

Precision 1.24V Shunt Voltage Reference

FEATURES

- Voltage Tolerance...... 1% and 2%
- Wide Operating Current.....100uA to 15mA
- Low Temperature Coefficient50 ppm/°C
- Fixed Reversed Breakdown Voltage 1.24V
- Offered in TO-92, SOIC, SOT-23-3
- No Output Capacitance Required
- Two Terminal "Zener" Operation
- Improved Replacement in Performance for TL431, AS4041

APPLICATIONS

- Constant Current Source
- Digital Voltmeter
- Power Management
- Precision Regulators
- Battery Powered Equipment
- Instrumentation
- Automotive Electronics
- Data Acquisition Systems

PRODUCT DESCRIPTION

The SPX4041 is a two-terminal, temperature compensated, band-gap voltage reference, which provides a fixed 1.24V output for input currents between 160 μ A to 15mA. The bandgap voltage (1.24V) is independently laser trimmed from the output voltage to achieve a very low temperature coefficient, then the output voltage is laser trimmed to 1.24 volts. This trimming technique and the low temperature coefficient (A grade 50 ppm/°C) thin film resistor process gives a very stable device over the full temperature range. The SPX4041 is available in the sub-miniature (3mm × 1.3mm) SOT-23, SOIC-8 surface mount package, or TO-92 package. The operating temperature is -40°C to 85°C.

The SPX4041 advanced design eliminates the need for an external stabilized capacitor while insuring stability with any capacitive load, making them easy to use.

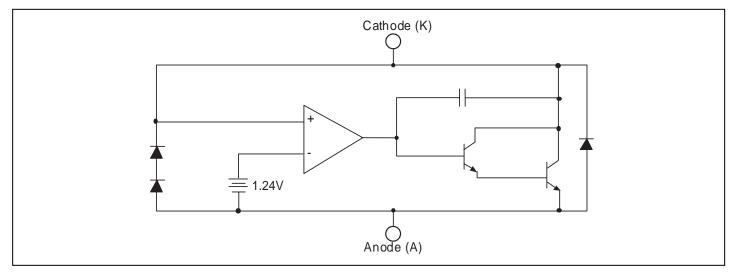


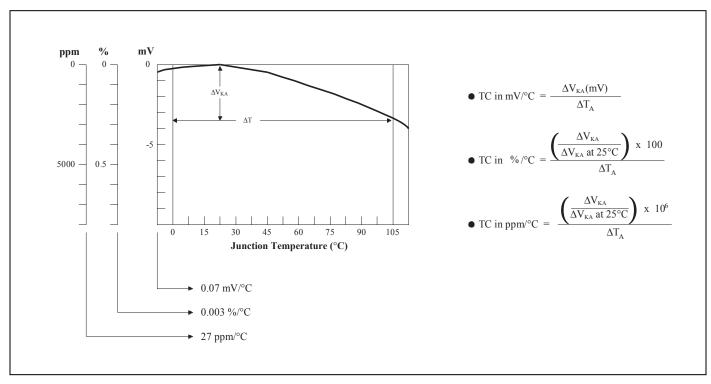
Figure 1. Block Diagram

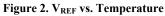
ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNITS
Anode-Cathode Forward Current	I _{AK}	10	mA
Reverse Current	I _{KA}	20	mA
Continuous Power Dissipation at 25° C	P _D		
TO-92		550	mW
SOT-23		300	mW
SOIC-8		525	mW
Junction Temperature	TJ	150	°C
Storage Temperature	T _{STG}	- 65 to 150	°C
Lead Temperature (Soldering 10 sec.)	T_{L}	300	°C
Operating Temperature Range	T _A	$-40^{\circ}C \le T_A \le 85^{\circ}C$	°C

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

TYPICAL THERMAL RESISTANCES


PACKAGE	Oja	0 _{JC}	TYPICAL DERATING
TO-92	160 °C/W	80 °C/W	6.3 mW/°C
SOT-23	575 °C/W	150 °C/W	1.7 mW/°C
SOIC-8	175 °C/W	45 °C/W	5.7 mW/°C


Typical deratings of the thermal resistances are given for ambient temperature >25°C.

			SPX4041A			SPX4041		Units
Parameters	Conditions	Min	Тур	Max	Min	Тур	Max	
Reverse Breakdown Voltage	I _R =500µA		1.24			1.24		V
Reverse Breakdown	I _R =500µA			±12			±25	mV
Tolerance	$-40^{\circ}C < T_A < 85^{\circ}C$			±29			±49	mV
Dynamic Output Impedance			0.60	2		0.60	2	Ω
Noise Voltage	0.1kHz≤ f≤10Hz		15			15		μV p-p
Temperature Coefficient	Note 1			100			100	ppm/°C
Turn-on Setting	0.1% of V _{OUT}		30			30		μSec
Temperature Range (T _A)		-40		85	-40		85	°C
Operating Current Range	Note 2	0.5		5	0.5		5	mA
				15			15	

ELECTRICAL CHARACTERISTICS at $I_{IN} = 1000\mu A$, and $T_A = +25^{\circ}C$ unless otherwise noted.

*CALCULATING AVERAGE TEMPERATURE COEFFICIENT (TC)

TYPICAL PERFORMANCE CHARACTERISTICS

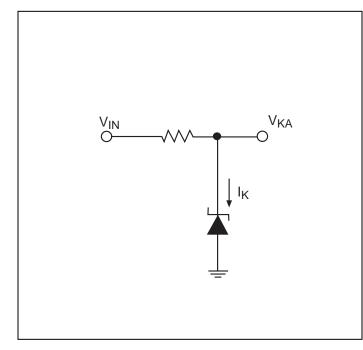


Figure 3. Test Circuit

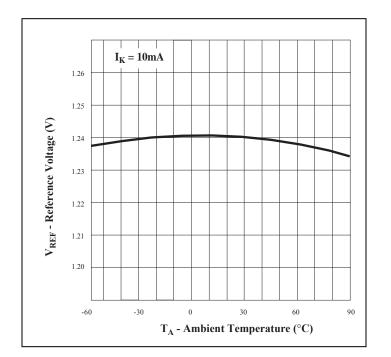


Figure 5. Reference Voltage vs. Ambient Temperature

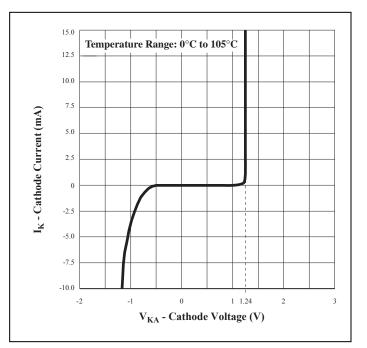
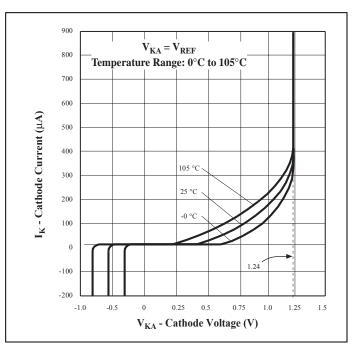



Figure 4. High Current Operating Characteristics

TYPICAL PERFORMANCE CHARACTERISTICS

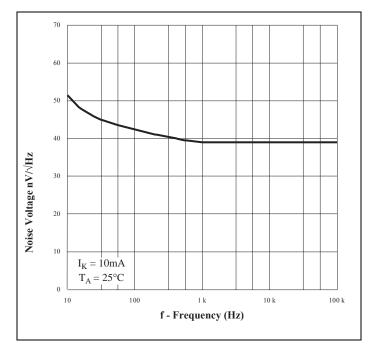


Figure 7. Noise Voltage vs. Frequency

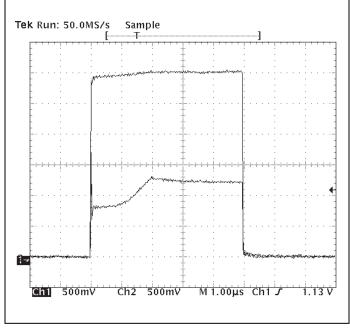


Figure 9a. Frequency = 100kHz, $I_K = 10mA$, $T_A = 25^{\circ}C$

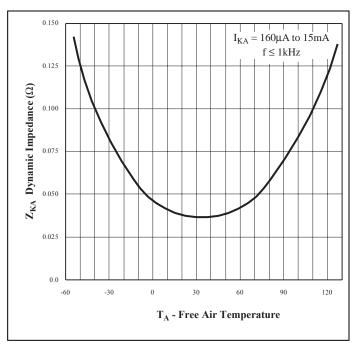


Figure 8. Low Frequency Dynamic Output Impedance vs. $T_{\mbox{\scriptsize AMBIENT}}$

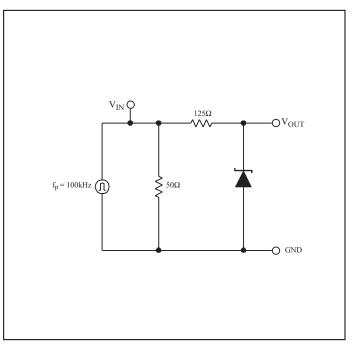


Figure 9b. Test Circuit for Pulse Response

APPLICATION INFORMATION

This device is designed for stable operation and has no need of an external capacitor. The reference remains stable if a bypass capacitor is used.

SOT-23

The SPX4041 in the SOT-23 package has a parasitic Schottky diode between pin 3 and pin 1. Pin 1 of SOT-23 must float or be connected to pin 3.

Conventional Shunt Regulator

In a conventional shunt regulator application (see Figure 11), an external series resister (R_s) is connected between the supply voltage and the SPX4041. R_s determines the current that flows through the load (I_L) and the reference (I_Q). Since load current

and supply voltage may vary, R_s should be small enough to supply at least the minimum acceptable I_Q to the reference even when the supply voltage is at its minimum and the load current is at its maximum value. When the supply voltage is at its maximum and I_L is at its minimum, R_s should be large enough so that the current flowing through the SPX4041 is less than 15mA.

 R_{S} is determined by the supply voltage (V_{\text{S}}), the load and operating current (I_{\text{L}} and I_{\text{Q}}), reference's reverse breakdown voltage (V_{\text{R}}).

$$R_{s} = (V_{s} - V_{R})/(I_{L}+I_{Q})$$

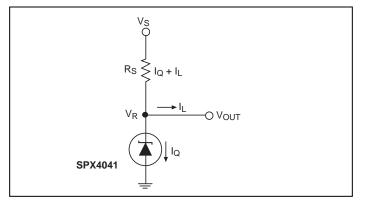


Figure 11. SPX4041 Fixed Shunt Regulator Application

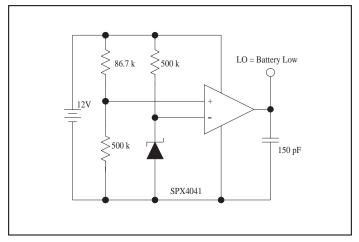


Figure 13a. Low battery Detector

Figure 12. 1.24V Reference

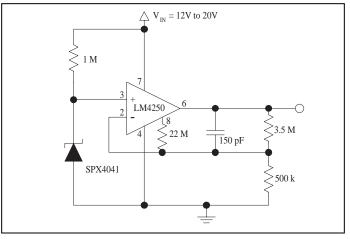
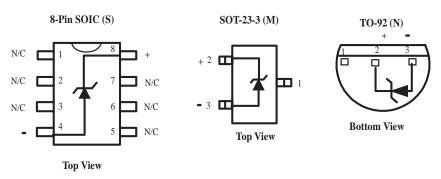



Figure 13b. Micropower 10V Reference

PACKAGES

ORDERING INFORMATION

Ordering No.	Accuracy	Output Voltage	Packages
SPX4041AM	1.0%	1.24V	3-Pin SOT-23
SPX4041AS	1.0%	1.24V	8-Pin SOIC
SPX4041AN	1.0%	1.24V	3-Pin TO-92
SPX4041M	2.0%	1.24V	3-Pin SOT-23
SPX4041S	2.0%	1.24V	8-Pin SOIC
SPX4041N	2.0%	1.24V	3-Pin TO-92

SIGNAL PROCESSING EXCELLENCE

Sipex Corporation

Headquarters and Main Offices: 22 Linnell Circle Billerica, MA 01821 TEL: (978) 667-8700 FAX: (978) 670-9001 e-mail: sales@sipex.com

233 South Hillview Drive Milpitas, CA 95035 TEL: (408) 935-7600 FAX: (408) 934-7500

Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.