April 1998

LM78S40 Universal Switching Regulator Subsystem

National Semiconductor

## LM78S40 Universal Switching Regulator Subsystem


## **General Description**

The LM78S40 is a monolithic regulator subsystem consisting of all the active building blocks necessary for switching regulator systems. The device consists of a temperature compensated voltage reference, a duty-cycle controllable oscillator with an active current limit circuit, an error amplifier, high current, high voltage output switch, a power diode and an uncommitted operational amplifier. The device can drive external NPN or PNP transistors when currents in excess of 1.5A or voltages in excess of 40V are required. The device can be used for step-down, step-up or inverting switching regulators as well as for series pass regulators. It features wide supply voltage range, low standby power dissipation, high efficiency and low drift. It is useful for any stand-alone, low part count switching system and works extremely well in battery operated systems.

## **Features**

- Step-up, step-down or inverting switching regulators
- Output adjustable from 1.25V to 40V
- Peak currents to 1.5A without external transistors
- Operation from 2.5V to 40V input
- Low standby current drain
- 80 dB line and load regulation
- High gain, high current, independent op amp
- Pulse width modulation with no double pulsing

## **Block and Connection Diagrams**



# Ordering Information

| Part Number  | NS Package       | Temperature Range |
|--------------|------------------|-------------------|
| LM78S40J/883 | J16A Ceramic DIP | þ55ÊC to +125ÊC   |
| LM78S40N     | N16E Molded DIP  | þ40ÊC to +125ÊC   |
| LM78S40CN    | N16E Molded DIP  | 0ÊC to +70ÊC      |

## Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

| ifications.     | Differential Input Voltage                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | (Note 4)                                                                                                                               | ±30V                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| –65°C to +175°C |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -65°C to +150°C | Duration (Op Amp)                                                                                                                      | Continuous                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                 | Current from V <sub>REF</sub>                                                                                                          | 10 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| –55°C to +125°C | Voltage from Switch                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -40°C to +125°C | Collectors to GND                                                                                                                      | 40V                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0°C to +70°C    | Voltage from Switch                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                 | Emitters to GND                                                                                                                        | 40V                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 300°C           | Voltage from Switch                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 265°C           | Collectors to Emitter                                                                                                                  | 40V                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ote 3)          | Voltage from Power Diode to GND                                                                                                        | 40V                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1.50W           | Reverse Power Diode Voltage                                                                                                            | 40V                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1.04W           | Current through Power Switch                                                                                                           | 1.5A                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 40V             | Current through Power Diode                                                                                                            | 1.5A                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 | ESD Susceptibility                                                                                                                     | (to be determined)                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                 | -65°C to +175°C<br>-65°C to +150°C<br>-55°C to +125°C<br>-40°C to +125°C<br>0°C to +70°C<br>300°C<br>265°C<br>ote 3)<br>1.50W<br>1.04W | -65°C to +175°C Output Short Circuit   -65°C to +150°C Duration (Op Amp)   Current from V <sub>REF</sub> -55°C to +125°C Voltage from Switch   -40°C to +125°C Collectors to GND   0°C to +70°C Voltage from Switch   265°C Collectors to GND   300°C Voltage from Switch   265°C Collectors to Emitter   voltage from Power Diode to GND Note 4)   1.50W Reverse Power Diode Voltage   1.04W Current through Power Switch   40V Current through Power Diode |

to GND

Common Mode Input Range

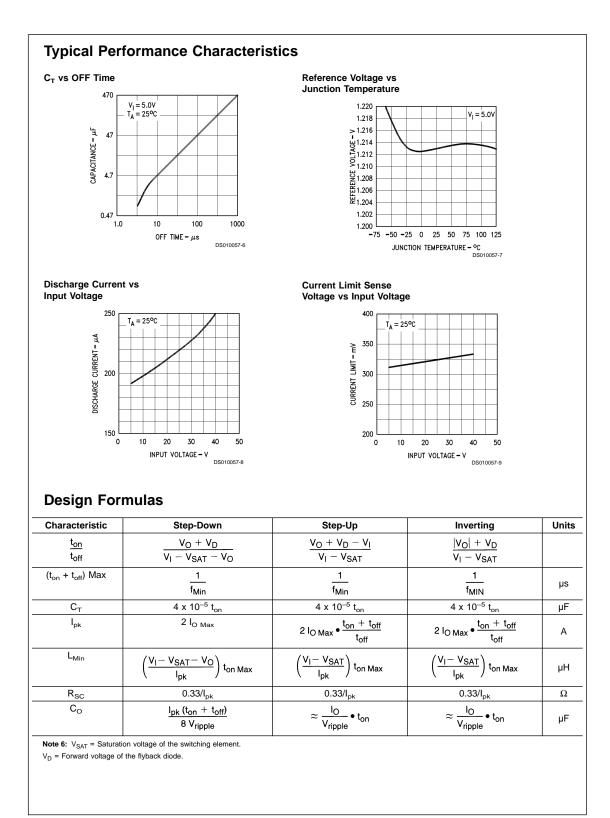
(Comparator and Op Amp)

## LM78S40

**Electrical Characteristics** (Note 5)  $T_A$  = Operating temperature range,  $V_{IN}$  = 5.0V, V<sup>+</sup>(Op Amp) = 5.0V, unless otherwise specified. Symbol Parameter Conditions Min Тур Max Units **GENERAL CHARACTERISTICS** Supply Current V<sub>IN</sub> = 5.0V 1.8 3.5 mΑ  $I_{CC}$  $V_{IN} = 40V$ (Op Amp Disconnected) 2.3 5.0 mΑ V<sub>IN</sub> = 5.0V 4.0  $I_{CC}$ Supply Current mΑ (Op Amp Connected)  $V_{IN} = 40V$ 5.5 mΑ REFERENCE SECTION Reference Voltage  $I_{REF} = 1.0 \text{ mA}$ Extend  $-55^{\circ}C < T_A <$  $V_{\mathsf{REF}}$ +125°C, Comm  $0 < T_A < +70^{\circ}C$ , 1.180 1.245 1.310 V Indus  $-40^{\circ}C < T_A < +85^{\circ}C$  $\rm V_{R\ LINE}$ Reference Voltage  $V_{IN} = 3.0V$  to  $V_{IN} = 40V$ , 0.04 0.2 mV/V Line Regulation  $I_{REF}$  = 1.0 mA,  $T_A$  = 25°C Reference Voltage  $I_{REF}$  = 1.0 mA to  $I_{REF}$  = 10 mA, 0.2 0.5 mV/mA  $V_{R \ LOAD}$ Load Regulation  $T_A = 25^{\circ}C$ OSCILLATOR SECTION  $V_{IN} = 5.0V, T_A = 25^{\circ}C$ **Charging Current** 20 50 μΑ I<sub>CHG</sub> I<sub>CHG</sub> **Charging Current**  $V_{IN} = 40V, T_A = 25^{\circ}C$ 20 70 μΑ **Discharge Current**  $V_{IN} = 5.0V, T_A = 25^{\circ}C$ 150 250 μA I<sub>DISCHG</sub> V<sub>IN</sub> = 40V, T<sub>A</sub> = 25°C **Discharge Current** 150 350 μΑ I<sub>DISCHG</sub> Oscillator Voltage Swing  $V_{IN} = 5.0V, T_A = 25^{\circ}C$ ٧ Vosc 0.5 Ratio of Charge/ 6.0  $t_{on}/t_{off}$ µs/µs Discharge Time CURRENT LIMIT SECTION Current Limit Sense  $T_A = 25^{\circ}C$ 250 350 m٧  $V_{CLS}$ Voltage OUTPUT SWITCH SECTION Output Saturation Voltage 1 I<sub>SW</sub> = 1.0A (*Figure 1*) V V<sub>SAT 1</sub> 1.1 1.3 Output Saturation Voltage 2 I<sub>SW</sub> = 1.0A (*Figure 2*) 0.45 0.7 V V<sub>SAT 2</sub>

40V

-0.3 to V+


| $I_{\Delta} = 0$             | perating temperature rande. V     | $_{N}$ = 5.0V, V <sup>+</sup> (Op Amp) = 5.0V, unless otherwise | specified.              |      |                     |       |
|------------------------------|-----------------------------------|-----------------------------------------------------------------|-------------------------|------|---------------------|-------|
| Symbol                       |                                   | Conditions                                                      | Min                     | Тур  | Max                 | Units |
| OUTPUT                       | SWITCH SECTION                    |                                                                 |                         |      |                     | L     |
| h <sub>FE</sub>              | Output Transistor Current<br>Gain | $I_{\rm C}$ = 1.0A, $V_{\rm CE}$ = 5.0V, $T_{\rm A}$ = 25°C     |                         | 70   |                     |       |
| IL.                          | Output Leakage Current            | $V_{O} = 40V, T_{A} = 25^{\circ}C$                              |                         | 10   |                     | nA    |
| POWER                        | DIODE                             |                                                                 |                         |      | •                   |       |
| V <sub>FD</sub>              | Forward Voltage Drop              | I <sub>D</sub> = 1.0A                                           |                         | 1.25 | 1.5                 | V     |
| I <sub>DR</sub>              | Diode Leakage Current             | V <sub>D</sub> = 40V, T <sub>A</sub> = 25°C                     |                         | 10   |                     | nA    |
| COMPA                        | RATOR                             |                                                                 |                         | 1    |                     |       |
| V <sub>IO</sub>              | Input Offset Voltage              | V <sub>CM</sub> = V <sub>REF</sub>                              |                         | 1.5  | 15                  | mV    |
| I <sub>IB</sub>              | Input Bias Current                | V <sub>CM</sub> = V <sub>REF</sub>                              |                         | 35   | 200                 | nA    |
| I <sub>IO</sub>              | Input Offset Current              | V <sub>CM</sub> = V <sub>REF</sub>                              |                         | 5.0  | 75                  | nA    |
| $V_{CM}$                     | Common Mode Voltage<br>Range      | $T_A = 25^{\circ}C$                                             | 0                       |      | V <sub>IN</sub> -2  | V     |
| PSRR                         | Power Supply Rejection<br>Ratio   | $V_{IN} = 3.0V$ to 40V, $T_A = 25^{\circ}C$                     | 70                      | 96   |                     | dB    |
| OPERAT                       |                                   |                                                                 |                         |      | 1                   | L     |
| V <sub>IO</sub>              | Input Offset Voltage              | V <sub>CM</sub> = 2.5V                                          |                         | 4.0  | 15                  | mV    |
| I <sub>IB</sub>              | Input Bias Current                | V <sub>CM</sub> = 2.5V                                          |                         | 30   | 200                 | nA    |
| I <sub>IO</sub>              | Input Offset Current              | V <sub>CM</sub> = 2.5V                                          |                         | 5.0  | 75                  | nA    |
| A <sub>VS</sub> <sup>+</sup> | Voltage Gain <sup>+</sup>         | $R_L = 2.0 \text{ k}\Omega$ to GND;                             | 25                      | 250  |                     | V/mV  |
|                              |                                   | $V_{O} = 1.0V$ to 2.5V, $T_{A} = 25^{\circ}C$                   |                         |      |                     |       |
| A <sub>VS</sub> <sup>-</sup> | Voltage Gain <sup>-</sup>         | $R_L = 2.0 \text{ k}\Omega \text{ to V}^+ \text{ (Op Amp)}$     | 25                      | 250  |                     | V/mV  |
|                              |                                   | $V_{O} = 1.0V$ to 2.5V, $T_{A} = 25^{\circ}C$                   |                         |      |                     |       |
| V <sub>CM</sub>              | Common Mode Voltage<br>Range      | $T_A = 25^{\circ}C$                                             | 0                       |      | V <sub>CC</sub> – 2 | V     |
| CMR                          | Common Mode Rejection             | $V_{CM} = 0V \text{ to } 3.0V, T_A = 25^{\circ}C$               | 76                      | 100  |                     | dB    |
| PSRR                         | Power Supply Rejection<br>Ratio   | V <sup>+</sup> (Op Amp) = 3.0V to 40V, $T_A = 25^{\circ}C$      | 76                      | 100  |                     | dB    |
| l₀⁺                          | Output Source Current             | $T_A = 25^{\circ}C$                                             | 75                      | 150  |                     | mA    |
| I <sub>0</sub> -             | Output Sink Current               | $T_A = 25^{\circ}C$                                             | 10                      | 35   |                     | mA    |
| SR                           | Slew Rate                         | $T_A = 25^{\circ}C$                                             |                         | 0.6  |                     | V/µs  |
| V <sub>OL</sub>              | Output Voltage LOW                | $I_{L} = -5.0 \text{ mA}, T_{A} = 25^{\circ}\text{C}$           |                         |      | 1.0                 | V     |
| V <sub>OH</sub>              | Output Voltage High               | $I_L = 50 \text{ mA}, T_A = 25^{\circ}\text{C}$                 | V + (Op<br>Amp) –<br>3V |      |                     | V     |

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Electrical specifications do not apply when ordering the device beyond its rated operating conditions.

Note 2:  $T_{J Max}$  = 150°C for the Molded DIP, and 175°C for the Ceramic DIP.

Note 3: Ratings apply to ambient temperature at 25°C. Above this temperature, derate the 16L-Ceramic DIP at 10 mW/°C, and the 16L-Molded DIP at 8.3 mW/°C. Note 4: For supply voltages less than 30V, the absolute maximum voltage is equal to the supply voltage.

Note 5: A military RETS specification is available on request. At the time of printing, the LM78S40 RETS specification complied with the Min and Max limits in this table. The LM78S40J may also be procured as a Standard Military Drawing.



## **Functional Description**

#### SWITCHING FREQUENCY CONTROL

The LM78S40 is a variable frequency, variable duty cycle device. The initial switching frequency is set by the timing capacitor. (Oscillator frequency is set by a single external capacitor and may be varied over a range of 100 Hz to 100 kHz). The initial duty cycle is 6:1. This switching frequency and duty cycle can be modified by two mechanisms—the current limit circuitry ( $I_{pk \ sense}$ ) and the comparator.

The comparator modifies the OFF time. When the output voltage is correct, the comparator output is in the HIGH state and has no effect on the circuit operation. If the output voltage is too high then the comparator output goes LOW. In the LOW state the comparator inhibits the turn-on of the output stage switching transistors. As long as the comparator is LOW the system is in OFF time. As the output current rises the OFF time decreases. As the output current nears its maximum the OFF time approaches its minimum value. The comparator can inhibit several ON cycles, one ON cycle or any portion of an ON cycle. Once the ON cycle has begun the comparator cannot inhibit until the beginning of the next ON cycle.

The current limit modifies the ON time. The current limit is activated when a 300 mV potential appears between lead 13 (V<sub>CC</sub>) and lead 14 (l<sub>pk</sub>). This potential is intended to result when designed for peak current flows through R<sub>SC</sub>. When the peak current is reached the current limit is turned on. The current limit circuitry provides for a quick end to ON time and the immediate start of OFF time.

Generally the oscillator is free running but the current limit action tends to reset the timing cycle.

Increasing load results in more current limited ON time and less OFF time. The switching frequency increases with load current.

# USING THE INTERNAL REFERENCE, DIODE, AND SWITCH

The internal 1.245V reference (pin 8) must be bypassed, with 0.1  $\mu F$  directly to the ground pin (pin 11) of the LM78S40, to assure its stability.

 $V_{\text{FD}}$  is the forward voltage drop across the internal power diode. It is listed on the data sheet as 1.25V typical, 1.5V maximum. If an external diode is used, then its own forward voltage drop must be used for  $V_{\text{FD}}.$ 

 $V_{SAT}$  is the voltage across the switch element (output transistors Q1 and Q2) when the switch is closed or ON. This is listed on the data sheet as Output Saturation Voltage.

"Output saturation voltage 1" is defined as the switching element voltage for Q2 and Q1 in the Darlington configuration with collectors tied together. This applies to *Figure* 1, the step down mode.

"Output saturation voltage 2" is the switching element voltage for Q1 only when used as a transistor switch. This applies to *Figure 2*, the step up mode.

For the inverting mode, *Figure 3*, the saturation voltage of the external transistor should be used for  $V_{SAT}$ .

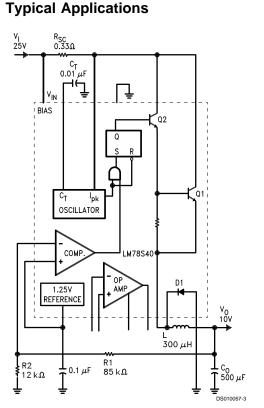



FIGURE 1. Typical Step-Down Regulator and Operational Performance ( $T_A = 25^{\circ}C$ )

| Characteristic     | Condition               | Typical<br>Value |
|--------------------|-------------------------|------------------|
| Output Voltage     | I <sub>O</sub> = 200 mA | 10V              |
| Line Regulation    | $20V \le V_I \le 30V$   | 1.5 mV           |
| Load Regulation    | 5.0 mA ≤ I <sub>O</sub> | 3.0 mV           |
|                    | I <sub>O</sub> ≤ 300 mA |                  |
| Max Output Current | V <sub>O</sub> = 9.5V   | 500 mA           |
| Output Ripple      | I <sub>O</sub> = 200 mA | 50 mV            |
| Efficiency         | I <sub>O</sub> = 200 mA | 74%              |
| Standby Current    | I <sub>O</sub> = 200 mA | 2.8 mA           |

Note 7: For  ${\rm I_O} \geq$  200 mA use external diode to limit on-chip power dissipation.

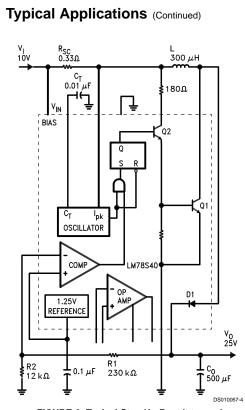



FIGURE 2. Typical Step-Up Regulator and Operational Performance  $(T_A = 25^{\circ}C)$ 

| Characteristic     | Condition               | Typical |
|--------------------|-------------------------|---------|
|                    |                         | Value   |
| Output Voltage     | I <sub>O</sub> = 50 mA  | 25V     |
| Line Regulation    | $5.0V \le V_I \le 15V$  | 4.0 mV  |
| Load Regulation    | 5.0 mA ≤ I <sub>O</sub> | 2.0 mV  |
|                    | I <sub>O</sub> ≤ 100 mA |         |
| Max Output Current | V <sub>O</sub> = 23.75V | 160 mA  |
| Output Ripple      | l <sub>o</sub> = 50 mA  | 30 mV   |
| Efficiency         | I <sub>O</sub> = 50 mA  | 79%     |
| Standby Current    | I <sub>O</sub> = 50 mA  | 2.6 mA  |

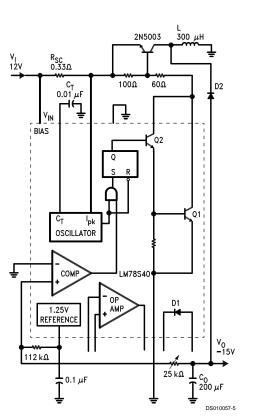
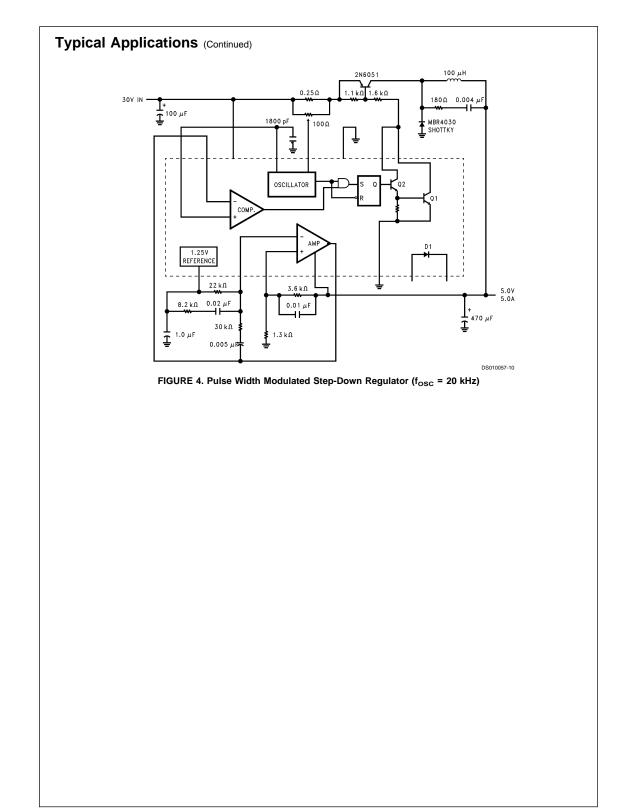
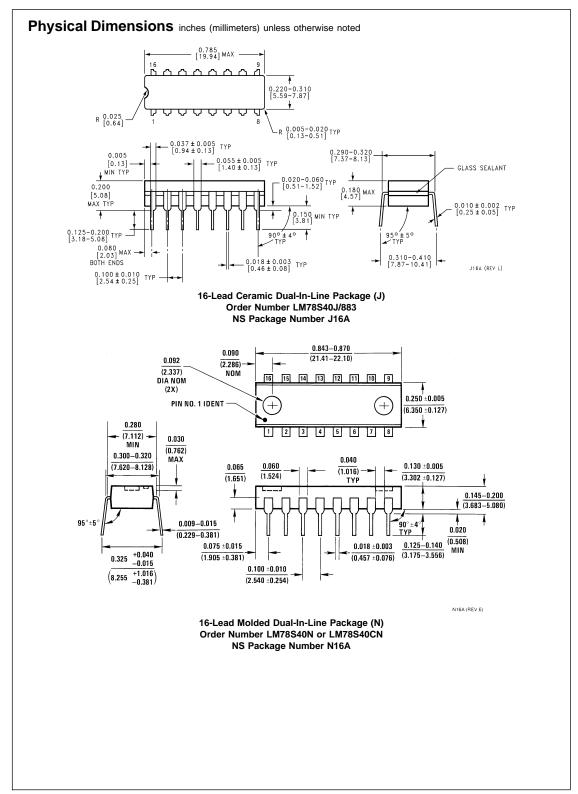





FIGURE 3. Typical Inverting Regulator and Operational Performance ( $T_A = 25^{\circ}C$ )

| Characteristic     | Condition                | Typical<br>Value |
|--------------------|--------------------------|------------------|
| Output Voltage     | I <sub>O</sub> = 100 mA  | -15V             |
| Line Regulation    | $8.0V \le V_I \le 18V$   | 5.0 mV           |
| Load Regulation    | 5.0 mA ≤ I <sub>O</sub>  | 3.0 mV           |
|                    | $I_O \le 150 \text{ mA}$ |                  |
| Max Output Current | V <sub>O</sub> = 14.25V  | 160 mA           |
| Output Ripple      | I <sub>O</sub> = 100 mA  | 20 mV            |
| Efficiency         | I <sub>O</sub> = 100 mA  | 70%              |
| Standby Current    | I <sub>O</sub> = 100 mA  | 2.3 mA           |





### LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

|          | National Semiconductor<br>Corporation | National Semiconductor<br>Europe                                            | National Semiconductor<br>Asia Pacific Customer | National Semiconductor<br>Japan Ltd. |
|----------|---------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------|
|          | Americas                              | Fax: +49 (0) 1 80-530 85 86                                                 | Response Group                                  | Tel: 81-3-5620-6175                  |
|          | Tel: 1-800-272-9959                   | Email: europe.support@nsc.com                                               | Tel: 65-2544466                                 | Fax: 81-3-5620-6179                  |
| 1        | Fax: 1-800-737-7018                   | Deutsch Tel: +49 (0) 1 80-530 85 85                                         | Fax: 65-2504466                                 |                                      |
| I        | Email: support@nsc.com                | English Tel: +49 (0) 1 80-532 78 32<br>Français Tel: +49 (0) 1 80-532 93 58 | Email: sea.support@nsc.com                      |                                      |
| www.nati | onal.com                              | Italiano Tel: +49 (0) 1 80-532 95 56                                        |                                                 |                                      |

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.