

LMH0044

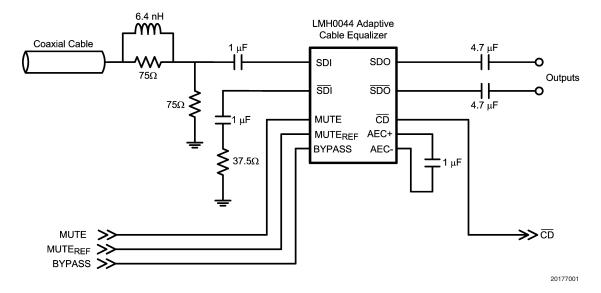
SMPTE 292M / 259M Adaptive Cable Equalizer

General Description

The LMH0044 SMPTE 292M / 259M adaptive cable equalizer is a monolithic integrated circuit for equalizing data transmitted over cable (or any media with similar dispersive loss characteristics). The equalizer operates over a wide range of data rates from 143 Mbps to 1.485 Gbps and supports SMPTE 292M, SMPTE 344M and SMPTE 259M.

The LMH0044 implements DC restoration to correctly handle pathological data conditions (DC restoration may be bypassed for low data rate applications). The equalizer may be driven in either a single ended or differential configuration.

Additional features include separate carrier detect and output mute pins which may be tied together to mute the output when no signal is present. A programmable mute reference is provided to mute the output at a selectable level of signal degradation.


Features

- SMPTE 292M, SMPTE 344M and SMPTE 259M compliant
- Supports DVB-ASI at 270 Mbps
- High data rates: 143 Mbps to 1.485 Gbps
- Equalizes up to 200 meters of Belden 1694A at 1.485
 Gbps or up to 400 meters of Belden 1694A at 270 Mbps
- Manual bypass and output mute with a programmable threshold
- Single-ended or differential input
- 50Ω differential outputs
- Single 3.3V supply operation
- 208mW typical power consumption with 3.3V supply
- Replaces the GS1574 and GS1574A

Applications

- SMPTE 292M, SMPTE 344M, and SMPTE 259M serial digital interfaces
- Serial digital data equalization and reception
- Data recovery equalization

Typical Application

Absolute Maximum Ratings (Note 1)

Supply Voltage -0.5V to 3.6V Input Voltage (all inputs) -0.3V to $V_{CC}+0.3V$

Storage Temperature Range -65°C to $+150^{\circ}\text{C}$

Junction Temperature

Lead Temperature (Soldering 4 Sec) +260°C

Package Thermal Resistance

 $\begin{array}{lll} \theta_{JA} \ 16\text{-pin LLP} & +43^{\circ}\text{C/W} \\ \theta_{JC} \ 16\text{-pin LLP} & +9^{\circ}\text{C/W} \\ \text{ESD Rating (HBM)} & 8\text{kV} \\ \text{ESD Rating (MM)} & 250\text{V} \end{array}$

Recommended Operating Conditions

 $\begin{array}{ll} \mbox{Supply Voltage } (\mbox{V}_{\rm CC} - \mbox{V}_{\rm EE}) & 3.3\mbox{V} \pm 5\% \\ \mbox{Input Coupling Capacitance} & 1.0 \mbox{ μF} \end{array}$

AEC Capacitor (Connected between

AEC+ and AEC-) 1.0 μ F Operating Free Air Temperature (T_A) 0°C to +85°C

DC Electrical Characteristics

Over Supply Voltage and Operating Temperature ranges, unless otherwise specified (Notes 2, 3).

+150°C

Symbol	Parameter	Conditions	Reference	Min	Тур	Max	Units
V _{CMIN}	Input Common Mode Voltage		SDI, SDI		1.9		V
V _{SDI}	Input Voltage Swing	At LMH0044 input, (Notes 4, 6)		720	800	950	mV _{P-P}
V _{CMOUT}	Output Common Mode Voltage SDO, SD		SDO, SDO		V _{CC} – V _{SDO} /2		V
V _{SDO}	Output Voltage Swing	50Ω load, differential			750		mV _{P-P}
	MUTE _{REF} DC Voltage (floating)		MUTE _{REF}		1.3		V
	MUTE _{REF} Range				0.7		V
	CD Output Voltage	Carrier not present	CD	2.6			V
		Carrier present				0.4	V
	MUTE Input Voltage	Min to mute outputs	MUTE	3.0			V
		Max to force outputs active				0.8	V
I _{cc}	Supply Current	(Note 7)			63	77	mA

www.national.com 2

AC Electrical Characteristics

Over Supply Voltage and Operating Temperature ranges, unless otherwise specified (Note 3).

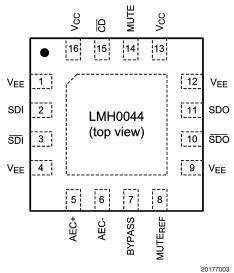
Symbol	Parameter	Conditions	Reference	Min	Тур	Max	Units
BR _{SDI}	Input Data Rate		SDI, SDI	143		1485	Mbps
	Jitter for various Cable Lengths	270 Mbps, Belden 1694A,			0.2		UI
	(with equalizer pathological)	400 meters (Note 4)]		0.2		01
		270 Mbps, Belden 8281,			0.2		UI
		280 meters (Note 4)]		0.2		01
		1.485 Gbps, Belden 1694A,			0.25		UI
		140 meters (Note 4)]		0.23		01
		1.485 Gbps, Belden 8281,			0.25		UI
		100 meters (Note 4)]		0.23		OI .
		1.485 Gbps, Belden 1694A,			0.3		UI
		200 meters (Note 4)			0.5		OI .
t _r ,t _f	Output Rise Time, Fall Time	20% - 80%, (Note 4)	SDO, SDO		100	220	ps
	Mismatch in Rise/Fall Time	(Note 4)			2	15	ps
t _{os}	Output Overshoot	(Note 4)			1	5	%
R _{OUT}	Output Resistance	single-ended, (Note 5)			50		Ω
RL _{IN}	Input Return Loss	(Note 8)	SDI, SDI	15	18-20		dB
R _{IN}	Input Resistance	single-ended	1		1.3		kΩ
C _{IN}	Input Capacitance	single-ended, (Note 5)	1		1		pF

Note 1: "Absolute Maximum Ratings" are those parameter values beyond which the life and operation of the device cannot be guaranteed. The stating herein of these maximums shall not be construed to imply that the device can or should be operated at or beyond these values. The table of "Electrical Characteristics" specifies acceptable device operating conditions.

Note 2: Current flow into device pins is defined as positive. Current flow out of device pins is defined as negative. All voltages are stated referenced to V_{EE} = 0 Volts.

Note 3: Typical values are stated for $V_{CC} = +3.3V$ and $T_A = +25^{\circ}C$.

Note 4: Specification is guaranteed by characterization.

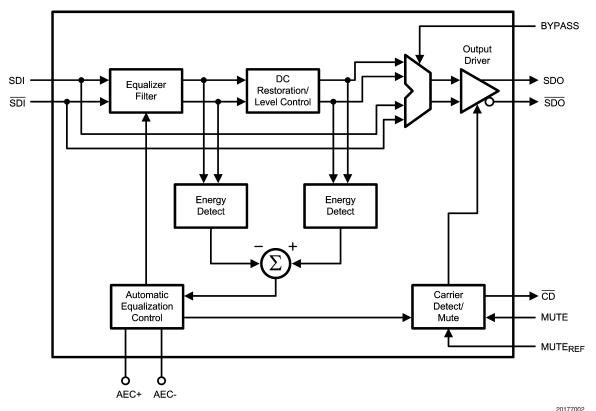

Note 5: Specification is guaranteed by design.

Note 6: The maximum input voltage swing assumes a nonstressing, DC-balance signal; specifically, the SMPTE-recommended color bar test signal. Pathological or other stressing signals may not be used. This specification is for 0m cable only.

Note 7: Supply current depends on the amount of cable being equalized. The current is highest for short cable and decreases as the cable length is increased. Refer to Figures 1, 2.

Note 8: Input return loss is dependent on board design. The LMH0044 meets this specification on the SD044 evaluation board from 5MHz to 1.5GHz.

Connection Diagram



16-Pin LLP Order Number LMH0044SQ See NS Package Number SQB16A

Pin Descriptions

Pin #	Name	Description
1	V _{EE}	Negative power supply (ground).
2	SDI	Serial data true input.
3	SDI	Serial data complement input.
4	V _{EE}	Negative power supply (ground).
5	AEC+	AEC loop filter external capacitor (1μF) positive connection.
6	AEC-	AEC loop filter external capacitor (1μF) negative connection.
7	BYPASS	Bypasses equalization and DC restoration when high. No equalization occurs in this mode.
8	MUTE _{REF}	Mute reference. Sets the threshold for $\overline{\text{CD}}$ and (with $\overline{\text{CD}}$ tied to MUTE) determines the
		maximum cable to be equalized before muting. MUTE _{REF} may be unconnected for maximum
		equalization.
9	V _{EE}	Negative power supply (ground).
10	SDO	Serial data complement output.
11	SDO	Serial data true output.
12	V _{EE}	Negative power supply (ground).
13	V _{CC}	Positive power supply (+3.3V).
14	MUTE	Output mute. To disable the mute function and enable the output, MUTE must be tied to GND
		or a low level signal. To force the outputs to a muted state, tie to V _{CC} . $\overline{\text{CD}}$ may be tied to this
		pin to inhibit the output when no input signal is present. MUTE has no function in BYPASS
		mode.
15	CD	Carrier detect. $\overline{\text{CD}}$ is high when no signal is present. $\overline{\text{CD}}$ has no function in BYPASS mode.
16	V _{CC}	Positive power supply (+3.3V).

Block Diagram

20177002

Device Operation

BLOCK DESCRIPTION

The **Equalizer Filter** block is a multi-stage adaptive filter. If Bypass is high, the equalizer filter is disabled.

The **DC Restoration / Level Control** block receives the differential signals from the equalizer filter block. This block incorporates a self-biasing DC restoration circuit to fully DC restore the signals. If Bypass is high, this function is disabled.

The signals before and after the DC Restoration / Level Control block are used to generate the **Automatic Equalization Control (AEC)** signal. This control signal sets the gain and bandwidth of the equalizer filter. The loop response in the AEC block is controlled by an external $1\mu F$ capacitor placed across the AEC+ and AEC- pins.

The Carrier Detect / Mute block generates the carrier detect signal and controls the mute function of the output. This block utilizes the $\overline{\text{CD}}$ and MUTE signals along with Mute Reference (MUTE_{REF}).

The Output Driver produces SDO and SDO.

MUTE REFERENCE (MUTE_{REF})

The mute reference sets the threshold for $\overline{\text{CD}}$ and (with $\overline{\text{CD}}$ tied to MUTE) determines the amount of cable to equalize before automatically muting the outputs. This is set by applying a voltage inversely proportional to the length of cable to equalize. As the applied MUTE_{REF} voltage is increased, the amount of cable that can be equalized before carrier detect is de-asserted and the outputs are muted is decreased. MUTE_{REF} may be left unconnected for maximum equalization before muting.

CARRIER DETECT (CD) AND MUTE

Carrier detect $\overline{\text{CD}}$ indicates if a valid signal is present at the LMH0044 input. If MUTE_{REF} is used, the carrier detect threshold will be altered accordingly. $\overline{\text{CD}}$ provides a high voltage when no signal is present at the LMH0044 input. $\overline{\text{CD}}$ is low when a valid input signal is detected.

MUTE can be used to manually mute or enable SDO and SDO. Applying a high input to MUTE will mute the LMH0044 outputs. Applying a low input will force the outputs to be active.

 $\overline{\text{CD}}$ and MUTE may be tied together to automatically mute the output when no input signal is present.

INPUT INTERFACING

The LMH0044 accepts either differential or single-ended input. The input must be AC coupled. Transformer coupling is not supported.

The LMH0044 correctly handles equalizer pathological signals for standard definition and high definition serial digital video, as described in SMPTE RP 178 and RP 198, respectively.

OUTPUT INTERFACING

The SDO and $\overline{\text{SDO}}$ outputs are internally loaded with 50 Ω . They produce a 750 mV_{P-P} differential output, or a 375 mV_{P-P} single-ended output.

5 www.national.com

Application Information

PCB LAYOUT RECOMMENDATIONS

Please refer to the following Application Note on National's website: AN-1372, "CLC034 PCB Layout Techniques." The PCB layout techniques in the application note apply to the LMH0044 as well.

REPLACING THE GENNUM GS1574A

The LMH0044 is footprint compatible with the Gennum GS1574A.

SUPPLY CURRENT VS. CABLE LENGTH

The supply current ($I_{\rm CC}$) depends on the amount of cable being equalized. The current is highest for short cable and decreases as the cable length is increased. *Figure 1* shows supply current vs. Belden 1694A cable length for 1.485 Gbps data and *Figure 2* shows supply current vs. Belden 1694A cable length for 270 Mbps data.

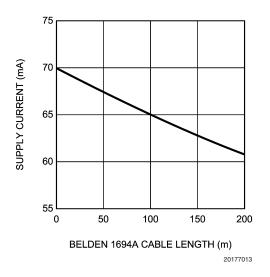


FIGURE 1. Supply Current vs. Belden 1694A Cable Length, 1.485 Gbps

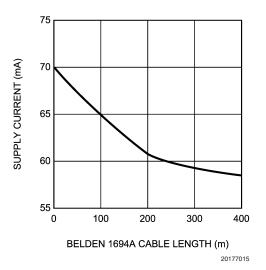
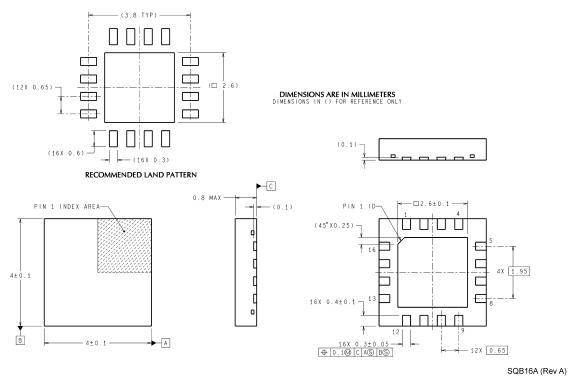



FIGURE 2. Supply Current vs. Belden 1694A Cable Length, 270 Mbps

www.national.com

Physical Dimensions inches (millimeters) unless otherwise noted

16-Pin LLP Order Number LMH0044SQ **NS Package Number SQB16A**

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor follows the provisions of the Product Stewardship Guide for Customers (CSP-9-111C2) and Banned Substances and Materials of Interest Specification (CSP-9-111S2) for regulatory environmental compliance. Details may be found at: www.national.com/quality/green.

Lead free products are RoHS compliant.

National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com

Tel: 1-800-272-9959

www.national.com

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com **National Semiconductor** Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560