PRELIMINARY

September 2005

±200 μV (max)

2.7V to 12V

LMP7701 Precision, CMOS Input, RRIO, Wide Supply Range Amplifier

General Description

The LMP7701 is a single, low offset voltage, rail-to-rail input and output precision amplifier with a CMOS input stage and a wide supply voltage range. The LMP7701 is part of the LMP™ precision amplifier family and is ideal for sensor interface and other instrumentation applications.

The guaranteed low offset voltage of less than $\pm 200~\mu V$ along with the guaranteed low input bias current of less than $\pm 10~pA$ make the LMP7701 ideal for precision applications. The LMP7701 is built utilizing VIP50 technology, which allows the combination of a CMOS input stage and a 12V common mode and supply voltage range. This makes the LMP7701 a great choice in many applications where conventional CMOS parts cannot operate under the desired voltage conditions.

The LMP7701 has a rail-to-rail input stage that significantly reduces the CMRR glitch commonly associated with rail-to-rail input amplifiers. This is achieved by trimming both sides of the complimentary input stage, thereby reducing the difference between the NMOS and PMOS offsets. The output of the LMP7701 swings within 40 mV of either rail to maximize the signal dynamic range in applications requiring low supply voltage.

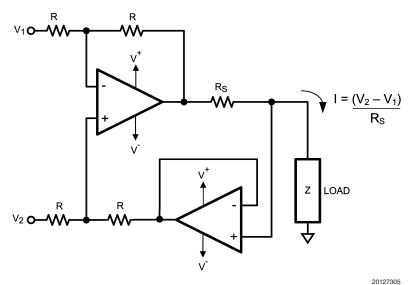
The LMP7701 is offered in space saving SOT23-5. This small package is an ideal solution for area constrained PC boards and portable electronics.

Features

■ Input offset voltage

Unless otherwise noted, typical values at V_S = 5V

Input bias current
 Input voltage noise
 CMRR
 Open loop gain
 Temperature range
 Unity gain bandwidth
 Supply current
 300 fA
 12 nV/√Hz
 100 dB
 130 dB
 −40°C to 125°C
 Unity gain bandwidth
 2.5 MHz
 Supply current
 715 μA


■ Rail-to-rail input and output

■ Supply Voltage Range

Applications

- High impedance sensor interface
- Battery powered instrumentation
- High gain amplifiers
- DAC buffer
- Instrumentation amplifier
- Active filters

Typical Application

Precision Current Source

LMP™ is a trademark of National Semiconductor Corporation

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 2)

Human Body Model 2 kV Machine Model 200V V_{IN} Differential ±300 mV Supply Voltage $(V_S = V^+ - V^-)$ 13.2V Voltage at Input/Output Pins $V^++ 0.3V, V^- - 0.3V$ Input Current 10 mA Storage Temperature Range $-65^{\circ}C$ to $+150^{\circ}C$ Junction Temperature (Note 3) +150°C Soldering Information Infrared or Convection (20 sec) 235°C Wave Soldering Lead Temp. (10 260°C sec)

Operating Ratings (Note 1)

Temperature Range (Note 3) -40°C to +125°C Supply Voltage $(V_S = V^+ - V^-)$ 2.7V to 12V

Package Thermal Resistance (θ_{JA} (Note 3))

5-Pin SOT23 234°C/W

3V Electrical Characteristics (Note 4)

Unless otherwise specified, all limits are guaranteed for $T_A = 25^{\circ}C$, $V^+ = 3V$, $V^- = 0V$, $V_{CM} = V^+/2$, and $R_L > 10$ k Ω to $V^+/2$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Min (Note 6)	Typ (Note 5)	Max (Note 6)	Units
V _{OS}	Input Offset Voltage		(Note 6)	±37	±200 ±500	μV
TCV _{os}	Input Offset Voltage Drift	(Note 7)		±1	±5	μV/°C
I _B	Input Bias Current	(Notes 7, 8)		0.3	10 300	рА
I _{os}	Input Offset Current			40		fA
CMRR	Common Mode Rejection Ratio	$0V \le V_{CM} \le 3V$	86 80	98		dB
PSRR	Power Supply Rejection Ratio	$2.7V \le V^+ \le 12V$, $Vo = V^+/2$	86 82	98		dB
CMVR	Input Common-Mode Voltage Range	CMRR ≥ 80 dB CMRR ≥ 77 dB	-0.2 - 0.2		3.2 3.2	V
A _{VOL}	Large Signal Voltage Gain	$R_{L} = 2 \text{ k}\Omega$ $V_{O} = 0.3 \text{V to } 2.7 \text{V}$	100 96	114		dB
		$R_{L} = 10 \text{ k}\Omega$ $V_{O} = 0.2 \text{V to } 2.8 \text{V}$	100 96	124	24	db
Vo	Output Swing High	$R_L = 2 k\Omega \text{ to } V^+/2$	2.92 2.88	2.96		V
		$R_L = 10 \text{ k}\Omega \text{ to } V^+/2$	2.96 2.94	2.97		v
	Output Swing Low	$R_L = 2 k\Omega$ to $V^+/2$		0.04	0.06 0.08	.,
		$R_L = 10 \text{ k}\Omega \text{ to } V^+/2$		0.02	0.04 0.05	V
Io	Output Short Circuit Current (Notes 3, 9)	Sourcing $V_O = 0V$ $V_{IN} = 100 \text{ mV}$	25 15	42		m A
		Sinking $V_O = 3V$ $V_{IN} = -100 \text{ mV}$	25 20	42		mA
I _S	Supply Current			0.670	1.0 1.2	mA
SR	Slew Rate (Note 10)	$A_V = +1, V_O = 2 V_{PP}$ 10% to 90%		0.9		V/µs
GBW	Gain Bandwidth Product			2.5		MHz
THD+N	Total Harmonic Distortion + Noise	$f = 1 \text{ kHz}, \text{ Av} = 1, \text{ R}_{L} = 1 \text{ k}\Omega$		0.02		%
e _n	Input-Referred Voltage Noise	f = 1 kHz		12		nV/ √Hz

www.national.com 2

3V Electrical Characteristics (Note 4) (Continued)

Unless otherwise specified, all limits are guaranteed for $T_A = 25^{\circ}C$, $V^+ = 3V$, $V^- = 0V$, $V_{CM} = V^+/2$, and $R_L > 10 \text{ k}\Omega$ to $V^+/2$. **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
			(Note 6)	(Note 5)	(Note 6)	
i _n	Input-Referred Current Noise	f = 100 kHz		1		fA/ √Hz

5V Electrical Characteristics (Note 4)

Unless otherwise specified, all limits are guaranteed for T = 25°C, V^+ = 5V, V^- = 0V, V_{CM} = $V^+/2$, and R_L > 10 k Ω to $V^+/2$. **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
			(Note 6)	(Note 5)	(Note 6)	
V _{os}	Input Offset Voltage			±37	±200 ±500	μV
TCVos	Input Offset Voltage Drift	(Note 7)		±1	±5	μV/°C
В	Input Bias Current	(Notes 7, 8)		0.3	10 300	рА
os	Input Offset Current			40		fA
CMRR	Common Mode Rejection Ratio	$0V \le V_{CM} \le 5V$	88 83	100		dB
PSRR	Power Supply Rejection Ratio	$2.7V \le V^+ \le 12V$, $Vo = V^+/2$	86 82	98		dB
CMVR	Input Common-Mode Voltage Range	CMRR ≥ 80 dB CMRR ≥ 78 dB	-0.2 - 0.2		5.2 5.2	V
A _{VOL}	Large Signal Voltage Gain	$R_L = 2 k\Omega$ $V_O = 0.3V \text{ to } 4.7V$	100 96	119		-ID
		$R_{L} = 10 \text{ k}\Omega$ $V_{O} = 0.2 \text{V to } 4.8 \text{V}$	100 96	130		dB
Vo	Output Swing High	$R_L = 2 k\Omega \text{ to } V^+/2$	4.89 4.87	4.94		V
		$R_L = 10 \text{ k}\Omega \text{ to } V^+/2$	4.95 4.93	4.96		V
	Output Swing Low	$R_L = 2 k\Omega \text{ to } V^+/2$		0.05	0.08 0.09	,,
		$R_L = 10 \text{ k}\Omega \text{ to V}^+/2$		0.03	0.04 0.05	V
О	Output Short Circuit Current (Notes 3, 9)	Sourcing $V_O = 0V$ $V_{IN} = 100 \text{ mV}$	40 28	66		
		Sinking $V_O = 5V$ $V_{IN} = -100 \text{ mV}$	40 28	76		- mA
S	Supply Current			0.715	1.0 1.2	mA
SR	Slew Rate (Note 10)	$A_V = +1, V_O = 4 V_{PP}$ 10% to 90%		1.0		V/µs
3BW	Gain Bandwidth Product			2.5		MHz
ΓHD+N	Total Harmonic Distortion + Noise	$f = 1 \text{ kHz}, \text{ Av} = 1, \text{ R}_{L} = 1 \text{ k}\Omega$		0.02		%
P _n	Input-Referred Voltage Noise	f = 1 kHz		12		nV/ √Hz
n	Input-Referred Current Noise	f = 100 kHz		1		fA/ √Hz

±5V Electrical Characteristics (Note 4)

Unless otherwise specified, all limits are guaranteed for $T_A = 25^{\circ}C$, $V^+ = 5V$, $V^- = -5$ V, $V_{CM} = 0$, and $R_L > 10$ k Ω to V_{CM} . **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Min (Note 6)	Typ (Note 5)	Max (Note 6)	Units
V _{OS}	Input Offset Voltage			±37	±200 ±500	μV
TCVos	Input Offset Voltage Drift	(Note 7)		±1	±5	μV/°C
I _B	Input Bias Current	(Notes 7, 8)		0.3	10 300	pA
I _{os}	Input Offset Current			40		fA
CMRR	Common Mode Rejection Ratio	$-5V \le V_{CM} \le 5V$	92 88	110		dB
PSRR	Power Supply Rejection Ratio	$2.7V \le V^+ \le 12V$, $Vo = V_{CM}$	86 82	98		dB
CMVR	Input Common-Mode Voltage Range	CMRR ≥ 80 dB CMRR ≥ 78dB	-5.2 -5.2		5.2 5.2	V
A _{VOL}	Large Signal Voltage Gain	$R_L = 2 k\Omega$ $V_O = -4.7V \text{ to } 4.7V$	100 98	121		- dB
		$R_{L} = 10 \text{ k}\Omega$ $V_{O} = -4.8 \text{V to } 4.8 \text{V}$	100 98	134		db
V _O	Output Swing High	$R_L = 2 \text{ k}\Omega \text{ to } V_{CM}$	4.85 4.83	4.91		V
		$R_L = 10 \text{ k}\Omega \text{ to } V_{CM}$	4.92 4.90	4.96		V
	Output Swing Low	$R_L = 2 \text{ k}\Omega \text{ to } V_{CM}$		-4.91	-4.87 -4.85	V
		$R_L = 10 \text{ k}\Omega \text{ to } V_{CM}$		-4.96	-4.95 -4.94	V
lo	Output Short Circuit Current (Notes 3, 9)	Sourcing $V_O = -5V$ $V_{IN} = 100 \text{ mV}$	50 35	86		A
		Sinking $V_O = 5V$ $V_{IN} = -100 \text{ mV}$	50 35	84		mA mA
Is	Supply Current			0.790	1.1 1.3	mA
SR	Slew Rate (Note 10)	$A_V = +1, V_O = 9 V_{PP}$ 10% to 90%		1.1		V/µs
GBW	Gain Bandwidth Product			2.5		MHz
THD+N	Total Harmonic Distortion + Noise	$f = 1 \text{ kHz}, \text{ Av} = 1, \text{ R}_{L} = 1 \text{ k}\Omega$		0.02		%
e _n	Input-Referred Voltage Noise	f = 1 kHz		12		nV/ √Hz
i _n	Input-Referred Current Noise	f = 100 kHz		1		fA/ √Hz

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics Tables.

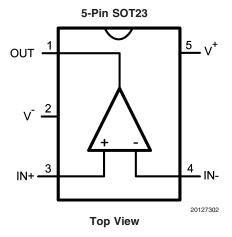
Note 2: Human Body Model: $1.5 \text{ k}\Omega$ in series with 100 pF. Machine Model: 0Ω in series with 200 pF.

Note 3: The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} - T_A) / \theta_{JA}$. All numbers apply for packages soldered directly onto a PC board.

Note 4: Electrical table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device.

Note 5: Typical values represent the parametric norm at the time of characterization.

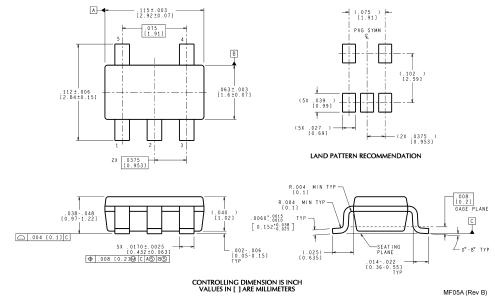
Note 6: Limits are 100% production tested at 25°C. Limits over the operating temperature range are guaranteed through correlations using the Statistical Quality Control (SQC) method.


Note 7: Guaranteed by design.

Note 8: Positive current corresponds to current flowing into the device.

Note 9: The short circuit test is a momentary test.

Note 10: The number specified is the slower of positive and negative slew rates.


Connection Diagram

Ordering Information

Package	Package Part Number		Transport Media	NSC Drawing	
5-Pin SOT-23	LMP7701MF	AC2A	1k Units Tape and Reel	MF05A	
5-FIII 301-23	LMP7701MFX		3k Units Tape and Reel	INITUDA	

Physical Dimensions inches (millimeters) unless otherwise noted

5-Pin SOT23 NS Package Number MF05A

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

Leadfree products are RoHS compliant.

National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560