


ST20C2/C4 Core
Instruction Set

Reference Manual

72-TRN-273-01 January 1996

2/212


3/212


Contents
1 Introduction .5

1.1 Instruction name .5
1.2 Code .5
1.3 Description .6
1.4 Definition .6
1.5 Error signals .7
1.6 Comments. .7
1.7 Notation. .8

1.7.1 The processor state .8
1.7.2 General .8
1.7.3 Undefined values .9
1.7.4 Data types .9
1.7.5 Representing memory .9
1.7.6 On-chip peripherals .11

1.8 Block move registers. .11
1.9 Constants .11
1.10 Operators used in the definitions .13
1.11 Functions .14
1.12 Conditions to instructions .14

2 Addressing and data representation .17

2.1 Word address and byte selector .17
2.2 Ordering of information .17
2.3 Signed integers and sign extension .18

3 Registers .20

3.1 Machine registers .20
3.1.1 Process state registers. .20
3.1.2 Other machine registers. .22

3.2 The process descriptor and its associated register fields24

4 Instruction representation .25

4.1 Instruction encoding .25
4.1.1 An instruction component .25
4.1.2 The instruction data value and prefixing25
4.1.3 Primary Instructions .26
4.1.4 Secondary instructions .27
4.1.5 Summary of encoding .27

4.2 Generating prefix sequences .28
4.2.1 Prefixing a constant .28
4.2.2 Evaluating minimal symbol offsets .29

5 Instruction Set Reference .31

Contents

4/212


5/212



1 Introduction
This manual provides a summary and reference to the ST20 instruction set for C2 and
C4 cores. The instructions are listed in alphabetical order, one to a page. Descriptions
are presented in a standard format with the instruction mnemonic and full name of the
instruction at the top of the page, followed by these categories of information:

• Code: the instruction code;

• Description: a brief summary of the purpose and behavior of the instruction;

• Definition: a more complete description of the instruction, using the notation
described below in section 1.7;

• Error signals: a list of errors and other signals which can occur;

• Comments: a list of other important features of the instruction;

• See also: for some instructions, a cross reference is provided to other instruc-
tions with a related function.

These categories are explained in more detail below, using the add instruction as an
example.

1.1 Instruction name

The header at the top of each page shows the instruction mnemonic and, on the right,
the full name of the instruction. For primary instructions the mnemonic is followed by
‘n’ to indicate the operand to the instruction; the same notation is used in the
description to show how the operand is used.

1.2 Code

For secondary instructions the instruction ‘operation code’ is shown as the memory
code — the actual bytes, including any prefixes, which are stored in memory. The
value is given as a sequence of bytes in hexadecimal, decoded left to right. The codes
are stored in memory in ‘little-endian’ format — with the first byte at the lowest
address.

For primary instructions the code stored in memory is determined partly by the value
of the operand to the instruction. In this case the op-code is shown as ‘Function x’
where x is the function code in the last byte of the instruction. For example, adc (add
constant) is shown as ‘Function 8’.

Example

The entry for the add instruction is:

Code : F5



6/212

1.3 Description

The description section provides an indication of the purpose of the instruction as well
as a summary of the behavior. This includes details of the use of registers, whose
initial values may be used as parameters and into which results may be stored.

Example

The add instruction contains the following description:

Description: Add Areg and Breg , with checking for overflow.

1.4 Definition

The definition section provides a formal description of the behavior of the instruction.
The behavior is defined in terms of its effect on the state of the processor (i.e. the
values in registers and memory before and after the instruction has executed).

The effects of the instruction on registers, etc. are given as relationships of the
following form:

register′ ← expression involving registers, etc.

Primed names (e.g. Areg′) represent values after instruction execution, while
unprimed names represent values when instruction execution starts. For example,
Areg represents the value in Areg before the execution of the instruction while Areg′
represents the value in Areg afterwards. So, the example above states that the
register on the left hand side becomes equal to the value of the expression on the
right hand side after the instruction has been executed.

The description is written with the main function of the instruction stated first (e.g. the
main function of the add instruction is to put the sum of Areg and Breg into Areg).
This is followed by the other effects of the instruction (e.g. popping the stack). There is
no temporal ordering implied by the order in which the statements are written.

The notation is described more fully in section 1.7.

Example

The add instruction contains the following description:

Definition:

Areg′ ← Breg + checked Areg

Breg′ ← Creg
Creg′ ← undefined

This says that the integer stack is popped and Areg assigned the sum of the values
that were initially in Breg and Areg . After the instruction has executed Breg contains
the value that was originally in Creg , and Creg is undefined.

7/212



1.5 Error signals

This section lists the errors and other exceptional conditions that can be signalled by
the instruction. This only indicates the error signal, not the action that will be taken by
the processor - this will depend on the trap enable bits which are set, the value in the
trap handler location, etc.

The order of the error signals listed is significant in that if a par ticular error is signalled
then errors later in the list may not be signalled. The errors that may be signalled are
as follows:

IntegerError indicates a variety of general errors such as a value out of range.

IntegerOverflow indicates that an overflow occurred during an integer arithme-
tic operation.

LoadTrap indicates that an attempt has been made to load a new trap handler.
This provides a basic mechanism for a supervisor kernel to manage user proc-
esses installing trap handlers.

StoreTrap, analogous to LoadTrap, indicates that an attempt has been made to
store a trap handler so that it can be inspected. Again this allows a supervisor
kernel to manage the trap system used by user processes.

Example

As an example, the error signals listed for the add instruction are:

Error signals:

IntegerOverflow can be signalled by +checked

So, the only error that can be caused by add is an integer overflow during the addition
of Areg and Breg .

1.6 Comments

This section is used for listing other information about the instructions that may be of
interest. Firstly, there is an indication of the type of the instruction. These are:

“Primary instruction” — indicates one of the 13 functions which are directly
encoded in a single byte instruction.

“Secondary instruction” — indicates an instruction which is encoded using opr.

Then there is information concerning the scheduling of the process:

“Instruction is a descheduling point” — a process may be descheduled after
executing this instruction.

“Instruction is a timeslicing point” — a process may be timesliced after execut-
ing this instruction.

“Instruction is interruptible” — the execution of this instruction may be inter-
rupted by a high priority process.



8/212

This section also describes any situations where the operation of the instruction is
undefined or invalid.

Example

Using the add instruction as an example again, the comments listed are:

Comments:

Secondary instruction.

This says that add is a secondary instruction.

1.7 Notation

The following sections give a full description of the notation used in the ‘definition’
section of the instruction descriptions.

1.7.1 The processor state

The processor state consists of the registers (mainly Areg , Breg , Creg, Iptr , and
Wptr), the contents of memory, and various flags and special registers (such as the
error flags , process queue pointers, clock registers, etc.).

The Wptr register is used for the address of the workspace of the current process.
This address is word aligned and therefore has the two least significant bits set to
zero. Wdesc is used for the ‘process descriptor’ — the value that is held in memory as
an identifier of the process when the process is not being executed. This value is
composed of the top 31 bits of the Wptr plus the process priority stored in bit 0 of the
word. Bit 0 is set to 0 for high priority processes and 1 for low priority processes. Bit 1
of the process descriptor is always 0.

1.7.2 General

The instruction descriptions are not intended to describe the way the instructions are
implemented, but only their effect on the state of the processor. So, for example, the
block move instructions are described in terms of a sequence of byte reads and writes
even though the instructions are implemented to perform the minimum number of
word reads and writes.

Comments (in italics) are used to both clarify the description and to describe actions
or values that cannot easily be represented by the notation used here; e.g. start next
process. These actions may be performed in another subsystem in the device, such
as the communications subsystem, and so any changes to machine state are not
necessarily completely synchronized with the execution of the instruction (as the
different subsystems work independently and in parallel).

Ellipses are used to show a range of values; e.g. ‘i = 0..31 ’ means that i has
values from 0 to 31, inclusive.

9/212



Subscripts are used to indicate particular bits in a word; e.g. Aregi for bit i of Areg; and
Areg0..7 for the least significant byte of Areg. Note that bit 0 is the least significant bit in
a word, and bit 31 is the most significant bit.

Generally, if the description does not mention the state of a register or memory
location after the instruction, then the value will not be changed by the instruction.

One exception to this general rule is Iptr , which is assigned the address of the next
instruction in the code before every instruction execution starts. The Iptr is included in
the description only when it is directly affected by the instruction (e.g. in the jump
instruction). In these cases the address of the next instruction is indicated by the
comment “next instruction”.

Scheduling operations

Some registers, such as the timer and scheduling list pointers and some special
workspace locations, can be changed at any time by scheduling operations. Changes
to these are included in the description only when they are directly caused by the
instruction, and not just as an effect of any scheduling operation which might take
place.

1.7.3 Undefined values

Many instructions leave the contents of a register or memory location in an undefined
state. This means that the value of the location may be changed by the instruction, but
the new value cannot be easily defined, or is not a meaningful result of the instruction.
For example, when the integer stack is popped, Creg becomes undefined, i.e. it does
not contain any meaningful data. An undefined value is represented by the name
undefined. The values of registers which become undefined as a result of executing
an instruction are implementation dependent and are not guaranteed to be the same
on different members of the ST20 family of processors.

1.7.4 Data types

The instruction set includes operations on four sizes of data: 8, 16, 32 and 64-bit
objects. 8-bit and 16-bit data can represent signed or unsigned integers; 32-bit data
can represent addresses, signed or unsigned integers, or single length floating point
numbers; and 64-bit data can represent signed or unsigned integers, or double length
floating point values. Normally it is clear from the context (e.g. from the operators
used) whether a particular object represents a signed, unsigned or floating point
number. A subscripted label is added (e.g. Aregunsigned) to clarify where necessary.

1.7.5 Representing memory

The memory is represented by arrays of each data type. These are indexed by a value
representing a byte address. Access to the four data types is represented in the
instruction descriptions in the following way:

byte[address] references a byte in memory at the given address

sixteen[address] references a 16-bit object in memory



10/212

word[address] references a 32-bit word in memory

For all of these, the state of the machine referenced is that before the instruction if the
function is used without a prime (e.g. word[]), and that after the instruction if the
function is used with a prime (e.g. word′[]).

For example, writing a value given by an expression, expr, to the word in memory at
address addr is represented by:

word′[addr] ← expr

and reading a word from a memory location is achieved by:

Areg′ ← word[addr]

Writing to memory in any of these ways will update the contents of memory, and these
updates will be consistently visible to the other representations of the memory, e.g.
writing a byte at address 0 will modify the least significant byte of the word at address
0.

Reading and writing in this way cannot be used to access on-chip peripherals.
Reading or writing to memory addresses between PeripheralStart and PeripheralEnd
will have undefined effects.

Data alignment

Each of these data items have restrictions on their alignment in memory. Byte values
can be accessed at any byte address, i.e. they are byte aligned. 16-bit objects can
only be accessed at even byte addresses, i.e. the least significant bit of the address
must be 0. 32-bit and 64-bit objects must be word aligned, i.e. the 2 least significant
bits of the address must be zero.

Address calculation

An address identifies a par ticular byte in memory. Addresses are frequently calculated
from a base address and an offset. For different instructions the offset may be given in
units of bytes, words or double words depending on the data type being accessed. In
order to calculate the address of the data, the offset must be converted to a byte offset
before being added to the base address. This is done by multiplying the offset by the
number of bytes in the particular units being used. So, for example, a word offset is
converted to a byte offset by multiplying it by the number of bytes in a word (4 in the
case of the ST20).

As there are many accesses to memory at word offsets, a shorthand notation is used
to represent the calculation of a word address. The notation register @ x is used to
represent an address which is offset by x words (4x bytes) from register. For example,
in the specification of load non-local there is:

Areg′ ← word[Areg @ n]

Here, Areg is loaded with the contents of the word that is n words from the address
pointed to by Areg (i.e. Areg + 4n).

In all cases, if the given base address has the correct alignment then any offset used
will also give a correctly aligned address.

11/212



1.7.6 On-chip peripherals

On-chip peripherals may have memory-mapped registers in the address range
PeripheralStart to PeripheralEnd. Access to these registers is represented in the
following way:

PeripheralByte[address] references an 8-bit peripheral register

PeripheralSixteen[address] references a 16-bit peripheral register

PeripheralWord[address] references a 32-bit peripheral register

For all of these, the state of the peripheral referenced is that before the instruction if
the function is used without a prime (e.g. PeripheralWord[]), and that after the
instruction if the function is used with a prime (e.g. PeripheralWord′[]).

For example, writing a value given by an expression, expr, to the register at address
addr is represented by:

PeripheralWord′[addr] ← expr

and reading a word from a peripheral is achieved by:

Areg′ ← PeripheralWord[addr]

1.8 Block move registers

A group of registers is used in the implementation of block moves. These are referred
to as the ‘block move registers’ and include Move2dBlockLength, Move2dDestStride,
and Move2dSourceStride.

1.9 Constants

A number of data structures have been defined in this book. Each compr ises a
number of data slots that are referenced by name in the text and the following
instructions descriptions.

These data structures is listed in Table 1.2 to Table 1.4.

word offset slot name purpose

0 pw.Temp slot used by some instructions for storing temporary values

-1 pw.Iptr the instruction pointer of a descheduled process

-2 pw.Link the address of the workspace of the next process in scheduling list

-3 pw.Pointer saved pointer to communication data area

-3 pw.State saved alternative state

-4 pw.TLink address of the workspace of the next process on the timer list

-5 pw.Time time that a process on a timer list is waiting for

Table 1.1 Process workspace data structure



12/212

In addition, a number of constants are used to identify word length related values etc.;
These are listed in Table 1.5 .

A number of values are used by the ST20 to indicate the state of a process and other
conditions. These are listed in Table 1.6.

word offset slot name purpose

0 le.Index contains the loop control variable

1 le.Count contains number of iterations left to perform

Table 1.2 Loop end data structure

word offset slot name purpose

1 pp.Count contains unsigned count of parallel processes

0 pp.IptrSucc contains pointer to first instruction of successor process

Table 1.3 Parallel process data structure

word offset slot name purpose

2 s.Back back of waiting queue

1 s.Front front of waiting queue

0 s.Count number of extra processes that the semaphore will allow to continue
running on a wait request

Table 1.4 Semaphore data structure

Name Value Meaning

BitsPerByte 8 The number of bits in a byte.

BitsPerWord 32 The number of bits in a word.

ByteSelectMask #00000003 Used to select the byte select bits of an address.

WordSelectMask #FFFFFFFC Used to select the byte select bits of an address.

BytesPerWord 4 The number of bytes in a word.

MostNeg #80000000 The most negative integer value.

MostPos #7FFFFFFF The most positive signed integer value.

MostPosUnsigned #FFFFFFFF The most positive unsigned integer value.

PeripheralStart #20000000 The lowest address reserved for memory-mapped on-
chip peripherals.

PeripheralEnd #3FFFFFFF The highest address reserved for memory-mapped on-
chip peripherals.

Table 1.5 Constants used in the instruction descriptions

13/212



Product identity values

These are values returned by the lddevid and ldprodid instructions. For specific
product ids in the ST20 family refer to SGS-THOMSON.

1.10 Operators used in the definitions

Modulo operators

Arithmetic on addresses is done using modulo arithmetic — i.e. there is no checking
for errors and, if the calculation overflows, the result ‘wraps around’ the range of
values representable in the word length of the processor — e.g. adding 1 to the
address at the top of the address map produces the address of the byte at the bottom
of the address map. There is also a number of instructions for performing modulo
arithmetic, such as sum, prod, etc. These operators are represented by the symbols
‘+’, ‘−’, etc.

Name Value Meaning

DeviceId Depends on pro-
cessor type. See
below.

A value used to identify the type and revision of processor.
Returned by the ldprodid and lddevid instructions.

Disabling.p MostNeg + #03
#80000003

Stored in the pw.State location while an alternative is being
disabled.

Enabling.p MostNeg + #01
#80000001

Stored in the pw.State location while an alternative is being
enabled.

false 0 The boolean value ‘false’.

NoneSelected.o -1
#FFFFFFFF

Stored in the pw.Temp slot of a process’ workspace while no
branch of an alternative has yet been selected during the
waiting and disabling phases.

NotProcess.p MostNeg
#80000000

Used, wherevera process descriptor is expected, to indicate
that there is no process.

Ready.p MostNeg + #03
#80000003

Stored in the pw.State location during the enabling phase of
an alternative, to indicate that a guard is ready.

TimeNotSet.p MostNeg + #02
#80000002

Stored in pw.TLink location during enabling of a timer alter-
native after a time to wait for has been encountered.

TimeSet.p MostNeg + #01
#80000001

Stored in pw.TLink location during enabling of a timer alter-
native after a time to wait for has been encountered.

true 1 The boolean value ‘true’.

Waiting.p MostNeg + #02
#80000002

Stored in the pw.State location by altwt and taltwt to indicate
that the alternative is waiting.

HighPriority 0 High priority

LowPriority 1 Low priority

Table 1.6 Constants used within the ST20



14/212

Error conditions

Any errors that can occur in instructions which are defined in terms of the modulo
operators are indicated explicitly in the instruction description. For example the div
(divide) instruction indicates the cases that can cause overflow, independently of the
actual division:

if (Areg = 0) or ((Breg = MostNeg) and (Areg = -1))
{

Areg′ ← undefined
IntegerOverflow

}
else

Areg′ ← Breg / Areg

Breg′ ← Creg
Creg′ ← undefined

Checked operators

To simplify the description of checked arithmetic, the operators ‘+checked’, ‘−checked’,
etc. are used to indicate operations that perform checked arithmetic on signed
integers. These operators signal an IntegerOverflow if an overflow, divide by zero, or
other arithmetic error occurs. If no trap is taken, the operators also deliver the modulo
result.

A number of comparison operators are also used and there are versions of some of
these that treat the operands as unsigned integers. A full list of the operators used in
the instruction definitions is given in Table 1.7.

1.11 Functions

Type conversions

The following function is used to indicate a type conversion:

unsign(x) causes the bit-pattern in x to be interpreted as an unsigned integer.

1.12 Conditions to instructions

In many cases, the action of an instruction depends on the current state of the
processor. In these cases the conditions are shown by an if clause; this can take one
of the following forms:

• if condition
statement

• if condition
statement

else
statement

15/212



• if condition
statement

else if condition
statement

else
statement

These conditions can be nested. Braces, {}, are used to group statements which are
dependent on a condition. For example, the cj (conditional jump) instruction contains
the following lines:

if (Areg = 0)
IptrReg′ ← next instruction + n

Symbol Meaning

Integer arithmetic with overflow checking

+checked
−checked
×checked

Add, subtract, and multiply of signed integers. If the computation overflows an
IntegerOverflow is signalled and the result of the operation is truncated to the
word length.

Unchecked (modulo) integer arithmetic

+
−
×
/

rem

Integer add, subtract, multiply, divide and remainder. If the computation over-
flows the result of the operation is truncated to the word length. If a divide or
remainder byzero occurs the result of the operation is undefined. No errors are
signalled. The operator ‘−’ is also used as a monadic operator. The sign of the
remainder is the same as the sign of the dividend.

Signed comparison operators

<
>
≤
≥
=
≠

Comparisons of signed integer and floating point values: ‘less than’, ‘greater
than’, ‘less than or equal’, ‘greater than or equal’, ‘equal’ and ‘not equal’.

Unsigned comparison operators

<unsigned
>unsigned
≥unsigned

after

Comparisons ofunsigned integer values: ‘less than’, ‘greater than’, ‘greater than
or equal’, and ‘after’ (for comparison of times).

Logical bitwise operations

∼ (or BITNOT)
∧ (or BITAND)
∨ (or BITOR)

⊗ (or BITXOR)
>>
<<

‘Not’ (1’s complement), ‘and’, ‘or’, ‘exclusive or’, and logical left and right shift
operations on bits in words.

Boolean operators

not
and
or

Boolean combination in conditionals.

Table 1.7 Operators used in the instruction descriptions



16/212

else
{

IptrReg′ ← next instruction

Areg′ ← Breg
Breg′ ← Creg
Creg′ ← undefined

}

This says that if the value in Areg is zero, then the jump is taken (the instruction
operand, n, is added to the instruction pointer), otherwise the stack is popped and
execution continues with the next instruction.

17/212



2 Addressing and data representation
The ST20 processor is a 32-bit word machine, with byte addressing and a 4 Gbyte
address space. This chapter explains how data is loaded from and stored into that
address space, explains how signed arithmetic is represented, and defines the
arithmetic significance of order ing of data items.

2.1 Word address and byte selector

A machine address is a single word of data which identifies a byte in memory - i.e. a
byte address. It comprises two parts, a word address and a byte selector. The byte
selector occupies the two least significant bits of the word; the word address the thirty
most significant bits. An address is treated as a signed value, the range of which
starts at the most negative integer and continues, through zero, to the most positive
integer. This enables the standard comparison functions to be used on pointer
(address) values in the same way that they are used on numerical values.

Certain values can never be used as pointers because they represent reserved
addresses at the bottom of memory space. They are reserved for use by the
processor and initialization. In this text, names are used to represent these and other
values (e.g. NotProcess.p, Disabling.p). A full list of names and values of constants
used in this book is given in section 1.9.

2.2 Ordering of information

The ST20 is ‘little-endian’ — i.e. less significant data is always held in lower
addresses. This applies to bits in bytes, bytes in words and words in memory. Hence,
in a word of data representing an integer, one byte is more significant than another if
its byte selector is the larger of the two. Figure 2.1 shows the ordering of bytes in
words and memory for the ST20. Note that this ordering is compatible with Intel
processors, but not Motorola or SPARC.

Figure 2.1 Bytes in memory and words

words (wordlength is 32 bits)

X is a word-aligned byte address

X+n is the byte n bytes past X

X+7
X+6
X+5
X+4
X+3
X+2
X+1
X+0

Memory
(bytes)

X+3 X+2 X+1 X+0

MSB LSB

31 24 23 16 15 8 7 0

X+7 X+6 X+5 X+4
MSB LSB

31 24 23 16 15 8 7 0



18/212

Most instructions that involve fetching data from or storing data into memory, use word
aligned addresses (i.e. bits 1 and 0 are set to 0) and load or store four contiguous
bytes. However, there are some instructions that can manipulate part of the bit pattern
in a word, and a few that use double words.

A data item that is represented in two contiguous bytes, is referred to as a 16-bit
object. This can be stored, either in the least significant 16-bits of a word location or in
the most significant 16 bits, hence addresses of such locations are 16-bit aligned (i.e.
bit 0 is set to 0).

A data item that is represented in two contiguous words is referred to as a 64-bit
object or a double word.

Similarly, a data item represented in a single byte is sometimes referred to as an 8-bit
object.

2.3 Signed integers and sign extension

A signed integer is stored in twos-complement format and may be represented by an
N-bit object. Most commonly a signed integer is represented by a single word (32-bit
object), but as explained, it may be stored, for example, in a 64-bit object, a 16-bit
object, or an 8-bit object. In each of these formats, all the bits within the object contain
useful information.

Consider the example shown in Figure 2.2, which shows how the value -10 is stored in
a 32-bit register, firstly as an 8-bit object and secondly as a 32-bit object. Observe that
bits 31 to 8 are meaningful for a 32-bit object but not for an 8-bit object. These bits are
set to 1 in the 32-bit object to preserve the negative sign of the integer being
represented.

Figure 2.2 Storing a signed integer in different length objects

1 1 1 1 0 1 1 0these bit values not related to integer value

07831bit position

1 1 1 1 0 1 1 0

07831bit position

1 1 1...

signed integer value (-10) stored as an 8-bit object (byte)

signed integer value (-10) stored as a 32-bit object (word)

19/212



The length of the object that stores a signed integer can be increased (i.e. the object
size can be increased). This operation is known as ‘sign extension’. The extra bits that
are allocated for the larger object, are meaningful to the value of the signed integer.
They must therefore be set to the appropriate value. The value for all these extra bits
is in fact the same as the value of the most significant bit - i.e. the sign bit - of the
smaller object. The ST20 provides instructions that sign extend byte and half-word to
word, and 32 bits to 64 bits.



20/212

3 Registers

3.1 Machine registers

This section introduces the ST20 processor registers that are visible to the
programmer. Firstly the set of registers known as state registers are presented and
discussed. These fully define the state of the executing process. Secondly the other
registers of interest to the programmer, are presented.

3.1.1 Process state registers

The state of a executing process at any instant is defined by the contents of the
machine registers listed in Table 3.1. The ‘register’ column gives the abbreviated
name of the register. The ‘full name / description’ column provides the full textual
name which is usually used when referencing a register in this manual; and where
unclear, a brief description of the information contained in this register.

In addition there is a small number of registers used to implement block moves.

Status register

The Status register contains status bits which describe the current state of the
process and any errors which may have occurred. The contents of the Status register
are shown in Table 3.2.

‘Shadow’ registers

When a high priority process interrupts a low priority process, the state of the currently
executing process needs to be saved. For this purpose, two sets of process state
registers are provided, one each for high and low priority. On interrupt, the processor
switches to using the high priority registers, leaving the low priority registers to
preserve the low priority state.

A high priority process may manipulate the low priority ‘shadow’ registers with the
instructions ldshadow and stshadow. In the definitions of these instructions, the
process state registers have a subscript (e.g. Areg[LowPriority]) indicating the priority.

register full name / description process modes

Status status register

Wptr workspace pointer - contains the address of the workspace of the currently execut-
ing process

Iptr instruction pointer register - pointer to next instruction to be executed

Areg integer stack register A

Breg integer stack register B

Creg integer stack register C

Table 3.1 Process state registers

21/212



bit number full name / description

0 breakpoint trap status bit

1 integer error trap status bit

2 integer overflow trap status bit

3 illegal opcode trap status bit

4 load trap trap status bit

5 store trap trap status bit

6 internal channel trap status bit

7 external channel trap status bit

8 timer trap status bit

9 timeslice trap status bit

10 run trap status bit

11 signal trap status bit

12 process interrupt trap status bit

13 queue empty trap status bit

14 reserved

15 causeerror status bit

17-16 Scheduler trap return priority status bits:
00 - high priority
01 - low priority

19-18 Trap group status bits :
00 - Breakpoint
01 - Error
10 - System
11 - Scheduler

20 timeslice enable bit

25-21 reserved

30-26 Interrupted operation status bits :
00000 - None
00001 - move
00010 - devmove
00011 - move2dall
00100 - move2dzero
00101 - move2dnonzero
00110 - in
00111 - out
01000 - tin
01001 - tin restart
01010 - taltwt
01011 - taltwt restart
01100 - dist
01101 - dist restart
01110 - enbc
01111 - disc
10000 - resetch

31 status valid

Table 3.2 Status register



22/212

If the process state registers are referred to without subscripts then the current priority
is implied.

3.1.2 Other machine registers

There are several other registers which the programmer should know about, but which
are not part of the process state. These are presented in Table 3.3.

Enables register

The Enables register contains:

• TrapEnables bits (0..15) which can be used to control the taking of traps;

• GlobalInterruptEnables bits (16..31) which are used to control timeslicing and
interruptibility. These are normally set to 1.

Bits of TrapEnables may be set using the trapenb instruction and cleared using
trapdis. Bits of GlobalInterruptEnables may be set using the instruction gintenb and
disabled using gintdis.

The contents of the Enables register are shown in Table 3.4.

ClockEnables

ClockEnables is a pair of flags which enable the timers ClockReg to tick. Bit zero of
ClockEnables controls ClockReg[0] and bit 1 controls ClockReg[1] . In each case,

register full name / description

ProcQueueFPtr[0] high priority front pointer register - contains pointer to first process on the high
priority scheduling list

ProcQueueFPtr[1] low priority front pointer register - contains pointer to first process on the low
priority scheduling list

ProcQueueBPtr[0] high priority back pointer register - contains pointer to last process on the high
priority scheduling list

ProcQueueBPtr[1] low priority back pointer register - contains pointer to last process on the low
priority scheduling list

ClockReg[0] high priority clock register - contains current value of high priority clock

ClockReg[1] low priority clock register - contains current value of low priority clock

TptrReg[0] high priority timer list pointer register - contains pointer to the first process on
the high priority timer list

TptrReg[1] low priority timer list pointer register - contains pointer to the firstprocess on the
low priority timer list

TnextReg[0] high priority alarm register - contains the time of the first process on the high
priority timer queue

TnextReg[1] low priority alarm register - contains the time of the first process on the low
priority timer queue

Enables trap and global interrupt enables register

Table 3.3 Other machine registers

23/212



the timer will tick if the ClockEnables bit is set to1. ClockEnables can be set using the
clockenb instruction and cleared using clockdis.

Error fla gs

The other machine flags referred to in the instruction definitions are listed in Table 3.4.

ErrorFlag is a pair of flags , one for each priority, set by the processor if an integer error
or integer overflow error occurs and the corresponding trap is not enabled. The
processor will immediately halt if the HaltOnError flag is also set, or will continue

bit number full name / description

0 breakpoint trap enable bit

1 integer error trap enable bit

2 integer overflow trap enable bit

3 illegal opcode trap enable bit

4 load trap trap enable bit

5 store trap trap enable bit

6 internal channel trap enable bit

7 external channel trap enable bit

8 timer trap enable bit

9 timeslice trap enable bit

10 run trap enable bit

11 signal trap enable bit

12 process interrupt trap enable bit

13 queue empty trap enable bit

15-14 reserved

16 low priority process interrupt enable bit

17 low priority timeslice enable bit

18 low priority external event enable bit

19 low priority timer alarm enable bit

20 high priority process interrupt enable bit

21 high priority timeslice enable bit

22 high priority external event enable bit

23 high priority timer alarm enable bit

31-24 reserved

Table 3.4 Enables register

flag name description

ErrorFlag Untrapped arithmetic error flags

HaltOnErrorFlag Halt the processor if the ErrorFlag is set

Table 3.5 Error flags



24/212

otherwise. The ErrorFlags may also be set by the seterr instruction or tested and
cleared by the testerr instruction. The stoperr instruction stops the current process if
the ErrorFlag is set. The low priority ErrorFlag is copied to the high priority when the
processor switches from low to high priority. The HaltOnError flag may be set by the
sethalterr instruction, cleared by clrhalterr and tested by testhalterr.

3.2 The process descriptor and its associated register fields

In order to identify a process completely it is necessary to know: its workspace
address (in which the byte selector is always 0), and its priority (high or low). This
information is contained in the process descriptor. The workspace address of the
currently executing process is held in the workspace pointer register (Wptr) and the
priority is held in the flag Priority .

Wptr points to the current process workspace, which is always word-aligned. Priority
is the priority of the currently executing process where the value 1 indicates low
priority and 0 indicates high priority.

The process descriptor is formed from a pointer to the process workspace or -ed with
the priority flag at bit 0. Bit 1 is always set to 0.

Wdesc is defined so that the following invariants are obeyed:

Wptr = Wdesc ∧ WordSelectMask

Priority = Wdesc ∧ 1

Figure 3.1 Constituents of a process descriptor

Workspace address

2 1 0

Priority0

31

25/212



4 Instruction representation
The instruction encoding is designed so that the most commonly executed instructions
occupy the least number of bytes. This chapter describes the encoding mechanism
and explains how it achieves this.

A sequence of single byte instruction components is used to encode an instruction.
The ST20 interprets this sequence at the instruction fetch stage of execution. Most
users (working at the level of microprocessor assembly language or high-level
languages) need not be aware of the existence of instruction components and do not
need to think about the encoding. The first section (4.1) has been included to provide
a background. The following section (4.2) need only concern the reader that wants to
implement a code generator.

4.1 Instruction encoding

4.1.1 An instruction component

Each instruction component is one byte long, and is divided into two 4-bit parts. The
four most significant bits of the byte are a function code, and the four least significant
bits are used to build an instruction data value as shown in Figure 4.1.

Figure 4.1 Instruction format

The representation provides for sixteen instruction components (one for each
function), each with a data field ranging from 0 to 15.

There are three categories of instruction component. Firstly there are those that
specify the instruction directly in the function field. These are used to implement
primary instructions. Secondly there are the instruction components that are used to
extend the instruction data value - this process of extension is referred to as prefixing.
Thirdly there is the instruction component operate (opr) which specifies the instruction
indirectly using the instruction data value. opr is used to implement secondary
instructions.

4.1.2 The instruction data value and prefixing

The data field of an instruction component is used to create an instruction data value’
Primary instructions interpret the instruction data value as the operand of the
instruction. Secondary instructions interpret it as the operation code for the instruction
itself.

function code data

0347



26/212

The instruction data value is a signed integer that is represented as a 32-bit word. For
each new instruction sequence, the initial value of this integer is zero. Since there are
only 4 bits in the data field of a single instruction component, it is only possible for
most instruction components to initially assign an instruction data value in the range 0
to 15. However two instruction components are used to extend the range of the
instruction data value. Hence one or more prefixing components may be needed to
create the correct instruction data value. These are shown in Table 4.1 and explained
below.

All instruction components initially load the four data bits into the least significant four
bits of the instruction data value.

pfix loads its four data bits into the instruction data value, and then shifts this value up
four places. nfix is similar, except that it complements the instruction data value†

before shifting it up. Consequently, a sequence of one or more prefixes can be
included to extend the value. Instruction data values in the range -256 to 255 can be
represented using one prefix instruction.

When the processor encounters an instruction component other than pfix or nfix, it
loads the data field into the instruction data value. The instruction encoding is now
complete and the instruction can be executed. When the processor is ready to fetch
the next instruction component, it starts to create a new instruction data value.

4.1.3 Primary Instructions

Research has shown that computers spend most of the time executing instructions
such as: instructions to load and store from a small number of ‘local’ variables,
instructions to add and compare with small constants, and instructions to jump to or
call other parts of the program. For efficiency therefore, these are encoded directly as
primary instructions using the function field of an instruction component.

Thirteen of the instruction components are used to encode the most important
operations performed by any computer executing a high level language. These are
used (in conjunction with zero or more prefixes) to implement the primary instructions.
Primary instructions interpret the instruction data value as an operand for the
instruction. The mnemonic for a primary instruction will therefore normally include a
this operand - n - when referenced.

The mnemonics and names for the primary instructions are listed in Table 4.2.

mnemonic name

pfix n prefix

nfix n negative prefix

Table 4.1 Prefixing instruction components

mnemonic name

adc n add constant

Table 4.2 Primary instructions

† Note that it inverts all 32 bits of the instruction data value.

27/212



4.1.4 Secondary instructions

The ST20 encodes all other instructions (secondary instructions) indirectly using the
instruction data value.

The instruction component opr causes the instruction data value to be interpreted as
the operation code of the instruction to be executed. This selects an operation to be
performed on the values held in the integer stack. This allows a further 16 operations
to be encoded in a single byte instruction. However the prefix instructions can be used
to extend the instruction data value, allowing any number of operations to be
performed.

Secondary instructions do not have an operand specified by the encoding, because
the instruction data value has been used to specify the operation.

To ensure that programs are represented as compactly as possible, the operations are
encoded in such a way that the most frequent secondary instructions are represented
without using prefix instructions.

4.1.5 Summary of encoding

The encoding mechanism has important consequences.

• Firstly, it simplifies language compilation, by providing a completely uniform
way of allowing a primary instruction to take an operand of any size up to the
processor word-length.

• Secondly, it allows these operands to be represented in a form independent of

ajw n adjust workspace

call n call

cj n conditional jump

eqc n equals constant

j n jump

ldc n load constant

ldl n load local

ldlp n load local pointer

ldnl n load non-local

ldnlp n load non-local pointer

stl n store local

stnl n store non-local

mnemonic name

opr operate

Table 4.3 Operate instruction

mnemonic name

Table 4.2 Primary instructions



28/212

the word-length of the processor.

• Thirdly, it enables any number of secondary instructions to be implemented.

The following provides some simple examples of encoding:

• The instruction ldc 17 is encoded with the sequence:

pfix 1; ldc 1

• The instruction add is encoded by:

opr 5

• The instruction and is encoded by:

opr 70

which is in turn encoded with the sequence:

pfix 4; opr 6

To aid clarity and brevity, prefix sequences and the use of opr are not explicitly shown
in this guide. Each instruction is represented by a mnemonic, and for primary
instructions an item of data, which stands for the appropriate instruction component
sequence. Hence in the above examples, these are just shown as: ldc 17, add, and
and. (Also, where appropriate, an expression may be placed in a code sequence to
represent the code needed to evaluate that expression.

4.2 Generating prefix sequences

Prefixing is intended to be performed by a compiler or assembler. Prefixing by hand is
not advised.

Normally a value can be loaded into the instruction data value by a variety of different
prefix sequences . It is important to use the shortest possible sequence as this
enhances both code compaction and execution speed. The best method of optimizing
object code so as to minimize the number of prefix instructions needed is shown
below.

4.2.1 Prefixing a constant

The algorithm to generate a constant instruction data value e for a function op is
described by the following recursive function.

prefix(op , e) = IF
e < 16 AND e 0

op(e)
e 16

prefix(pfix, e >> 4); op(e ∧ # F)
e < 0

prefix(nfix, (~e) >> 4); op(e ∧ # F)

where (op, e) is the instruction component with function code op and data field
e, ~ is a bitwise NOT, and >> is a logical right shift.

29/212



4.2.2 Evaluating minimal symbol offsets

Several primary instructions have an operand that is an offset between the current
value of the instruction pointer and some other part of the code. Generating the
optimal prefix sequence to create the instruction data value for one of these
instructions is more complicated. This is because two, or more, instructions with offset
operands can interlock so that the minimal prefix sequences for each instruction is
dependent on the prefixing sequences used for the others.

For example consider the interlocking jumps below which can be prefixed in two
distinct ways. The instructions j and cj are respectively jump and conditional jump.
These are explained in more detail later. The sequence:

cj +16; j -257

can be coded as

pfix 1; cj 0; pfix 1; nfix 0; j 15

but this can be optimized to be

cj 15; nfix 15; j 1

which is the encoding for the sequence

cj +15; j -255

This is because when the two offsets are reduced, their prefixing sequences take 1
byte less so that the two interlocking jumps will still transfer control to the same
instructions as before. This compaction of non-optimal prefix sequences is difficult to
perform and a better method is to slowly build up the prefix sequences so that the
optimal solution is achieved. The following algorithm performs this.

1 Associate with each jump instruction or offset load an ‘estimate’ of the number
of bytes required to code it and initially set them all to 0.

2 Evaluate all jump and load offsets under the current assumptions of the size of
prefix sequences to the jumps and offset loads

3 For each jump or load offset set the number of bytes needed to the number in
the shortest sequence that will build up the current offset.†

4 If any change was made to the number of bytes required then go back to 2 oth-
erwise the code has reached a stable state.

The stable state that is achieved will be the optimal state.

Steps 2 and 3 can be combined so that the number of bytes required by each jump is
updated as the offset is calculated. This does mean that if an estimate is increased
then some previously calculated offsets may have been invalidated, but step 4 forces
another loop to be performed when those offsets can be corrected.

By initially setting the estimated size of offsets to zero, all jumps whose destination is
the next instruction are optimized out.

† Where the code being analyzed has alignment directives, then it is possible that this algorithm will not reach a stable state. One
solution to this, is to allow the algorithm to increase the instruction size but not allow it to reduce the size. This is achieved by
modifying stage 3 to choose the larger of: the currently calculated length, and the previously calculated length. This approach
does not always lead to minimal sized code, but it guarantees termination of the algorithm.



30/212

Knowledge of the structure of code generated by the compiler allows this process to
be performed on individual blocks of code rather than on the whole program. For
example it is often possible to optimize the prefixing in the code for the sub-
components of a programming language construct before the code for the construct is
optimized. When optimizing the construct it is known that the sub-components are
already optimal so they can be considered as an unshrinkable block of code.

This algorithm may not be efficient for long sections of code whose underlying
structure is not known. If no knowledge of the structure is available (e.g. in an
assembler), all the code must be processed at once. In this case a code shrinking
algorithm where in step one the initial number of bytes is set to twice the number of
bytes per word is used. The prefix sequences then shr ink on each iteration of the loop.
1 or 2 iterations produce fairly good code although this method will not always produce
optimal code as it will not correctly prefix the pathological example given above.

31/212



5 Instruction Set Reference

adc n



32/212

adc n add constant

Code: Function 8

Description: Add a constant to Areg, with checking for overflow.

Definition:
Areg′ ← Areg + checked n

Error signals:
IntegerOverflow can be signalled by + checked

Comments:
Primary instruction.

See also: add ldnlp sum

add

33/212



add add

Code: F5

Description: Add Areg and Breg , with checking for overflow.

Definition:
Areg′ ← Breg + checked Areg

Breg′ ← Creg
Creg′ ← undefined

Error signals:
IntegerOverflow can be signalled by +checked

Comments:
Secondary instruction.

See also: adc sum

ajw n



34/212

ajw n adjust workspace

Code: Function B

Description: Move the workspace pointer by the number of words specified in the
operand, in order to allocate or de-allocate the workspace stack.

Definition:
Wptr′ ← Wptr @ n

Error signals: none

Comments:
Primary instruction.

See also: call gajw

alt

35/212



alt alt start

Code: 24 F3

Description: Start of a non-timer alternative sequence. The pw.State location of the
workspace is set to Enabling.p.

Definition:
word′[Wptr @ pw.State] ← Enabling.p
Enter alternative sequence

Error signals: none

Comments:
Secondary instruction.

See also: altend altwt disc diss dist enbc enbs enbt talt taltwt

altend



36/212

altend alt end

Code: 24 F5

Description: End of alternative sequence. Jump to start of selected process.

Definition:
Terminate alternative sequence
Iptr′ ← next instruction + word [Wptr @ pw.Temp]

Error signals: none

Comments:
Secondary instruction.
Uses the pw.Temp slot in the process workspace.

See also: alt altwt disc diss dist enbc enbs enbt talt taltwt

altwt

37/212



altwt alt wait

Code: 24 F4

Description: Wait until one of the enabled guards of an alternative has become
ready, and initialize workspace for use during the disabling sequence.

Definition:
if (word[Wptr @ pw.State] ≠ Ready.p)
{

word′[Wptr @ pw.State] ← Waiting.p
Deschedule process and wait for one of the guards to become ready

}

word′[Wptr @ pw.Temp] ← NoneSelected.o

Areg′ ← undefined
Breg′ ← undefined
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.
Instruction is a descheduling point.
Uses the pw.Temp slot in the process workspace.

See also: alt altend disc diss dist enbc enbs enbt talt taltwt

and



38/212

and and

Code: 24 F6

Description: Bitwise and of Areg and Breg .

Definition:
Areg′ ← Breg ∧ Areg

Breg′ ← Creg
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.

See also: not or xor

bcnt

39/212



bcnt byte count

Code: 23 F4

Description: Produce the length, in bytes, of a multiword data object. Converts the
value in Areg , representing a number of words, to the equivalent number of bytes.

Definition:
Areg′ ← Areg × BytesPerWord

Error signals: none

Comments:
Secondary instruction.

bitcnt



40/212

bitcnt count bits set in word

Code: 27 F6

Description: Count the number of bits set in Areg and add this to the value in Breg .

Definition:
Areg′ ← Breg + number of bits set to 1 in Areg

Breg′ ← Creg
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.

bitrevnbits

41/212



bitrevnbits reverse bottom n bits in word

Code: 27 F8

Description: Reverse the order of the bottom Areg bits of Breg .

Definition:
if (0 ≤ Areg) and (Areg ≤ BitsPerWord)
{

Areg′0..Areg-1 ← reversed Breg0..Areg-1
Areg′Areg..BitsPerWord-1 ← 0

}
else

Undefined effect

Breg′ ← Creg
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.
The effect of the instruction is undefined if the number of bits specified is more
than the word length.

See also: bitrevword

bitrevword



42/212

bitrevword reverse bits in word

Code: 27 F7

Description: Reverse the order of all the bits in Areg .

Definition:
Areg′ ← reversed Areg

Error signals: none

Comments:
Secondary instruction.

See also: bitcnt bitrevnbits

bsub

43/212



bsub byte subscript

Code: F2

Description: Generate the address of the element which is indexed by Breg , in the
byte array pointed to by Areg .

Definition:
Areg′ ← Areg + Breg

Breg′ ← Creg
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.

See also: ssub sum wsub wsubdb

call n



44/212

call n call

Code: Function 9

Description: Adjust workspace pointer, save evaluation stack, and call subroutine at
specified byte offset.

Definition:
Wptr′ ← Wptr @ -4

word′[Wptr′ @ 0] ← Iptr
word′[Wptr′ @ 1] ← Areg
word′[Wptr′ @ 2] ← Breg
word′[Wptr′ @ 3] ← Creg

Iptr′ ← next instruction + n

Areg′ ← Iptr
Breg′ ← undefined
Creg′ ← undefined

Error signals: none

Comments:
Primary instruction.

See also: ajw gcall ret

causeerror

45/212



causeerror cause error

Code: 62 FF

Description: Take a trap with the trap type set to the value in Areg . Only one bit in
Areg should be set; the position of the bit indicates the trap to be signalled. When the
trap is taken the causeerror bit in the status register is set to indicate a user generated
trap.

In the case of a scheduler trap being set then the bottom bit of Breg is used to
determine the priority of the scheduler trap. In addition when the scheduler trap is
trapping a process scheduling operation (e.g. the run trap) the Breg is interpreted as
the process descriptor to be scheduled.

Definition:
if (Areg=2i) and (trap type i is enabled)
{

set causeerror bit in Status
cause trap type i

}
else

Undefined effect

Error signals: The causeerror bit is set and the indicated trap signalled if enabled.

Comments:
Secondary instruction.
Sets traps independently of trap enables state.

See also: tret sttraph ldtrap

cb



46/212

cb check byte

Code: 2B FA

Description: Check that the value in Areg can be represented as an 8-bit signed
integer.

Definition:
if (Areg < -27) or (Areg ≥ 27)

IntegerError

Error signals:
IntegerError signalled if Areg is not in range.

Comments:
Secondary instruction.

See also: cbu cir ciru cs csu

cbu

47/212



cbu check byte unsigned

Code: 2B FB

Description: Check that the value in Areg can be represented as an 8-bit unsigned
integer.

Definition:
if (Areg < 0) or (Areg ≥ 28)

IntegerError

Error signals:
IntegerError signalled if Areg is not in range.

Comments:
Secondary instruction.

See also: cb cir ciru cs csu

ccnt1



48/212

ccnt1 check count from 1

Code: 24 FD

Description: Check that Breg is in the range 1..Areg inclusive, interpreting Areg and
Breg as unsigned numbers.

Definition:

if (Breg = 0) or (Bregunsigned > Aregunsigned)
IntegerError

Areg′ ← Breg
Breg′ ← Creg
Creg′ ← undefined

Error signals:
IntegerError signalled if Areg is not in range.

Comments:
Secondary instruction.

See also: csub0

cflerr

49/212



cflerr check floating point error

Code: 27 F3

Description: Checks if Areg represents an Inf or NaN.

Definition:
if (Areg ∧ #7F800000 = #7F800000)

IntegerError

Error signals:
IntegerError signalled if Areg represents an Inf or NaN.

Comments:
Secondary instruction.

See also: unpacksn roundsn postnormsn ldinf

cir



50/212

cir check in range

Code: 2C F7

Description: Check that Creg is in the range Areg ..Breg inclusive.

Definition:
if (Creg < Areg) or (Creg > Breg)

IntegerError

Areg′ ← Creg
Breg′ ← undefined
Creg′ ← undefined

Error signals:
IntegerError signalled if Creg is not in range.

Comments:
Secondary instruction.

See also: ciru

ciru

51/212



ciru check in range unsigned

Code: 2C FC

Description: Check that Creg is the range Areg ..Breg inclusive, treating all as
unsigned values.

Definition:
if (Cregunsigned < Aregunsigned) or (Cregunsigned > Bregunsigned)

IntegerError

Areg′ ← Creg
Breg′ ← undefined
Creg′ ← undefined

Error signals: IntegerError signalled if Creg is not in range.

Comments:
Secondary instruction.

See also: cir

cj n



52/212

cj n conditional jump

Code: Function A

Description: Jump if Areg is 0 (i.e. jump if false). The destination of the jump is
expressed as a byte offset from the instruction following.

Definition:
if (Areg = 0)

Iptr′ ← next instruction + n
else
{

Iptr′ ← next instruction
Areg′ ← Breg
Breg′ ← Creg
Creg′ ← undefined

}

Error signals: none

Comments:
Primary instruction.

See also: j lend

clockdis

53/212



clockdis clock disable

Code: 64 FE

Description: Stops the clocks specified in bits 0 and 1 of Areg where bit 0 indicates
the high priority clock and bit 1 the low priority clock. The original values of these two
clock enable bits are returned in Areg .

Definition:
Areg′ 1..0 ← ClockEnables
Areg′31..2 ← 0
ClockEnables′ ← ClockEnables ∧ ∼Areg

Error signals: none

Comments:
Secondary instruction.

See also: clockenb

clockenb



54/212

clockenb clock enable

Code: 64 FF

Description: Starts or restarts the clocks specified in bits 0 and 1 of Areg , where bit
0 indicates the high priority clock and bit 1 indicates the low priority clock. The original
values of these two clock enable bits are returned in Areg .

Definition:
Areg′1..0 ← ClockEnables
Areg′31..2 ← 0
ClockEnables′ ← ClockEnables ∨ Areg

Error signals: none

Comments:
Secondary instruction.

See also: clockdis

clrhalterr

55/212



clrhalterr clear halt-on-error

Code: 25 F7

Description: Clear the HaltOnError flag.

Definition:
HaltOnErrorFlag′ ← clear

Error signals: none

Comments:
Secondary instruction.

See also: sethalterr testhalterr

crcbyte



56/212

crcbyte calculate CRC on byte

Code: 27 F5

Description: Generate a CRC (cyclic redundancy check) checksum from the most
significant byte of Areg . Breg contains the previously accumulated checksum and
Creg the polynomial divisor (or ‘generator’). The new CRC checksum, the polynomial
remainder, is calculated by repeatedly (8 times) shifting the accumulated checksum
left, shifting in successive bits from the Areg and if the bit shifted out of the checksum
was a 1, then the generator is exclusive-ored into the checksum.

Definition:
Areg′ ← temp(8)
Breg′ ← Creg
Creg′ ← undefined

where
temp(0) = Breg
for i = 1 .. 8

temp(i) = (temp(i -1) << 1) + AregBitsPerWord-i)
⊗ (Creg × temp(i −1)BitsPerWord-1)

Error signals: none

Comments:
Secondary instruction.

See also: crcword

crcword

57/212



crcword calculate CRC on word

Code: 27 F4

Description: Generate a CRC (cyclic redundancy check) checksum from Areg . Breg
contains the previously accumulated checksum and Creg the polynomial divisor (or
‘generator’). The new CRC checksum, the polynomial remainder, is calculated by
repeatedly (BitsPerWord times) shifting the accumulated checksum left, shifting in
successive bits from the Areg and if the bit shifted out of the checksum was a 1, then
the generator is exclusive-ored into the checksum.

Definition:
Areg′ ← temp(BitsPerWord)
Breg′ ← Creg
Creg′ ← undefined

where
temp(0) = Breg
for i = 1 .. 32

temp(i) = (temp(i -1) << 1) + AregBitsPerWord-i)
⊗ (Creg × temp(i −1)BitsPerWord-1)

Error signals: none

Comments:
Secondary instruction.

See also: crcbyte

cs



58/212

cs check sixteen

Code: 2F FA

Description: Check that the value in Areg can be represented as a 16-bit signed
integer.

Definition:
if (Areg < -215) or (Areg ≥ 215)

IntegerError

Error signals:
IntegerError signalled if Areg is not in range.

Comments:
Secondary instruction.

See also: cb cbu cir ciru csngl csu cword

csngl

59/212



csngl check single

Code: 24 FC

Description: Check that the two word signed value in Areg and Breg (most
significant word in Breg) can be represented as a single length signed integer.

Definition:
if ((Areg ≥ 0) and (Breg ≠ 0)) or ((Areg < 0) and (Breg ≠ −1))

IntegerError

Error signals:
IntegerError signalled if Areg is not in range.

Comments:
Secondary instruction.

See also: cb cbu cir ciru cs csu cword

csu



60/212

csu check sixteen unsigned

Code: 2F FB

Description: Check that the value in Areg can be represented as a 16-bit unsigned
integer.

Definition:
if (Areg < 0) or (Areg ≥ 216)

IntegerError

Error signals:
IntegerError signalled if Areg is not in range.

Comments:
Secondary instruction.

See also: cb cbu cir ciru cs csngl cword

csub0

61/212



csub0 check subscript from 0

Code: 21 F3

Description: Check that Breg is in the range 0..(Areg -1), interpreting Areg and Breg
as unsigned numbers.

Definition:
if (Bregunsigned ≥ Aregunsigned)

Integer Error

Areg′ ← Breg
Breg′ ← Creg
Creg′ ← undefined

Error signals:
IntegerError signalled if Breg is not in range.

Comments:
Secondary instruction.

See also: ccnt1

cword



62/212

cword check word

Code: 25 F6

Description: Check that the value in Breg can be represented as an N-bit signed
integer. Areg contains 2(N-1) to indicate the value of N (i.e. bit N-1 of Areg is set to 1
and all other bits are set to zero).

Definition:
if (Breg < −Areg) or (Breg ≥ Areg)

IntegerError

Areg′ ← Breg
Breg′ ← Creg
Creg′ ← undefined

Error signals:
IntegerError signalled if Breg is not in range.

Comments:
The result of the instruction is undefined if Areg is not an integral power of 2.
Undefined if Areg has more than one bit set.
Secondary instruction.

See also: cb cs csngl xword

devlb

63/212



devlb device load byte

Code: 2F F0

Description: Perform a device read from memory, a memory-mapped device or a
peripheral. The byte addressed by Areg is read into Areg as an unsigned value. The
memory access performed by this instruction is guaranteed to be correctly sequenced
with respect to other device-access instructions. Also the instruction is guaranteed to
be executed after all normal memory load instructions that appear before it in the code
sequence, and before all normal memory loads that appear later.

Definition:
if (PeripheralStart ≤ Areg ≤ PeripheralEnd)

Areg′0..7 ← PeripheralByte[Areg]
else

Areg′0..7 ← byte[Areg]

Areg′8..31 ← 0

Error signals: none

Comments:
Secondary instruction.

See also: devls devlw devsb lb

devls



64/212

devls device load sixteen

Code: 2F F2

Description: Perform a device read from memory, a memory-mapped device or a
peripheral. The 16-bit object addressed by Areg is read into Areg as an unsigned
value. The memory access performed by this instruction is guaranteed to be correctly
sequenced with respect to other device-access instructions. Also the instruction is
guaranteed to be executed after all normal memory load instructions that appear
before it in the code sequence, and before all normal memory loads that appear after
it.

Definition:
if (PeripheralStart ≤ Areg ≤ PeripheralEnd)

Areg′0..15 ← PeripheralSixteen[Areg]
else

Areg′0..15 ← sixteen[Areg]

Areg′16..31 ← 0

Error signals: none

Comments:
Secondary instruction.

See also: devlb devlw devsb ls

devlw

65/212



devlw device load word

Code: 2F F4

Description: Perform a device read from memory, a memory-mapped device or a
peripheral. The word addressed by Areg is read into Areg . The memory access
performed by this instruction is guaranteed to be correctly sequenced with respect to
other device-access instructions. Also the instruction is guaranteed to be executed
after all normal memory load instructions that appear before it in the code sequence,
and before all normal memory loads that appear after it.

Definition:
if (PeripheralStart ≤ Areg ≤ PeripheralEnd)

Areg′ ← PeripheralWord[Areg]
else

Areg′ ← word[Areg]

Error signals: none

Comments:
Secondary instruction.

See also: devlb devls devsw ldnl

devmove



66/212

devmove device move

Code: 62 F4

Description: Perform a device copy between memory or memory-mapped devices.
Copies Areg bytes to address Breg from address Creg . Only the minimum number of
reads and writes required to copy the data will be performed. Each read will be to a
strictly higher (more positive) address than the one before and each write will be to a
strictly higher byte address than the one before. There is no guarantee of the relative
ordering of read and write cycles, except that a write cannot occur until the
corresponding read has been performed. The memory accesses performed by this
instruction are guaranteed to be correctly sequenced with respect to other device-
access instructions. Also the instruction is guaranteed to be executed after all normal
memory access instructions that appear before it in the code sequence, and before all
normal memory accesses that appear after it.

Definition:
if (source and destination overlap)

Undefined effect
else for i = 0 .. (Aregunsigned − 1)

byte′[Breg + i] ← byte[Creg + i]

Areg′ ← undefined
Breg′ ← undefined
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.
The effect of the instruction is undefined if the source and destination overlap.
Instruction is interruptible.
Devmove will not operate from or to peripheral addresses.

See also: move

devsb

67/212



devsb device store byte

Code: 2F F1

Description: Perform a device write from memory, a memory-mapped device or a
peripheral. Store the least significant byte of Breg into the byte addressed by Areg .
The memory access performed by this instruction is guaranteed to be correctly
sequenced with respect to other device-access instructions. Also the instruction is
guaranteed to be executed after all normal memory store instructions that appear
before it in the code sequence, and before all normal memory stores that appear after
it.

Definition:
if (PeripheralStart ≤ Areg ≤ PeripheralEnd)

PeripheralByte′[Areg] ← Breg0..7
else

byte′[Areg] ← Breg0..7

Areg′ ← Creg
Breg′ ← undefined
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.

See also: devlb devss devsw sb

devss



68/212

devss device store sixteen

Code: 2F F3

Description: Perform a device write from memory, a memory-mapped device or a
peripheral. Store bits 0..5 of Breg into the sixteen bits addressed by Areg . A memory
access performed by this instruction is guaranteed to be correctly sequenced with
respect to other device-access instructions. Also the instruction is guaranteed to be
executed after all normal memory store instructions that appear before it in the code
sequence, and before all normal memory stores that appear after it.

Definition:
if (PeripheralStart ≤ Areg ≤ PeripheralEnd)

PeripheralSixteen′[Areg]← Breg0..15
else

sixteen′[Areg] ← Breg0..15

Areg′ ← Creg
Breg′ ← undefined
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.

See also: devls devsb devsw ss

devsw

69/212



devsw device store word

Code: 2F F5

Description: Perform a device write from memory, a memory-mapped device or a
peripheral. Store Breg into the word of memory addressed by Areg . The memory
access performed by this instruction is guaranteed to be correctly sequenced with
respect to other device-access instructions. Also the instruction is guaranteed to be
executed after all normal memory store instructions that appear before it in the code
sequence, and before all normal memory stores that appear after it.

Definition:
if (PeripheralStart ≤ Areg ≤ PeripheralEnd)

PeripheralWord′[Areg] ← Breg
else

word′[Areg] ← Breg

Areg′ ← Creg
Breg′ ← undefined
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.

See also: devlw devsb devss stnl

diff



70/212

diff difference

Code: F4

Description: Subtract Areg from Breg , without checking for overflow.

Definition:
Areg′ ← Breg − Areg

Breg′ ← Creg
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.

See also: sub

disc

71/212



disc disable channel

Code: 22 FF

Description: Disable a channel guard in an alternative sequence. Areg is the offset
from the byte following the altend to the start of the guarded process, Breg is the
boolean guard and Creg is a pointer to the channel. If this is the first ready guard then
the value in Areg is stored in workspace and Areg is set to true, otherwise Areg is set
to false. Note that this instruction should be used as part of an alternative sequence
following an altwt or taltwt instruction.

Definition:
if (Breg = false) – boolean guard is false

Areg′ ← false
else if (Creg is internal channel)
{

if (word[Creg] = NotProcess.p) – guard already disabled
Areg′ ← false

else if (word[Creg] = Wdesc) – this guard is not ready
{

word′[Creg] ← NotProcess.p
Areg′ ← false

}
else if (word[Wptr @ pw.Temp] = NoneSelected.o)
{ – this is the first ready guard

word′[Wptr @ pw.Temp] ← Areg
Areg′ ← true

}
else – a previous guard selected

Areg′ ← false
}
else if (Creg is external channel)
{

Disable comms subsystem and receive status
if (channel not ready) – channel not waiting

Areg′ ← false
else if (word[Wptr @ pw.Temp] = NoneSelected.o)
{ – this is the first ready guard

word′[Wptr @ pw.Temp] ← Areg
Areg′ ← true

}
else - a previous guard selected

Areg′ ← false
}

Breg′ ← undefined
Creg′ ← undefined

disc



72/212

Error signals: none

Comments:
Secondary instruction.
Uses the pw.Temp slot in the process workspace.

See also: alt altend altwt enbc talt taltwt

diss

73/212



diss disable skip

Code: 23 F0

Description: Disable a ‘skip’ guard in an alternative sequence. Areg is the offset
from the byte following the altend to the start of the guarded process and Breg is the
boolean guard. If this is the first ready guard then the value in Areg is stored in
workspace and Areg is set to true, otherwise Areg is set to false. Note that this
instruction should be used as part of an alternative sequence following an altwt or
taltwt instruction.

Definition:
if (Breg = false) – boolean guard is false

Areg′ ← false
else if (word[Wptr @ pw.Temp] = NoneSelected.o)

Areg′ ← false – this is the first ready guard
else – another guard was selected
{

word′[Wptr @ pw.Temp] ← Areg
Areg′ ← true

}

Breg′ ← Creg
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.
Uses the pw.Temp slot in the process workspace.

See also: alt altend altwt enbs talt taltwt

dist



74/212

dist disable timer

Code: 22 FE

Description: Disable a timer guard in an alternative sequence. Areg is the offset
from the byte following the altend to the start of the guarded process, Breg is the
boolean guard and Creg is the time after which this guard will be ready. If this is the
first ready guard then the value in Areg is stored in pw.Temp , and Areg is set to true.
Note that this instruction should be used as part of an alternative sequence following a
taltwt instruction.

Definition:
if (Breg = false) – boolean guard is false

Areg′ ← false
else if (word[Wptr @ pw.TLink] = TimeNotSet.p) – no timer is ready

Areg′ ← false
else if (word[Wptr @ pw.TLink]= TimeSet.p) – a timer is ready
{

if not (word[Wptr @ pw.Time] after Creg) – but not this one
Areg′ ← false

else if (word[Wptr @ pw.Temp] = NoneSelected.o)
– this is the first ready guard

{
word′[Wptr @ pw.Temp] ← Areg
Areg′ ← true

}
else – a previous guard selected

Areg′ ← false
}
else

Areg′ ← false

Remove this process from the timer list

Breg′ ← undefined
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.
Instruction is interruptible.
Uses the pw.Temp slot in the process workspace.

See also: altend enbt talt taltwt

div

75/212



div divide

Code: 22 FC

Description: Divide Breg by Areg , with checking for overflow. The result when not
exact is rounded towards zero.

Definition:
if (Areg = 0) or ((Breg = MostNeg) and (Areg = -1))
{

Areg′ ← undefined
IntegerOverflow

}
else

Areg′ ← Breg / Areg

Breg′ ← Creg
Creg′ ← undefined

Error signals:
IntegerOverflow can be signalled.

Comments:
Secondary instruction.

See also: rem

dup



76/212

dup duplicate top of stack

Code: 25 FA

Description: Duplicate the top of the integer stack.

Definition:
Areg′ ← Areg
Breg′ ← Areg
Creg′ ← Breg

Error signals: none

Comments:
Secondary instruction.

See also: pop rev

enbc

77/212



enbc enable channel

Code: 24 F8

Description: Enable a channel guard in an alternative sequence. Areg is the
boolean guard and Breg is a pointer to the channel. Note that this instruction should
only be used as part of an alternative sequence following an alt or talt instruction.

Definition:
if (Areg ≠ false)
{

if (Breg is internal channel)
{

if (word[Breg] = NotProcess.p) – not ready
word′[Breg] ← Wdesc

else if (word[Breg] ≠ Wdesc) – not previously enabled
word′[Wptr @ pw.State] ← Ready.p

}
else if (Breg is external channel)
{

Request Comms Subsystem to enable external channel
and receive current status of channel
if (channel ready) -

word′[Wptr @ pw.State] ← Ready.p
}

}

Breg′ ← Creg
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.

See also: alt altend altwt disc talt taltwt

enbs



78/212

enbs enable skip

Code: 24 F9

Description: Enable a ‘skip’ guard in an alternative sequence. Areg is the boolean
guard. Note that this instruction should only be used as part of an alternative
sequence following an alt or talt instruction.

Definition:
if (Areg ≠ false)

word′[Wptr @ pw.State] ← Ready.p

Error signals: none

Comments:
Secondary instruction.

See also: alt altend altwt diss talt taltwt

enbt

79/212



enbt enable timer

Code: 24 F7

Description: Enable a timer guard in an alternative sequence. Areg is the boolean
guard and Breg is the time after which the guard may be selected. Note that this
instruction should only be used as part of an alternative sequence following a talt
instruction; in this case the location pw.State will have been initialized to Enabling.p
and the pw.Tlink slot initialized to TimeNotSet.p.

Definition:
if (Areg ≠ false)
{

if (word[Wptr @ pw.TLink] = TimeNotSet.p) – this is the first enbt
{

word′[Wptr @ pw.TLink] ← TimeSet.p
word′[Wptr @ pw.Time] ← Breg

}
else if (word[Wptr @ pw.TLink] = TimeSet.p) – this is not the first enbt
{

if (word[Wptr @ pw.Time] after Breg) – this enbt has earlier time
word′[Wptr @ pw.Time] ← Breg

}
}

Breg′ ← Creg
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.

See also: altend dist talt taltwt

endp



80/212

endp end process

Code: F3

Description: Synchronize the termination of a parallel construct. When all branches
have executed an endp instruction a ‘successor’ process then executes. Areg points
to the workspace of this successor process. This workspace contains a data structure
which holds the instruction pointer of the successor process and the number of
processes still active.

Definition:
if (word[Areg @ pp.Count] = 1)
{

Iptr′ ← word[Areg @ pp.IptrSucc]
Wptr′ ← Areg

}
else

word′[Areg @ pp.Count] ← word[Areg @ pp.Count]−1
start next process

Areg′ ← undefined
Breg′ ← undefined
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.
Instruction is a descheduling point.

See also: startp stopp

eqc n

81/212



eqc n equals constant

Code: Function C

Description: Compare Areg to a constant.

Definition:
if (Areg = n)

Areg′ ← true
else

Areg′ ← false

Error signals: none

Comments:
Primary instruction.

fmul



82/212

fmul fractional multiply

Code: 27 F2

Description: Multiply Areg by Breg treating the values as fractions, rounding the
result. The values in Areg and Breg are interpreted as fractions in the range greater
than or equal to -1 and less than 1 - i.e. the integer values divided by 2BitsPerWord-1.
The result is rounded. The rounding mode used is analogous to IEEE round nearest;
that is the result produced is the fraction which is nearest to the exact product, and, in
the event of the product being equidistant between two factions, the fraction with least
significant bit 0 is produced.

Definition:
if (Areg = MostNeg) and (Breg = MostNeg) – MostNeg interpreted as -1
{

Areg′ ← undefined
IntegerOverflow

}
else

Areg′ ← (Breg × Areg) /roundnearest 2BitsPerWord-1

Breg′ ← Creg
Creg ← undefined

Error signals:
IntegerOverflow can occur.

Comments:
Secondary instruction.

fptesterr

83/212



fptesterr test for FPU error

Code: 29 FC

Description: Test for an error in the FPU, if present. This instruction always returns
true on a processor without an FPU.

Definition:
Areg′ ← true
Breg′ ← Areg
Creg′ ← Breg

Error signals: none

Comments:
Secondary instruction.

gajw



84/212

gajw general adjust workspace

Code: 23 FC

Description: Set the workspace pointer to the address in Areg , saving the previous
value in Areg .

Definition:
Wptr′ ← Areg
Areg′ ← Wptr

Error signals: none

Comments:
Secondary instruction.
Areg should be word aligned.

See also: ajw call gcall

gcall

85/212



gcall general call

Code: F6

Description: Jump to the address in Areg , saving the previous address in Areg .

Definition:
Iptr′ ← Areg
Areg′ ← Iptr

Error signals: none

Comments:
Secondary instruction.

See also: ajw call gajw ret

gintdis



86/212

gintdis global interrupt disable

Code: 2C FD

Description: Disable the global interrupt events specified in the bit mask in Areg .
This allows parts of the built-in scheduler, such as response to external events,
timeslicing etc., to be disabled by software. The original value of the global interrupt
enable register is returned in Areg .

Definition:
GlobalInterruptEnables′ ← GlobalInterruptEnables ∧ ∼Areg7..0
Areg′7..0 ← GlobalInterruptEnables
Areg′31..8 ← 0

Error signals: none

Comments:
Secondary instruction.

See also: gintenb

gintenb

87/212



gintenb global interrupt enable

Code: 2C FE

Description: Enable the global interrupt events specified in the bit mask in Areg.

Definition:
GlobalInterruptEnables′ ← GlobalInterruptEnables ∨ Areg7..0
Areg′7..0 ← GlobalInterruptEnables
Areg′8..31 ← 0

Error signals: none

Comments:
Secondary instruction.

See also: gintdis

gt



88/212

gt greater than

Code: F9

Description: Compare the top two elements of the stack, returning true if Breg is
greater than Areg .

Definition:
if (Breg > Areg)

Areg′ ← true
else

Areg′ ← false

Breg′ ← Creg
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.

gtu

89/212



gtu greater than unsigned

Code: 25 FF

Description: Compare the top two elements of the stack, treating both as unsigned
integers, returning true if Breg is greater than Areg .

Definition:
if (Bregunsigned > Aregunsignded)

Areg′ ← true
else

Areg′ ← false

Breg′ ← Creg
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.

in



90/212

in input message

Code: F7

Description: Input a message. The corresponding output is performed by an out,
outword or outbyte instruction, and must specify a message of the same length. Areg
is the unsigned length in bytes, Breg is a pointer to the channel and Creg is a pointer
to where the message is to be stored. The process executing in will be descheduled if
the channel is external or is not ready, and is rescheduled when the communication is
complete.

Definition:
Synchronize, and input Aregunsigned bytes from channel Breg to address Creg

Areg′ ← undefined
Breg′ ← undefined
Creg′ ← undefined

Error signals: Can cause InternalChannel or ExternalChannel trap to be signalled (if
enabled) when the process is rescheduled after synchronization.

Comments:
Secondary instruction.
Instruction is a descheduling point.
Instruction is interruptible.

See also: out

insertqueue

91/212



insertqueue insert at front of scheduler queue

Code: 60 F2

Description: Insert a list of processes at the front of the scheduling list of priority
indicated by Areg , where 0 indicates high priority and 1 indicates low priority. Breg
and Creg are the front and back, respectively, of the list to be inserted.

Definition:
if (Breg ≠ NotProcess.p)
{

ProcQueueFPtr′[Areg]←Breg

if (ProcQueueFPtr[Areg] = NotProcess.p)
ProcQueueBPtr′[Areg]←Creg

else
word′[Creg @ pw.Link] ← ProcQueueFPtr[Areg]

}

Areg′ ← undefined
Breg′ ← undefined
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.

See also: swapqueue

intdis



92/212

intdis (localised) interrupt disable

Code: 2C F4

Description: Disable interruption by high priority processes until either an intenb
instruction is executed or the process deschedules. Timeslicing does not occur while
interrupts are disabled. This instruction is only meaningful for low priority processes.

Definition:
Disable high priority interrupts

Error signals: none

Comments:
Secondary instruction.

See also: intenb settimeslice

intenb

93/212



intenb (localised) interrupt enable

Code: 2C F5

Description: Enable interruption by high priority processes. This instruction is only
meaningful for low priority processes.

Definition:
Enable high priority interrupts

Error signals: none

Comments:
Secondary instruction.

See also: intdis settimeslice

iret



94/212

iret interrupt return

Code: 61 FF

Description: Return from external interrupt. Signal iret to interrupt handler and return
to the context of the interrupted process and resume execution. The interrupted high
priority state is recovered from the workspace – if this does not contain a running
process the processor switches to the interrupted low priority state held in the shadow
registers.

Definition:
Status′ ← word[Wptr]
if (Status has valid bit set)
{

Wptr′ ← word[Wptr + 1]
Iptr′ ← word[Wptr + 2]
Areg′ ← word[Wptr + 3]
Breg′ ← word[Wptr + 4]
Creg′ ← word[Wptr + 5]

}
else

Return to interrupted low priority state

Error signals: none

Comments:
Secondary instruction.

j n

95/212



j n jump

Code: Function 0

Description: Unconditional relative jump. The destination of the jump is expressed as
a byte offset from the first byte after the current instruction. j 0 causes a breakpoint.

Definition:
if (n = 0)

Take a breakpoint trap
else

Iptr′ ← next instruction + n

Areg′ ← undefined
Breg′ ← undefined
Creg′ ← undefined

Error signals: j 0 can cause a breakpoint trap to be signalled.

Comments:
Primary instruction.
Instruction is a descheduling point.
Instruction is a timeslicing point.

See also: cj lend

ladd



96/212

ladd long add

Code: 21 F6

Description: Add with carry in and check for overflow. The result of the operation is
the sum of Areg , Breg and bit 0 of Creg .

Definition:
if (sum > MostPos)
{

Areg′ ← sum − 2BitsPerWord

IntegerOverflow
}
else if (sum < MostNeg)
{

Areg′ ← sum + 2BitsPerWord

IntegerOverflow
}
else

Areg′ ← sum

Breg′ ← undefined
Creg′ ← undefined

where sum = Areg + Breg + Creg0
– the value of sum is calculated to unlimited precision

Error signals: IntegerOverflow can be signalled.

Comments:
Secondary instruction.

See also: lsum

lb

97/212



lb load byte

Code: F1

Description: Load the unsigned byte addressed by Areg into Areg .

Definition:
Areg′0..7 ← byte[Areg]
Areg′8..BitsPerWord-1 ← 0

Error signals: none

Comments:
Secondary instruction.

See also: bsub devlb lbx ls ldul

lbx



98/212

lbx load byte and sign extend

Code: 2B F9

Description: Load the byte addressed by Areg into Areg and sign extend to a word.

Definition:
Areg′0..7 ← byte[Areg]
Areg′8..BitsPerWord-1 ← Areg′7

Error signals: none

Comments:
Secondary instruction.

See also: bsub devlb lb xbword lsx ldul

ldc n

99/212



ldc n load constant

Code: Function 4

Description: Load constant into Areg .

Definition:
Areg′ ← n

Breg′ ← Areg
Creg′ ← Breg

Error signals: none

Comments:
Primary instruction.

See also: adc mint

ldclock



100/212

ldclock load clock

Code: 64 FD

Description: Load into Areg the current value of ClockReg , of the priority selected
by Areg , where 0 indicates high priority and 1 indicates low priority.

Definition:
Areg′ ← ClockReg[Areg]

Error signals: none

Comments:
Secondary instruction.

See also: stclock

lddevid

101/212



lddevid load device identity

Code: 21 27 FC

Description: See ldprodid. This instruction may be removed in future so ldprodid
should be used instead.

Definition:
Areg′ ← ProductId

Breg′ ← Areg
Creg′ ← Breg

Error signals: none

Comments:
Secondary instruction.

ldiff



102/212

ldiff long diff

Code: 24 FF

Description: Subtract unsigned numbers with borrow in. Subtract Areg from Breg
minus borrow in from Creg , producing difference in Areg and borrow out in Breg ,
without checking for overflow.

Definition:
if (diff ≥ 0)
{

Areg′unsigned ← diff
Breg′ ← 0

}
else
{

Areg′unsigned ← diff + 2BitsPerWord

Breg′ ← 1
}
Creg′ ← undefined

where diff = Bregunsigned − Aregunsigned − Creg0
– the value of diff is calculated to unlimited precision

Error signals: none

Comments:
Secondary instruction.

See also: lsub

ldinf

103/212



ldinf load infinity

Code: 27 F1

Description: Load the single length floating point number +infinity onto the stack.

Definition:
Areg′ ← #7F800000

Breg′ ← Areg
Creg′ ← Breg

Error signals: none

Comments:
Secondary instruction.

See also: cflerr

ldiv



104/212

ldiv long divide

Code: 21 FA

Description: Divide the double length unsigned integer in Breg and Creg (most
significant word in Creg) by an unsigned integer in Areg . The quotient is put into Areg
and the remainder into Breg . Overflow occurs if either the quotient is not
representable in a single word, or if a division by zero is attempted; the condition for
overflow is equivalent to Cregunsigned ≥ Areg unsigned.

Definition:
if (Cregunsigned ≥ Aregunsigned)

IntegerOverflow
else
{

Areg′unsigned ← long / Aregunsigned
Breg′unsigned ← long rem Aregunsigned

}

Creg′ ← undefined

where long = (Cregunsigned × 2BitsPerWord) + Bregunsigned
– the value of long is calculated to unlimited precision

Error signals:
IntegerOverflow can occur.

Comments:
Secondary instruction.

See also: lmul

ldl n

105/212



ldl n load local

Code: Function 7

Description: Load into Areg the local variable at the specified word offset in
workspace.

Definition:
Areg′ ← word[Wptr @ n]

Breg′ ← Areg
Creg′ ← Breg

Error signals: none

Comments:
Primary instruction.

See also: ldnl stl

ldlp n



106/212

ldlp n load local pointer

Code: Function 1

Description: Load into Areg the address of the local variable at the specifiedoffset in
workspace.

Definition:
Areg′ ← Wptr @ n

Breg′ ← Areg
Creg′ ← Breg

Definition:

Error signals: none

Comments:
Primary instruction.

See also: ldl ldnlp stlp

ldmemstartval

107/212



ldmemstartval load value of MemStart address

Code: 27 FE

Description: Load into Areg the address of the first free memor y location (as defined
in the MemStart configuration register).

Definition:
Areg′ ← MemStart

Breg′ ← Areg
Creg′ ← Breg

Error signals: none

Comments:
Secondary instruction.

ldnl n



108/212

ldnl n load non-local

Code: Function 3

Description: Load into Areg the non-local variable at the specified word offset from
Areg .

Definition:
Areg′ ← word[Areg @ n]

Error signals: none

Comments:
Primary instruction.
Areg should be word aligned.

See also: ldl ldnlp stnl

ldnlp n

109/212



ldnlp n load non-local pointer

Code: Function 5

Description: Load into Areg the address at the specified word offset from the
address in Areg .

Definition:
Areg′ ← Areg @ n

Error signals: none

Comments:
Primary instruction.

See also: ldlp ldnl wsub

ldpi



110/212

ldpi load pointer to instruction

Code: 21 FB

Description: Load into Areg an address relative to the current instruction pointer.
Areg contains a byte offset which is added to the address of the first byte following
this instruction.

Definition:
Areg′ ← next instruction + Areg

Error signals: none

Comments:
Secondary instruction.

ldpri

111/212



ldpri load current priority

Code: 21 FE

Description: Load the current process priority into Areg , where 0 indicates high
priority and 1 indicates low priority.

Definition:
Areg′ ← Priority

Breg′ ← Areg
Creg′ ← Breg

Error signals: none

Comments:
Secondary instruction.

ldprodid



112/212

ldprodid load product identity

Code: 68 FC

Description: Load a value indicating the product identity into Areg . Each product in
the ST20 family has a unique product identity code.

Definition:
Areg′ ← ProductId

Breg′ ← Areg
Creg′ ← Breg

Error signals: none

Comments:
Secondary instruction.
Different ST20 products may use the same processor type, but return different
product identity codes. However a product indentity code uniquely defines the
processor type used in that product.

ldshadow

113/212



ldshadow load shadow registers

Code: 60 FC

Description: Selectively load (depending on Areg) the shadow registers of the
priority determined by Breg from the block of store addressed by Creg . This
instruction should only be used with Breg not equal to the current priority.

Definition:
if (Breg ≠ Priority)
{

if (Areg0 = 1)
{

GlobalInterruptEnables′ ← word[Creg]16..23
TrapEnables′[Breg] ← word[Creg]0..13

}
if (Areg1 = 1)
{

Status′[Breg] ← word[Creg @ 1]
Wptr′[Breg] ← word[Creg @ 2]
Iptr′[Breg ← word[Creg @ 3]

}
if (Areg2 = 1)
{

Areg′[Breg] ← word[Creg @ 4]
Breg′[Breg] ← word[Creg @ 5]
Creg′[Breg] ← word[Creg @ 6]

}
if (Areg3 = 1)
{

Load block move registers for priority Breg from
word′[Creg @ 7] .. word′[Creg @ 11]

}
}
else

Undefined effect

Areg′ ← undefined
Breg′ ← undefined
Creg′ ← undefined

Error signals: none

ldshadow



114/212

Comments:
Secondary instruction.
The effect of this instruction is undefined if the items other than the block move
registers are loaded into the current priority.
This instruction is abortable.

See also: stshadow restart

ldtimer

115/212



ldtimer load timer

Code: 22 F2

Description: Load the value of the current priority timer into Areg .

Definition:
Areg′ ← ClockReg[Priority]

Breg′ ← Areg
Creg′ ← Breg

Error signals: none

Comments:
Secondary instruction.

See also: sttimer tin

ldtraph



116/212

ldtraph load trap handler

Code: 26 FE

Description: Install the trap handler structure to be found at the address in Breg into
the trap handler location for the trap group given by Areg and priority given by Creg ,
where 0 indicates high priority and 1 indicates low priority.

Definition:
word′[traphandler @ 0] ← word[Breg @ 0]
word′[traphandler @ 1] ← word[Breg @ 1]
word′[traphandler @ 2] ← word[Breg @ 2]
word′[traphandler @ 3] ← word[Breg @ 3]

Areg′ ← undefined
Breg′ ← undefined
Creg′ ← undefined

where traphandler = the address of the trap handler for the trap group Areg
and priority Creg.

Error signals: Can cause a load trap trap to be signalled.

Comments:
Secondary instruction.

See also: ldtrapped sttraph sttrapped

ldtrapped

117/212



ldtrapped load trapped process status

Code: 2C F6

Description: Install the trapped process structure, to be found at the address in
Breg, into the trapped process location for the trap group given by Areg and priority
given by Creg , where 0 indicates high priority and 1 indicates low priority.

Definition:
word′[trapped @ 0] ← word[Breg @ 0]
word′[trapped @ 1] ← word[Breg @ 1]
word′[trapped @ 2] ← word[Breg @ 2]
word′[trapped @ 3] ← word[Breg @ 3]

Areg′ ← undefined
Breg′ ← undefined
Creg′ ← undefined

where trapped = the address of the stored trapped process for the trap group
Areg and priority Creg.

Error signals: Can cause a load trap trap to be signalled.

Comments:
Secondary instruction.

See also: ldtraph sttraph sttrapped

lend



118/212

lend loop end

Code: 22 F1

Description: Adjust loop count and index, and do a conditional jump. Initially Areg
contains the byte offset from the first byte following this instruction to the loop start and
Breg contains a pointer to a loop end data structure, the first word of which is the loop
index and the second is the loop count. The count is decremented and, if the result is
greater than zero, the index is incremented and a jump to the start of the loop is taken.
The offset to the start of the loop is given as a positive number that is subtracted from
the instruction pointer.

Definition:
if (word[Breg @ le.Count] > 1)
{

word′[Breg @ le.Count] ← word[Breg @ le.Count] − 1
word′[Breg @ le.Index] ← word[Breg @ le.Index] + 1
Iptr′ ← next instruction − Areg

}

Areg′ ← undefined
Breg′ ← undefined
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.
Instruction is a descheduling point.
Instruction is a timeslice point.

See also: cj j

lmul

119/212



lmul long multiply

Code: 23 F1

Description: Form the double length product of Areg and Breg , with Creg as carry
in, treating the initial values as unsigned.

Definition:
Areg′unsigned ← prod rem 2BitsPerWord

Breg′unsigned ← prod / 2BitsPerWord

Creg′ ← undefined

where prod = (Bregunsigned × Aregunsigned) + Cregunsigned
– the value of prod is calculated to unlimited precision

Error signals: none

Comments:
Secondary instruction.

See also: ldiv

ls



120/212

ls load sixteen

Code: 2C FA

Description: Load the unsigned 16-bit object addressed by Areg into Areg .

Definition:
Areg′0..15 ← sixteen[Areg]
Areg′16..BitsPerWord-1← 0

Error signals: none

Comments:
Secondary instruction.

See also: devls lsx ss ssub lt ldul

lshl

121/212



lshl long shift left

Code: 23 F6

Description: Logical shift left the double word value in Creg and Breg (most
significant word in Creg) by the number of places specified in Areg . Only defined if the
shift length is less than twice the wordlength.

Definition:
if (0 ≤ Areg < 2 × BitsPerWord)
{

Areg′ ← (long << Aregunsigned) rem 2BitsPerWord

Breg′ ← ((long << Aregunsigned) / 2BitsPerWord) rem 2BitsPerWord

}
else {

Areg′ ← undefined
Breg′ ← undefined

}

Creg′ ← undefined

where long = (Cregunsigned × 2BitsPerWord) + Bregunsigned
– the value of long is calculated to double word precision

Error signals: none

Comments:
Secondary instruction.
The behavior for shift lengths outside the stated range is implementation
dependent.

See also: lshr norm

lshr



122/212

lshr long shift right

Code: 23 F5

Description: Logical shift right the double word value in Creg and Breg (most
significant word in Creg) by the number of places specified in Areg . This instruction is
only defined if the shift length is less than twice the word length.

Definition:
if (0 ≤ Areg < 2 × BitsPerWord)
{

Areg′ ← (long >> Aregunsigned) rem 2BitsPerWord

Breg′ ← ((long >> Aregunsigned) / 2BitsPerWord) rem 2BitsPerWord

} else {
Areg′ ← undefined
Breg′ ← undefined

}

Creg′ ← undefined

where long = (Cregunsigned × 2BitsPerWord) + Bregunsigned
– the value of long is calculated to double word precision

Error signals: none

Comments:
Secondary instruction.
The behavior for shift lengths outside the stated range is implementation
dependent.

See also: lshl

lsub

123/212



lsub long subtract

Code: 23 F8

Description: Subtract with borrow in and check for overflow. The result of the
operation, put into Areg , is Breg minus Areg , minus bit 0 of Creg .

Definition:
if (diff > MostPos)
{

Areg′ ← diff − 2BitsPerWord

IntegerOverflow
}
else if (diff < MostNeg)
{

Areg′ ← diff + 2BitsPerWord

IntegerOverflow
}
else

Areg′ ← diff

Breg′ ← undefined
Creg′ ← undefined

where diff = (Breg − Areg) − Creg0
– the value of diff is calculated to unlimited precision

Error signals: IntegerOverflow can be signalled.

Comments:
Secondary instruction.

See also: ldiff

lsum



124/212

lsum long sum

Code: 23 F7

Description: Add unsigned numbers with carry in and carry out. Add Breg to Areg
(treated as unsigned numbers) plus carry in from Creg , producing the sum in Areg
and carry out in Breg , without checking for overflow.

Definition:
if (sum > MostPosUnsigned)
{

Areg′unsigned ← sum − 2BitsPerWord

Breg′ ← 1
}
else
{

Areg′unsigned ← sum
Breg′ ← 0

}

Creg′ ← undefined

where sum = Aregunsigned + Bregunsigned + Creg0
– the value of sum is calculated to unlimited precision

Error signals: none

Comments:
Secondary instruction.

See also: ladd

lsx

125/212



lsx load sixteen and sign extend

Code: 2F F9

Description: Load the 16-bit object addressed by Areg into Areg and sign extend to
a word.

Definition:
Areg′0..15 ← sixteen[Areg]
Areg′16..BitsPerWord-1← Areg′15

Error signals: none

Comments:
Secondary instruction.

See also: devls ls ss xsword ltx ldnl

mint



126/212

mint minimum integer

Code: 24 F2

Description: Load the most negative integer into Areg .

Definition:
Areg′ ← MostNeg

Breg′ ← Areg
Creg′ ← Breg

Error signals: none

Comments:
Secondary instruction.

move

127/212



move move message

Code: 24 FA

Description: Copy Areg bytes to address Breg from address Creg . The copy is
performed using the minimum number of word reads and writes.

Definition:
if (source and destination overlap)

Undefined effect
else for i = 0..(Aregunsigned − 1)

byte′[Breg + i] ← byte[Creg + i]

Areg′ ← undefined
Breg′ ← undefined
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.

See also: devmove in move2dall out

move2dall



128/212

move2dall 2D block copy

Code: 25 FC

Description: Copy a 2D block of memory to another, non-overlapping, area using
parameters set up by move2dinit. The copy is performed using the minimum number
of word reads and writes. Areg is the number of bytes in each row, Breg is the
address of the destination, and Creg is the address of the source.

Definition:
if (source and destination overlap)

Undefined effect

else for y = 0 .. (count − 1)
{

for x = 0 .. (Aregunsigned − 1)
byte′[Breg + (y × dstStride) + x] ← byte[Creg + (y × srcStride) + x]

}

Areg′ ← undefined
Breg′ ← undefined
Creg′ ← undefined

where
count = Move2dBlockLength
dstStride = Move2dDestStride
srcStride = Move2dSourceStride

Error signals: none

Comments:
Secondary instruction.
Instruction is interruptible.

See also: move2dinit move2d nonzero move2dzero1

move2dinit

129/212



move2dinit initialize data for 2D block move

Code: 25 FB

Description: Set up the first three parameters for a 2D block move: Areg is the
number of rows to copy, Breg is the width of the destination array, and Creg is the
width of the source array. This instruction must be executed before each 2D block
move.

Definition:
Move2dBlockLength′ ← Areg
Move2dDestStride′ ← Breg
Move2dSourceStride′ ← Creg

Areg′ ← undefined
Breg′ ← undefined
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.

See also: move2dall move2dnonzero move2dzero stmove2dinit

move2dnonzero



130/212

move2dnonzero 2D block copy non-zero bytes

Code: 25 FD

Description: Copy non-zero valued bytes from a 2D block of memory to another,
non-overlapping, area using parameters set up by move2dinit. The copy is performed
using the minimum number of word reads and writes. Areg is the number of bytes in
each row, Breg is the address of the destination, and Creg is the address of the
source.

Definition:
if (source and destination overlap)

Undefined effect

else for y = 0 .. (count − 1)
for x = 0 .. (Aregunsigned − 1)

if (byte[Creg + (y × srcStride) + x] ≠ 0)
byte′[Breg + (y × dstStride) + x] ← byte[Creg + (y × srcStride) + x]

Areg′ ← undefined
Breg′ ← undefined
Creg′ ← undefined

where
count = Move2dBlockLength
dstStride = Move2dDestStride
srcStride = Move2dSourceStride

Error signals: none

Comments:
Secondary instruction.
Instruction is interruptible.

See also: move2dinit move2dzero move2dall

move2dzero

131/212



move2dzero 2D block copy zero bytes

Code: 25 FE

Description: Copy zero valued bytes from a 2D block of memory to another, non-
overlapping, area using parameters set up by move2dinit. The copy is performed
using the minimum number of word reads. Areg is the number of bytes in each row,
Breg is the address of the destination, and Creg is the address of the source.

Definition:
if (source and destination overlap)

Undefined effect

else for y = 0 .. (count − 1)
for x = 0 .. (Aregunsigned − 1)

if (byte[Creg + (y × srcStride) + x] = 0)
byte′[Breg + (y × dstStride) + x] ← byte[Creg + (y × srcStride) + x]

Areg′ ← undefined
Breg′ ← undefined
Creg′ ← undefined

where
count = Move2dBlockLength
dstStride = Move2dDestStride
srcStride = Move2dSourceStride

Error signals: none

Comments:
Secondary instruction.
Instruction is interruptible.

See also: move2dinit

mul



132/212

mul multiply

Code: 25 F3

Description: Multiply Areg by Breg , with checking for overflow.

Definition:
Areg′ ← Areg ×checked Breg

Breg′ ← Creg
Creg′ ← undefined

Error signals:
IntegerOverflow can be signalled by ×checked

Comments:
Secondary instruction.

See also: prod

nop

133/212



nop no operation

Code: 63 F0

Description: Perform no operation.

Definition:
no effect

Error signals: none

Comments:
Secondary instruction.

norm



134/212

norm normalize

Code: 21 F9

Description: Normalize the unsigned double length number stored in Breg and Areg
(most significant word in Breg). The value is shifted left until the most significant bit is
a one. The number of places shifted is returned in Creg . This instruction is used as
the first instruction in the single length floating point rounding code sequence , norm;
postnormsn; roundsn.

Definition:
if ((Bregunsigned = 0) and (Aregunsigned = 0))

Creg′ ← 2 × BitsPerWord
else
{

Creg′ ← number of most significant zero bits in long
Areg′unsigned ← (long << Creg′) rem 2BitsPerWord

Breg′unsigned ← ((long << Creg′) / 2BitsPerWord) rem 2BitsPerWord

}

where long = (Bregunsigned × 2BitsPerWord) + Aregunsigned
– the value of long is calculated to double word precision

Error signals: none

Comments:
Secondary instruction.

See also: lshl lshr postnormsn roundsn shl shr

not

135/212



not not

Code: 23 F2

Description: Complement bits in Areg .

Definition:
Areg′ ← ∼Areg

Error signals: none

Comments:
Secondary instruction.

or



136/212

or or

Code: 24 FB

Description: Bitwise or of Areg and Breg .

Definition:
Areg′ ← Breg ∨ Areg

Breg′ ← Creg
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.

out

137/212



out output message

Code: FB

Description: Output a message (where the corresponding input is performed by an
in instruction, and must specify a message of the same length). Areg is the unsigned
length, Breg is a pointer to the channel, and Creg is a pointer to the message. The
process executing out will be descheduled if the channel is external or is not ready; it
is rescheduled when the communication is complete. This instruction is also used to
synchronize with an alternative.

Definition:
Synchronize, and output Aregunsigned bytes to channel Breg from address
Creg

Areg′ ← undefined
Breg′ ← undefined
Creg′ ← undefined

Error signals: Can cause InternalChannel or ExternalChannel trap to be signalled (if
enabled) when the process is rescheduled on synchronization.

Comments:
Secondary instruction.

See also: altwt enbc in outbyte outword

outbyte



138/212

outbyte output byte

Code: FE

Description: Output the least significant byte of Areg to the channel pointed to by
Breg (where the corresponding input is performed by an in instruction, and must
specify a single byte message). The process executing outbyte will be descheduled if
the channel is external or is not ready; it is rescheduled when the communication is
complete. This instruction is also used to synchronize with an alternative.

Definition:
Synchronize, and output least significant byte of Areg to channel Breg

word′[Wptr @ pw.Temp] ← undefined
Areg′ ← undefined
Breg′ ← undefined
Creg′ ← undefined

Error signals: Can cause InternalChannel or ExternalChannel trap to be signalled (if
enabled) when process is rescheduled on synchronization.

Comments:
Secondary instruction.
Instruction is a descheduling point.
Instruction is interruptible.
Uses the pw.Temp slot in the process workspace.

See also: altwt enbc in out outword

outword

139/212



outword output word

Code: FF

Description: Output the word in Areg to the channel pointed to by Breg (the
corresponding input is performed by an in instruction, and must specify a four byte
message). The process executing outword will be descheduled if the channel is
external or is not ready; it is rescheduled when the communication is complete. This
instruction is also used to synchronize with an alternative.

Definition:
Synchronize, and output Areg to channel Breg

word′[Wptr @ pw.Temp] ← undefined
Areg′ ← undefined
Breg′ ← undefined
Creg′ ← undefined

Error signals: Can cause InternalChannel or ExternalChannel trap to be signalled (if
enabled) when the process is rescheduled on synchronization.

Comments:
Secondary instruction.
Instruction is a descheduling point.
Instruction is interruptible.
Uses the pw.Temp slot in the process workspace.

See also: altwt enbc in out outbyte

pop



140/212

pop pop processor stack

Code: 27 F9

Description: Pop top element of integer stack.

Definition:
Areg′ ← Breg
Breg′ ← Creg
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.

See also: dup rev

postnormsn

141/212



postnormsn post-normalize correction of single
length fp number

Code: 26 FC

Description: Perform the post normalised correction on a floating point number,
where initially the normalised fraction is in Areg , Breg and Creg as left by the
instruction norm, and the exponent is in location pw.Temp in the workspace. This
instruction is only intended to be used in the single length rounding code sequence
immediately after norm and before roundsn.

Definition:
Areg′ ← post-normalised guardword
Breg′ ← post-normalised fractionword
Creg′ ← post-normalised exponent

Error signals: none

Comments:
Secondary instruction.
This instruction uses location pw.Temp in the workspace.

See also: roundsn norm

prod



142/212

prod product

Code: F8

Description: Multiply Areg by Breg without checking for overflow.

Definition:
Areg′ ← Areg × Breg

Breg′ ← Creg
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.

See also: mul

reboot

143/212



reboot reboot

Code: 68 FD

Description: Perform a cold boot. Reset all machine states to the initial state and
execute the boot microcode. This examines the state of the BootFromRom pin and
reboots accordingly.

Error signals:
Reboot the machine and either listen for a boot protocol on link or jump to ROM
entry point

Error signals: none

Comments:
Secondary instruction.

rem



144/212

rem remainder

Code: 21 FF

Description: Calculate the remainder when Breg is divided by Areg . The sign of the
remainder is the same as the sign of Breg .

The remainder, r = x rem y, is defined by r = x − (y × (x / y)).

Definition:
if (Areg = 0)
{

Areg′ ← undefined
IntegerOverflow

}
else

Areg′ ← Areg rem Breg

Breg′ ← Creg
Creg′ ← undefined

Error signals:
IntegerOverflow signalled when a remainder by zero is attempted.

Comments:
Secondary instruction.

See also: div

resetch

145/212



resetch reset channel

Code: 21 F2

Description: Reset the channel pointed to by Areg . Returns the channel to the
empty state. If the channel address points to a hard channel, then the link hardware is
reset. Areg returns the process descriptor of the process waiting on the channel.

Definition:
if (Areg points to external channel)

reset link hardware

word′[Areg] ← NotProcess.p
Areg′ ← word[Areg]

Error signals: none

Comments:
Secondary instruction.
This instruction is abortable.

restart



146/212

restart restart

Code: 62 FE

Description: Restart execution of a saved process in place of the current process.
Areg is a pointer to a processor state data structure which will have been obtained
using stshadow.

Definition:
GlobalInterruptEnables′ ← word[Areg @ 0]16..23
TrapEnables′ ← word[Areg @ 0]0..13
Status′ ← word[Areg @ 1]
Wptr′ ← word[Areg @ 2]
Iptr′ ← word[Areg @ 3]
Areg′ ← word[Areg @ 4]
Breg′ ← word[Areg @ 5]
Creg′ ← word[Areg @ 6]
Load block move registers for current priority from

word′[Areg @ 7] .. word′[Areg @ 11]

Error signals: none

Comments:
Secondary instruction.

See also: ldshadow stshadow

ret

147/212



ret return

Code: 22 F0

Description: Return from a subroutine and de-allocate workspace.

Definition:
Iptr′ ← word[Wptr @ 0]
Wptr′ ← Wptr @ 4

Error signals: none

Comments:
Secondary instruction.

See also: ajw call

rev



148/212

rev reverse

Code: F0

Description: Swap the top two elements of the evaluation stack.

Definition:
Areg′ ← Breg
Breg′ ← Areg

Error signals: none

Comments:
Secondary instruction.

See also: dup pop

roundsn

149/212



roundsn round single length floating point number

Code: 26 FD

Description: Round an unpacked result of a floating point operation into Areg .
Rounding is performed in round-to-nearest mode, as defined by IEEE-754. Initially the
post-normalised guardword, fractionword and exponent are in Areg , Breg , and Creg ,
as left by the instruction postnormsn. This instruction is only intended to be used in
the single length rounding code sequence immediately after postnormsn.

Definition:
Areg′ ← rounded and packed fp number
Breg′ ← undefined
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.

See also: postnormsn unpacksn

runp



150/212

runp run process

Code: 23 F9

Description: Schedule a (descheduled) process. The process descriptor of the
process is in Areg ; this identifies the process workspace and priority. The instruction
pointer is loaded from the process’ workspace data structure.

Definition:
Put process Areg onto the back of the appropriate scheduling list

Areg′ ← undefined
Breg′ ← undefined
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.

See also: endp startp stopp

satadd

151/212



satadd saturating add

Code: 26 F8

Description: Perform addition using ‘saturating arithmetic’ i.e. signed arithmetic
where overflowing results do not wrap round but return MostPos or MostNeg
according to the sign of the result. This instruction is used for clipping algorithms in
signal processing.

Definition:
if (sum > MostPos)

Areg′ ← MostPos
else if (sum < MostNeg)

Areg′ ← MostNeg
else

Areg′ ← sum

Breg′ ← Creg
Creg′ ← undefined

where sum = Breg + Areg
– sum is calculated to unlimited precision

Error signals: none

Comments:
Secondary instruction.

See also: satsub satmul

satmul



152/212

satmul saturating multiply

Code: 26 FA

Description: Perform multiplication using ‘saturating arithmetic’ i.e. signed arithmetic
where overflowing results do not wrap round but return MostPos or MostNeg
according to the sign of the result. This instruction is used for clipping algorithms in
signal processing.

Definition:
if (prod > MostPos)

Areg′ ← MostPos
else if (prod < MostNeg)

Areg′ ← MostNeg
else

Areg′ ← prod

Breg′ ← Creg
Creg′ ← undefined

where prod = Breg × Areg
– prod is calculated to unlimited precision

Error signals: none

Comments:
Secondary instruction.

See also: satadd satsub

satsub

153/212



satsub saturating subtract

Code: 26 F9

Description: Perform subtraction using ‘saturating arithmetic’ i.e. signed arithmetic
where overflowing results do not wrap round but return MostPos or MostNeg
according to the sign of the result. This instruction is used for clipping algorithms in
signal processing.

Definition:
if (diff > MostPos)

Areg′ ← MostPos
else if (diff < MostNeg)

Areg′ ← MostNeg
else

Areg′ ← diff

Breg′ ← Creg
Creg′ ← undefined

where diff = Breg − Areg
– diff is calculated to unlimited precision

Error signals: none

Comments:
Secondary instruction.

See also: satadd satmul

saveh



154/212

saveh save high priority queue registers

Code: 23 FE

Description: Save high priority queue pointers. Stores the contents of the high
priority scheduling registers in the block given by the address in Areg .

This instruction has been superceded by insertqueue and swapqueue which should
be used instead.

Definition:
word′[Areg @ 0] ← ProcQueueFPtr[HighPriority]
word′[Areg @ 1] ← ProcQueueBPtr[HighPriority]

Areg′ ← Breg
Breg′ ← Creg
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.

See also: savel insertqueue swapqueue

savel

155/212



savel save low priority queue registers

Code: 23 FD

Description: Save low priority queue pointers. Stores the contents of the low priority
scheduling registers in the block given by the address in Areg .

This instruction has been superceded by insertqueue and swapqueue which should
be used instead.

Definition:
word′[Areg @ 0] ← ProcQueueFPtr[LowPriority]
word′[Areg @ 1] ← ProcQueueBPtr[LowPriority]

Areg′ ← Breg
Breg′ ← Creg
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.

See also: saveh insertqueue swapqueue

sb



156/212

sb store byte

Code: 23 FB

Description: Store the least significant byte of Breg into the byte of memory
addressed by Areg .

Definition:
byte′[Areg] ← Breg0..7

Areg′ ← Creg
Breg′ ← undefined
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.

See also: bsub devsb lb lbx ss stnl

seterr

157/212



seterr set error flags

Code: 21 F0

Description: Unconditionally set the error flag for the current priority.

Definition:
ErrorFlag′[Priority] ← set

Error signals:
The error flag is set by this instruction.

Comments:
Secondary instruction.

See also: stoperr testerr

sethalterr



158/212

sethalterr set halt-on-error flag

Code: 25 F8

Description: Set the HaltOnError flag to put the processor into halt-on-error mode.

Definition:
HaltOnErrorFlag′ ← set

Error signals: none

Comments:
Secondary instruction.

See also: clrhalterr tsthalterr

settimeslice

159/212



settimeslice set timeslicing status

Code: 2B F0

Description: Enable or disable timeslicing of the current process, depending on the
value of Areg , and set Areg to indicate whether timeslicing was enabled or disabled
prior to execution of the instruction. If Areg is initially false timeslicing is disabled until
either the process deschedules or timeslicing is enabled. If Areg is initially true
timeslicing is enabled. This instruction is only meaningful when run at low priority.

Definition:
if (Areg = false)

Disable timeslicing
else if (Areg = true)

Enable timeslicing
else

Undefined effect

if (timeslicing was previously enabled)
Areg′ ← true

else
Areg′ ← false

Error signals: none

Comments:
Secondary instruction.

See also: intdis intenb

shl



160/212

shl shift left

Code: 24 F1

Description: Logical shift left Breg by Areg places, filling with zero bits. If the initial
Areg is not between 0 and 31 inclusive then the result is zero. The result is only
defined for shift lengths less than the word length.

Definition:
if (0 ≤ Areg < BitsPerWord)

Areg′ ← Breg << Areg
else

Areg′ ← undefined

Breg′ ← Creg
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.
The behavior for shift lengths outside the stated range is implementation
dependent.

See also: lshl lshr norm shr

shr

161/212



shr shift right

Code: 24 F0

Description: Logical shift right Breg by Areg places, filling with zero bits. If the initial
Areg is not between 0 and 31 inclusive then the result is zero. The result is only
defined for shift lengths less than the word length.

Definition:
if (0 ≤ Areg < BitsPerWord)

Areg′ ← Breg >> Areg
else

Areg′ ← undefined

Breg′ ← Creg
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.
The behavior for shift lengths the outside stated range is implementation
dependent.

See also: lshl lshr norm shl

signal



162/212

signal signal

Code: 60 F4

Description: Signal (or V) on the semaphore pointed to by Areg . If no process is
waiting then the count is incremented, otherwise the first process on the semaphore
list is rescheduled.

Definition:
if (word[Areg @ s.Front] = NotProcess.p)

word′[Areg @ s.Count] ← word[Areg @ s.Count] + 1
else

Remove the process from the front of the semaphore list and put it on the
scheduling list

Areg′ ← undefined
Breg′ ← undefined
Creg ← undefined

Error signals: Can cause the Signal trap to be signalled if a process is rescheduled.

Comments:
Secondary instruction.
Count increment is unchecked.

See also: wait

slmul

163/212



slmul signed long multiply

Code: 26 F4

Description: Perform signed long multiplication. This instruction forms the double
length product of Areg and Breg , with Creg as carry in, treating the initial values Areg
and Breg as signed.

Definition:
Areg′ unsigned ← prod rem 2BitsPerWord

Breg′ ← prod / 2BitsPerWord

Creg′ ← undefined

where prod = (Breg × Areg) + Cregunsigned
– the value of prod is calculated to unlimited precision

Error signals: none

Comments:
Secondary instruction.

See also: lmul sulmul

ss



164/212

ss store sixteen

Code: 2C F8

Description: Store bits 0..15 of Breg into the sixteen bits of memory addressed by
Areg .

Definition:
sixteen′[Areg] ← Breg0..15

Areg′ ← Creg
Breg′ ← undefined
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.

See also: devss ldlp ldnlp ls lsx sb stl stnl ssub

ssub

165/212



ssub sixteen subscript

Code: 2C F1

Description: Generate the address of the element which is indexed by Breg , in an
array of 16-bit objects pointed to by Areg .

Definition:
Areg′ ← Areg + (2 × Breg)
Breg′ ← Creg
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.

See also: bcnt bsub wcnt wsub wsubdb

startp



166/212

startp start process

Code: FD

Description: Create and schedule a process at the current priority. Initially Areg is a
pointer to the workspace of the new process and Breg is the offset from the next
instruction to the instruction pointer of the new process.

Definition:
word′[Areg @ pw.Iptr] ← next instruction + Breg

Put the process Areg onto the back of the scheduling list for the current priority

Areg′ ← undefined
Breg′ ← undefined
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.

See also: endp runp

stclock

167/212



stclock store clock register

Code: 64 FC

Description: Store the contents of Breg into the clock register of priority Areg .

Definition:
ClockReg[Areg] ← Breg

Areg′ ← Creg
Breg′ ← undefined
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.

See also: ldclock

sthb



168/212

sthb store high priority back pointer

Code: 25 F0

Description: Store the contents of Areg into the back pointer of the high priority
queue.

This instruction has been superceded by insertqueue and swapqueue which should
be used instead.

Definition:
ProcQueueBPtr[HighPriority] ← Areg

Error signals: none

Comments:
Secondary instruction.

See also: insertqueue sthf stlb stlf swapqueue

sthf

169/212



sthf store high priority front pointer

Code: 21 F8

Description: Store the contents of Areg into the front pointer of the high priority
queue.

This instruction has been superceded by insertqueue and swapqueue which should
be used instead.

Definition:
ProcQueueFPtr[HighPriority] ← Areg

Error signals: none

Comments:
Secondary instruction.

See also: insertqueue sthb stlb stlf swapqueue

stl n



170/212

stl n store local

Code: Function D

Description: Store the contents of Areg into the local variable at the specified word
offset in workspace.

Definition:
word′[Wptr @ n] ← Areg

Areg′ ← Breg
Breg′ ← Creg
Creg′ ← undefined

Error signals: none

Comments:
Primary instruction.

See also: devsw ldl ldlp sb ss stnl

stlb

171/212



stlb store low priority back pointer

Code: 21 F7

Description: Store the contents of Areg into the back pointer of the low priority
queue.

This instruction has been superceded by insertqueue and swapqueue which should
be used instead.

Definition:
ProcQueueBPtr[LowPriority] ← Areg

Error signals: none

Comments:
Secondary instruction.

See also: insertqueue sthb sthf stlf swapqueue

stlf



172/212

stlf store low priority front pointer

Code: 21 FC

Description: Store the contents of Areg into the front pointer of the low priority
queue.

This instruction has been superceded by insertqueue and swapqueue which should
be used instead.

Definition:
ProcQueueFPtr[LowPriority] ← Areg

Error signals: none

Comments:
Secondary instruction.

See also: insertqueue sthb sthf stlb swapqueue

stnl n

173/212



stnl n store non-local

Code: Function E

Description: Store the contents of Breg into the non-local variable at the specified
word offset from Areg.

Definition:
word′[Areg @ n] ← Breg

Areg′ ← Creg
Breg′ ← undefined
Creg′ ← undefined

Error signals: none

Comments:
Primary instruction.

See also: devsw ldlp ldnlp sb ss stl

stoperr



174/212

stoperr stop on error

Code: 25 F5

Description: Deschedule the current process if the ErrorFlag is set.

Definition:
if (ErrorFlag[Priority] = set)

word′[Wptr @ pw.Iptr] ← next instruction
Stop process

Error signals: none

Comments:
Secondary instruction.

See also: seterr testerr

stopp

175/212



stopp stop process

Code: 21 F5

Description: Terminate the current process, saving the current Iptr for later use.

Definition:
word′[Wptr @ pw.Iptr] ← next instruction

Areg′ ← undefined
Breg′ ← undefined
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.

See also: endp runp startp

stshadow



176/212

stshadow store shadow registers

Code: 60 FD

Description: Selectively store shadow registers of priority Breg into the block of store
addressed by Creg. This instruction is normally used in high priority with Breg set to 1
for low priority. Storing high priority registers from low priority will give undefined
values.

Definition:
if (Areg0 = 1)
{

word′[Creg]16..23 ← GlobalInterruptEnables
word′[Creg]0..13 ← TrapEnables[Breg]

}
if (Areg1 = 1)
{

word′[Creg @ 1] ← Status[Breg]
word′[Creg @ 2] ← Wptr[Breg]
word′[Creg @ 3] ← Iptr[Breg]

}
if (Areg2 = 1)
{

word′[Creg @ 4] ← Areg[Breg]
word′[Creg @ 5] ← Breg[Breg]
word′[Creg @ 6] ← Creg[Breg]

}
if (Areg3 = 1)

Store block move registers for priority Breg in
word′[Creg @ 7] .. word′[Creg @ 11]

Areg′ ← undefined
Breg′ ← undefined
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.

See also: ldshadow restart

sttimer

177/212



sttimer store timer

Code: 25 F4

Description: Initialize the timers. Set the low and high priority clock registers to the
value in Areg and start them ticking and scheduling ready processes.

Definition:
Clockreg′[0] ← Areg
Clockreg′[1] ← Areg
Start timers

Areg′ ← Breg
Breg′ ← Creg
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.

See also: clockenb clockdis ldclock

sttraph



178/212

sttraph store trap handler

Code: 26 FF

Description: Store the trap handler structure from the trap handler location for the
trap group given by Areg and priority given by Creg , where 0 indicates high priority
and 1 indicates low priority, to the block of memory pointed to by Breg .

Definition:
word′[Breg @ 0] ← word[traphandler @ 0]
word′[Breg @ 1] ← word[traphandler @ 1]
word′[Breg @ 2] ← word[traphandler @ 2]
word′[Breg @ 3] ← word[traphandler @ 3]

Areg′ ← undefined
Breg′ ← undefined
Creg′ ← undefined

where traphandler is the address of the traphandler for the trap group
Areg and priority Creg.

Error signals:
Will cause a StoreTrap trap if enabled.

Comments:
Secondary instruction.

See also: ldtraph ldtrapped sttrapped

sttrapped

179/212



sttrapped store trapped process

Code: 2C FB

Description: Store the trapped process structure from the trapped process location
for the trap group given by Areg and priority given by Creg , where 0 indicates high
priority and 1 indicates low priority, to the block of memory pointed to by Breg .

Definition:
word′[Breg @ 0] ← word[trapped @ 0]
word′[Breg @ 1] ← word[trapped @ 1]
word′[Breg @ 2] ← word[trapped @ 2]
word′[Breg @ 3] ← word[trapped @ 3]

Areg′ ← undefined
Breg′ ← undefined
Creg′ ← undefined

where trapped is the address of the stored trapped process for the trap group
Areg and priority Creg.

Error signals:
Will cause a StoreTrap trap if enabled.

Comments:
Secondary instruction

See also: ldtrph ldtrapped sttraph

sub



180/212

sub subtract

Code: FC

Description: Subtract Areg from Breg , with checking for overflow.

Definition:
Areg′ ← Breg −checked Areg

Breg′ ← Creg
Creg′ ← undefined

Error signals:
IntegerOverflow can be signalled by −checked

Comments:
Secondary instruction.

See also: diff add

sulmul

181/212



sulmul signed times unsigned long multiply

Code: 26 F5

Description: Perform signed long multiplication. This instruction forms the double
length product of Areg and Breg , with Creg as carry in, treating the initial value Areg
as signed and Breg as unsigned.

Definition:
Areg′unsigned ← prod rem 2BitsPerWord

Breg′ ← prod / 2BitsPerWord

Creg′ ← undefined

where prod = (Bregunsigned × Areg) + Cregunsigned
– the value of prod is calculated to unlimited precision

Error signals: none

Comments:
Secondary instruction.

See also: lmul slmul

sum



182/212

sum sum

Code: 25 F2

Description: Add Areg and Breg , without checking for overflow.

Definition:
Areg′ ← Breg + Areg

Breg′ ← Creg
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.

See also: add bsub diff

swapqueue

183/212



swapqueue swap scheduler queue

Code: 60 F0

Description: Swap the scheduling list of priority indicated by Areg , where 0 indicates
high priority and 1 indicates low priority. Breg and Creg are the front and back
pointers, respectively, of the list to be inserted. The old front and back pointers are
returned in Areg and Breg , respectively.

Definition:
Areg′ ← ProcQueueFPtr[Areg]
Breg′ ← ProcQueueBPtr[Areg]
ProcQueueFPtr′[Areg] ← Breg
ProcQueueBPtr′[Areg] ← Creg

Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.

See also: insertqueue swaptimer

swaptimer



184/212

swaptimer swap timer queue

Code: 60 F1

Description: Swap the timer list of priority indicated by Areg and update the alarm
register for the new list. An initial Areg of value 0 indicates high priority and 1 indicates
low priority. Breg is the front pointer of the list to be inserted. The old front pointer is
returned in Areg .

Definition:
if (Breg ≠ NotProcess.p)

Tnextreg′[Areg] ← word[Breg @ pw.Time]

Areg′ ← TptrReg[Areg]
Tptrreg′[Areg] ← Breg

Breg′ ← undefined
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.

See also: swapqueue

talt

185/212



talt timer alt start

Code: 24 FE

Description: Start a timer alternative sequence. The pw.State location of the
workspace is set to Enabling.p, and the pw.TLink location is set to TimeNotSet.p.

Definition:
Enter alternative sequence

word′[Wptr @ pw.State] ← Enabling.p
word′[Wptr @ pw.TLink] ← TimeNotSet.p

Error signals: none

Comments:
Secondary instruction.

See also: alt altend altwt disc disg diss dist enbc enbg enbs enbt taltwt

taltwt



186/212

taltwt timer alt wait

Code: 25 FI

Description: Wait until one of the enabled guards of a timer alternative is ready and
initialize pw.Temp for use during the disabling sequence. If the alternative has no
ready guard but may become ready due to a timer, place the process onto the timer
list.

Definition:
if (word[Wptr @ pw.State] = Ready.p)

word′[Wptr @ pw.Time] ← ClockReg[Priority]
else if (word[Wptr @ pw.Tlink] = TimeNotSet.p)
{

word′[Wptr @ pw.State] ← Waiting.p
deschedule process and wait for one of the guards to become ready

}
else if (word[Wptr @ pw.Tlink] = TimeSet.p)
{

if (ClockReg[Priority] after word[Wptr @ pw.Time]
{

word′[Wptr @ pw.State] ← Ready.p
word′[Wptr @ pw.Time] ← ClockReg[Priority]

}
else
{

word′[Wptr @ pw.Time] ← (word[Wptr @ pw.Time] + 1)
insert this process into timer list with alarm time (word[Wptr @ pw.Time] + 1)
if (no guards ready)
{

word′[Wptr @ pw.State] ← Waiting.p
deschedule process and wait for one of the guards to become ready

}
}

}
else

Undefined effect

word′[Wptr @ pw.Temp] ← NoneSelected.o

Areg′ ← undefined
Breg′ ← undefined
Creg′ ← undefined

Error signals: none

taltwt

187/212



Comments:
Secondary instruction.
Instruction is a descheduling point.
Instruction is interruptible.
Uses the pw.Temp and pw.State slots in the process workspace.

See also: alt altend altwt disc diss dist enbc enbs enbt talt

testerr



188/212

testerr test error flag

Code: 22 F9

Description: Test the error flag at the current pr iority, returning false in Areg if error is
set, true otherwise. It also clears the error flag.

Definition:
if (ErrorFlag[Priority] = set)

Areg′ ← false
else

Areg′ ← true
ErrorFlag′[Priority] ← clear

Error signals: none

Comments:
Secondary instruction.

See also: seterr stoperr

testhalterr

189/212



testhalterr test halt-on-error flag

Code: 25 F9

Description: Test HaltOnError mode. If HaltOnError is set then Areg is set to true
otherwise Areg is set to false.

Definition:
if (HaltOnError = set)

Areg′ ← true
else

Areg′ ← false

Breg′ ← Areg
Creg′ ← Breg

Error signals: none

Comments:
Secondary instruction.

See also: clrhalterr sethalterr

testpranal



190/212

testpranal test processor analysing

Code: 22 FA

Description: Push true onto the stack if the processor was analyzed when the
processor was last reset, or false otherwise.

Definition:
if (analyse asserted on last reset)

Areg′ ← true
else

Areg′ ← false

Breg′ ← Areg
Creg′ ← Breg

Error signals: none

Comments:
Secondary instruction.

timeslice

191/212



timeslice timeslice

Code: 60 F3

Description: Cause a timeslice, putting the current process on the back of the
scheduling list and executing the next process. If the scheduling list is empty then this
instruction acts as a no-operation.

Definition:
if (scheduling list empty)

no effect
else
{

Put current process on back of list
Start next process

}

Areg′ ← undefined
Breg′ ← undefined
Creg′ ← undefined

Error signals: Can cause a timeslice trap to be signalled.

Comments:
Secondary instruction.
This instruction works at high and low priorities.
This instruction is unaffected by disabling timeslice.
Instruction is a descheduling point.

tin



192/212

tin timer input

Code: 22 FB

Description: If Areg is after the value of the current priority clock, deschedule until
the current priority clock is after the time in Areg .

Definition:
if not (ClockReg[Priority] after Areg)
{

word′[Wptr @ pw.State] ← Enabling.p
word′[Wptr @ pw.Time] ← (Areg + 1)
Insert process into timer list with time of (Areg + 1) and start next process

}

Areg′ ← undefined
Breg′ ← undefined
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.
Instruction is a descheduling point.
Instruction is interruptible.
Uses pw.State slot in the process workspace.

See also: enbt dist ldtimer talt taltwt

trapdis

193/212



trapdis trap disable

Code: 60 F6

Description: Disable those traps selected by the mask in Areg at the priority
selected by Breg , where 0 indicates high priority and 1 indicates low priority. The
original value of TrapEnables is returned in Areg .

Definition:
TrapEnables′[Breg] ← TrapEnables[Breg] ∧ ∼Areg
Areg′13..0 ← TrapEnables[Breg]
Areg′31..14 ← 0

Breg′ ← undefined
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.

See also: trapenb

trapenb



194/212

trapenb trap enable

Code: 60 F7

Description: Enable those traps selected by the mask in Areg at the priority selected
by Breg , where 0 indicates high priority and 1 indicates low priority. The original value
of TrapEnables is returned in Areg .

Definition:
TrapEnables′[Breg] ← TrapEnables[Breg] ∨ Areg
Areg′13..0 ← TrapEnables[Breg]
Areg′31..14 ← 0

Breg′ ← undefined
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction

See also: trapdis

tret

195/212



tret trap return

Code: 60 FB

Description: Return from a trap handler.

Definition:
GlobalInterruptEnables′ ← word[traphandler @ 0]16..23
TrapEnables[Priority] ← word[traphandler @ 0]0..13
Status′ ← word[traphandler @ 1]
Wptr′ ← word[traphandler @ 2]
Iptr′ ← word[traphandler @ 3]

where traphandler is the address of the traphandler for the trap group
of the current handler and the current priority.

Error signals: none

Comments:
Secondary instruction.

See also: ldtraph sttraph

unpacksn



196/212

unpacksn unpack single length fp number

Code: 26 F3

Description: Unpack a packed IEEE single length floating point number. Areg
initially holds the packed number, and the instruction returns the exponent in Breg and
the fractional field in Areg , not including the implied most significant bit for normalised
numbers. In addition a code indicating the type of number is added to 4 times the
initial value of Breg and left in Creg. The codes are:

0 if Areg is zero
1 if Areg is a denormalised or normalised number
2 if Areg is an infinity
3 if Areg is not-a-number

Definition:
Areg′ ← fractional field contents of Areg
Breg′ ← exponent field contents of Areg
Creg′ ← 4 × Breg + ‘code’ of type of Areg (see above)

Error signals: none

Comments:
Secondary instruction.

See also: roundsn postnormsn

wait

197/212



wait wait

Code: 60 F5

Description: Wait (or P) on the semaphore pointed to by Areg . If the semaphore
count is greater than zero then the count is decremented and the process continues;
otherwise the current process is descheduled and added to the back of the
semaphore list.

Definition:
if (word[Areg @ s.Count] = 0)
{

Put process on back of semaphore list
Start next process

}
else

word′[Areg @ s.Count] ← word[Areg @ s.Count] − 1

Areg′ ← undefined
Breg′ ← undefined
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.
Instruction is a descheduling point.

See also: signal

wcnt



198/212

wcnt word count

Code: 23 FF

Description: Convert the byte offset in Areg to a word offset and a byte selector.

Definition:
Areg′ ← (Areg ∧ WordSelectMask) / BytesPerWord
Breg′ ← Areg ∧ ByteSelectMask

Creg′ ← Breg

Error signals: none

Comments:
Secondary instruction.

wsub

199/212



wsub word subscript

Code: FA

Description: Generate the address of the element which is indexed by Breg , in the
word array pointed to by Areg .

Definition:
Areg′ ← Areg @ Breg

Breg′ ← Creg
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.

See also: bsub ldlp ldnlp ssub wcnt wsubdb

wsubdb



200/212

wsubdb form double word subscript

Code: 28 F1

Description: Generate the address of the element which is indexed by Breg , in the
double word array pointed to by Areg .

Definition:
Areg′ ← Areg @ (2 × Breg)

Breg′ ← Creg
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.

See also: bsub ssub wcnt wsub

xbword

201/212



xbword sign extend byte to word

Code: 2B F8

Description: Sign-extend the value in the least significant byte of Areg into a signed
integer.

Definition:
Areg′0..7 ← Areg0..7
Areg′8..BitsPerWord-1 ← Areg7

Error signals: none

Comments:
Secondary instruction.

xdble



202/212

xdble extend to double

Code: 21 FD

Description: Sign extend the integer in Areg into a double length signed integer.

Definition:
if (Areg ≥ 0)

Breg′ ← 0
else

Breg′ ← −1

Creg′ ← Breg

Error signals: none

Comments:
Secondary instruction.

xor

203/212



xor exclusive or

Code: 23 F3

Description: Bitwise exclusive or of Areg and Breg .

Definition:
Areg′ ← Breg ⊗ Areg

Breg′ ← Creg
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.

xsword



204/212

xsword sign extend sixteen to word

Code: 2F F8

Description: Sign extend the value in the least significant 16 bits of Areg to a signed
integer.

Definition:
Areg′0..15 ← Areg0..15
Areg′16..BitsPerWord-1 ← Areg15

Error signals: none

Comments:
Secondary instruction.

See also: xbword

xword

205/212



xword extend to word

Code: 23 FA

Description: Sign extend an N-bit signed number in Breg into a full word. To indicate
the value of N, bit N-1 of Areg is set to 1; all other bits must be 0.

Definition:
if (Areg is a not power of 2)

Areg′ ← undefined
else if (Areg = MostNeg) – N is BitsPerWord

Areg′ ← Breg
else if (Breg ≥ 0) and (Breg < Areg) – Breg N bits and positive

Areg′ ← Breg
else if (Breg ≥ Areg) and ((Breg >> 1) < Areg) – Breg N bits and negative

Areg′ ← Breg − (Areg << 1)
else – Breg more than N bits

Areg′ ← undefined

Breg′ ← Creg
Creg′ ← undefined

Error signals: none

Comments:
Secondary instruction.

See also: xbword xsword

xword



206/212

Index

207/212


Symbols
+ (plus), 15
+checked (plus checked), 15
.. (ellipsis), 8
/ (divide), 15
< (less than), 15
= (equals), 15
> (greater than), 15
@ (word offset), 10
{ } (braces), 15
′ (prime), 10

A
adc, 26
add, 33
address

calculation, 10
addressing, 17
after, 15
ajw, 27, 34
alarm registers, 22
alt, 35
altend, 36
altwt, 37
and

boolean operator, 15
instruction, 38

Areg , 20
arithmetic

checked integer, 14
modulo, 13
unchecked integer, 13

B
back pointer registers, 22
bcnt, 39
BITAND, 15
bitcnt, 40
BITNOT, 15
BITOR, 15
bitrevnbits, 41
bitrevword, 42
BitsPerByte, 12
BitsPerWord, 12
BITXOR, 15
BptrReg0..1 , 22
Breg , 20
bsub, 43
byte

addressing, 17
selector, 17

ByteSelectMask, 12
BytesPerWord, 12

C
call, 44
causeerror, 45
cb, 46
cbu, 47
ccnt1, 48
cflerr, 49
checked arithmetic, 14
cir, 50
cj, 27, 52
cj n, 27
clockdis, 53
ClockEnables, 22
clockenb, 54
ClockReg0..1 , 22
clocks

clock registers, 22
clrhalterr, 55
code

in instruction descriptions, 5
coding of instruction, 5, 25
comments

in instruction descriptions, 5, 7, 8
conditions

in instruction descriptions, 14
configuration registers, 11
constants

machine constant definitions, 13
used in instruction descriptions, 12

conversion
type, 14

crcbyte, 56
crcword, 57
Creg , 20
cs, 58
csngl, 59
csu, 60
csub0, 61
cword, 62

D
data representation, 17
definition

in instruction descriptions, 5, 6
descheduling points, 7

Index

208/212


description
in instruction descriptions, 5, 6

DeviceId, 13
devlb, 63
devls, 64
devlw, 65
devmove, 66
devsb, 67
devss, 68
devsw, 69
diff, 70
Disabling.p, 13
disc, 71
diss, 73
dist, 74
div, 75
dup, 76

E
else, 14
Enables, 22
Enabling.p, 13
enbc, 77
enbs, 78
enbt, 79
encoding of instructions, 5, 25
endp, 80
eqc, 27, 81
error signals, 7

in instruction descriptions, 5, 7
ErrorFlag, 23

F
false, 13
fmul, 82
fptesterr, 83
FptrReg0..1 , 22
front pointer registers, 22
function code, 5, 25
functions

in instruction descriptions, 14

G
gajw, 84
gcall, 85
gintdis, 86
gintenb, 87
GlobalInterruptEnables, 22
gt, 88
gtu, 89

H
HaltOnErrorFlag, 23

I
identity

of device, 13
if, 14
in, 90
insertqueue, 91
instruction

component, 25
data value, 25
encoding, 5, 25

instructions, 13
intdis, 92
integer length conversion, 18
IntegerError, 7
IntegerOverflow, 7
intenb, 93
interruptible instructions, 7
IptrReg , 20
iret, 94

J
j, 27, 95

L
ladd, 96
lb, 97
lbx, 98
ldc, 27, 99
ldclock, 100
lddevid, 101

values returned, 13
ldiff, 102
ldinf, 103
ldiv, 104
ldl, 27, 105
ldlp, 27, 106
ldmemstartval, 107
ldnl, 27, 108
ldnlp, 27, 109
ldpi, 110
ldpri, 111
ldprodid, 112

values returned, 13
ldshadow, 113
ldtimer, 115
ldtraph, 116
ldtrapped, 117
le.Count, 12
le.Index, 12
lend, 118
little–endian, 17
lmul, 119
ls, 120
lshl, 121
lshr, 122
lsub, 123

Index

209/212


lsum, 124
lsx, 125

M
memory

code, 5
representation of, 9

mint, 126
modulo arithmetic, 13
MostNeg, 12
MostPos, 12
MostPosUnsigned, 12
move, 127
move2dall, 128
move2dinit, 129
move2dnonzero, 130
move2dzero, 131
mul, 132

N
next instruction, 9
nfix, 26
NoneSelected.o, 13
nop, 133
norm, 134
not

boolean operator, 15
instruction, 135

NotProcess.p, 13

O
objects, 9
operands

in instruction descriptions, 5
primary instructions, 26

operate, 25
operation code, 5, 25, 27
operators, 13

in instruction descriptions, 14
opr, 7, 27
or

boolean operator, 15
instruction, 136

out, 137
outbyte, 138
outword, 139

P
PeripheralEnd, 12
PeripheralStart, 12
pfix, 26
pop, 140
postnormsn, 141
pp.Count , 12
pp.IptrSucc , 12
prefixing, 25, 28

primary instructions, 7, 25, 26
prime notation

in instruction descriptions, 10
Priority , 20, 22
priority, 8
process

descriptor, 8, 20, 22
priority, 8

process state, 8, 20
in instruction descriptions, 6

prod, 142
product identity, 13
pw.Iptr , 11
pw.Link , 11
pw.Pointer , 11
pw.State , 11
pw.Temp , 11
pw.Time , 11
pw.TLink , 11

R
Ready.p, 13
reboot, 143
registers, 20

in instruction descriptions, 6
other, 22
state, 20

rem
arithmetic operator, 15
instruction, 144

representing memory
in instruction descriptions, 9

resetch, 145
restart, 146
ret, 147
rev, 148
roundsn, 149
runp, 150

S
s.Back , 12
s.Count, 12
s.Front , 12
satadd, 151
satmul, 152
satsub, 153
saveh, 154
savel, 155
sb, 156
secondary instructions, 7, 25, 27
seterr, 157
sethalterr, 158
settimeslice, 159
shadow

state, 20
shl, 160
shr, 161

Index

210/212


sign extension, 18
signal, 162
slmul, 163
special pointer values, 17
ss, 164
ssub, 165
start next process, 8
startp, 166
StatusReg , 20
stclock, 167
sthb, 168
sthf, 169
stl, 27, 170
stlb, 171
stlf, 172
stnl, 27, 173
stoperr, 174
stopp, 175
stshadow, 176
sttimer, 177
sttraph, 178
sttrapped, 179
sub, 180
subscripts

in instruction descriptions, 9
sulmul, 181
sum, 182
swapqueue, 183
swaptimer, 184

T
talt, 185
taltwt, 186
testerr, 188
testhalterr, 189
testpranal, 190
TimeNotSet.p, 13
timer

list pointer registers, 22
TimeSet.p, 13
timeslice, 191
timeslicing

points, 7
tin, 192
TnextReg0..1 , 22
TptrReg0..1 , 22
trapdis, 193
TrapEnables, 22
trapenb, 194
tret, 195
true, 13
type conversion, 14

U
unchecked arithmetic, 13
undefined, 9

values, 9

unpacksn, 196
unsign(), 14
unsigned, 9

W
wait, 197
Waiting.p, 13
wcnt, 198
Wdesc, 20, 22, 24
word address, 17
WordSelectMask, 12
workspace, 20, 22

address, 8
Wptr, 20, 22, 24
wsub, 199
wsubdb, 200

X
xbword, 201
xdble, 202
xor, 203
xsword, 204
xword, 205

Index

211/212


Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no
responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights
of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice.
This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of
SGS-THOMSON Microelectronics.

 1995 SGS-THOMSON Microelectronics - All Rights Reserved

IMS, occam and DS-Link


are trademarks of SGS-THOMSON Microelectronics Limited.

SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco -

The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan- Thailand - United Kingdom - U.S.A.

212/212


Document number: 72-TRN-273-01

