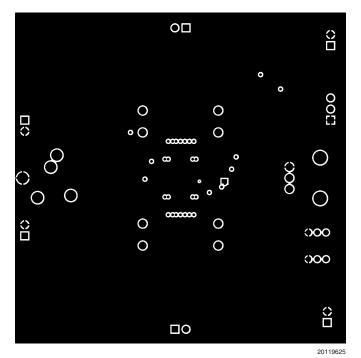
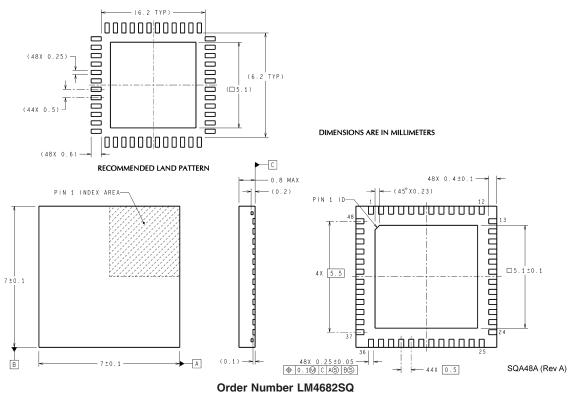



Figure 6: Bottom Layer

Revision History

Rev	Date	Description
1.1	6/02/05	Added the TSSOP pkg drawing, edited
		the block diagram, input some texts and
		limits values on the Electrical Char
		table.
1.2	6/06/05	Replaced the Block Diagram per
		Kevin H.
		2) Edited C _{RANGE} row (under Elect Char
		for Volume table) (per Alex W.) MC
1.3	12/19/05	Added the Typical Appl Circuit Diagram,
		General Features section, and the Appl
		Hints section. Also input some texts
		edits.
1.4	12/21/05	Changed the Block Diagram. Also input
		some texts edits.
1.5	01/03/06	Replaced the Typ Appl Ckt Dg and the
		Block Dg (per Alex.).
1.6	02/16/06	Added the Typical Perf. Curves and inpt
		some text edits.
1.7	02/22/06	Input some text edits. Modified X-axes
		on some of the curves.
		Initial WEB release of the document.
1.8	02/24/06	Edited art 201196 71 (changed the
		y-axis unit from mA to mW.
1.9	03/08/06	Did few texts clean-up and re-released
		D/S to the WEB (per Kevin H.).

Physical Dimensions inches (millimeters) unless otherwise noted

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

NS Package Number SQA48A

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

Leadfree products are RoHS compliant.

National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com

Tel: 1-800-272-9959

www.national.com

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com **National Semiconductor** Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560