

STC03DE150

HYBRID EMITTER SWITCHED BIPOLAR TRANSISTOR ESBT™ 1500 V - 3 A - 0.55 Ω

Table 1: General Features

V _{CS(ON)}	I _C	R _{CS(ON)}
1 V	1.8 A	0.55 Ω

- LOW EQUIVALENT ON RESISTANCE
- n VERY FAST-SWITCH, UP TO 150 kHz
- n SQUARED RBSOA, UP TO 1500 V
- ⁿ VERY LOW C_{ISS} DRIVEN BY RG = 4.7 Ω

APPLICATION

AUX SMPS FOR THREE PHASE MAINS

DESCRIPTION

The STC03DE150 is manufactured in a hybrid structure, using dedicated high voltage Bipolar and low voltage MOSFET technologies, aimed to providing the best performance in ESBT topology. The STC03DE150 is designed for use in aux flyback smps for any three phase application.

Figure 1: Package

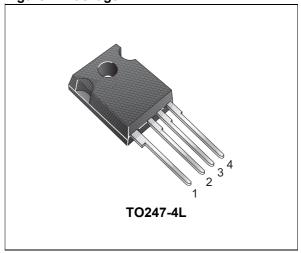


Figure 2: Internal Schematic Diagram

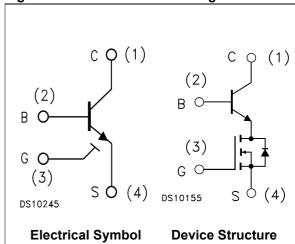


Table 2: Order Code

Part Number	Marking	Package	Packaging	
STC03DE150	STC03DE150	TO247-4L	TUBE	

October 2004 Rev. 2

Table 3: Absolute Maximum Ratings

Symbol	Parameter	Value	Unit	
V _{CS(SS)}	Collector-Source Voltage (V _{BS} = V _{GS} = 0 V)	1500	V	
V _{BS(OS)}	Base-Source Voltage (I _C = 0, V _{GS} = 0 V)	30	V	
V _{SB(OS)}	Source-Base Voltage (I _C = 0, V _{GS} = 0 V)	9	V	
V_{GS}	Gate-Source Voltage	± 20	V	
I _C	Collector Current	3	А	
I _{CM}	Collector Peak Current (t _p < 5ms)	6	А	
I _B Base Current		2	А	
I _{BM} Base Peak Current (t _p < 1ms)		4	А	
P _{tot}	Total Dissipation at T _C = 25 °C	100	W	
T _{stg}	Storage Temperature	-65 to 125	°C	
T_J	Max. Operating Junction Temperature	125	°C	

Table 4: Thermal Data

Symbol	Parameter		Unit
R _{thj-case}	Thermal Resistance Junction-Case Max	1	°C/W

Table 5: Electrical Characteristics (T_{case} = 25 °C unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{CS(SS)}	Collector-Source Current (V _{BS} = V _{GS} = 0 V)	V _{CS(SS)} = 1500 V			100	μ A
I _{BS(OS)}	Base-Source Current	V _{BS(OS)} = 30 V			10	μ A
	$(I_C = 0 , V_{GS} = 0 V)$					
I _{SB(OS)}	Source-Base Current	V _{SB(OS)} = 9 V			100	μ A
	$(I_C = 0 , V_{GS} = 0 V)$					
I _{GS(OS)}	Gate-Source Leakage	V _{GS} = ±20 V			500	nA
V _{CS(ON)}	Collector-Source ON	V _{GS} = 10 V I _C = 1.8 A I _B = 0.36 A		1	1.5	V
	Voltage	$V_{GS} = 10 \text{ V } I_{C} = 0.7 \text{ A } I_{B} = 70 \text{ mA}$		1	1.3	V
h _{FE}	DC Current Gain	I _C = 1.8 A V _{CS} = 1 V V _{GS} = 10 V	3.5	5		
		$I_C = 0.7 \text{ A} V_{CS} = 1 \text{ V} V_{GS} = 10 \text{ V}$	6	10		
V _{BS(ON)}	Base-Source ON Voltage	V _{GS} = 10 V I _C = 1.8 A I _B = 0.36 A		1	1.2	V
, ,		$V_{GS} = 10 \text{ V } I_{C} = 0.7 \text{ A} I_{B} = 70 \text{ mA}$		0.8	1	V
V _{GS(th)}	Gate Threshold Voltage	$V_{BS} = V_{GS}$ $I_B = 250 \mu A$	1.5	2.2	3	V
C _{iss}	Input Capacitance	V _{CS} = 25 V f = 1MHZ		750		pF
		$V_{GS} = V_{CB} = 0$				
Q _{GS(tot)}	Gate-Source Charge	V _{CS} = 15 V V _{GS} = 10 V		12.5		nC
. ,		$V_{CB} = 0$ $I_{C} = 1.8 A$				
	INDUCTIVE LOAD	V _{GS} = 10 V				
t_s	Storage Time	$R_G = 47 \Omega$ $V_{Clamp} = 1200 V$		760		ns
t _f	Fall Time	$t_p = 4 \mu s$ $I_C = 1.8 A$ $I_B = 0.36 A$		14		ns

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
	INDUCTIVE LOAD	V _{GS} = 10 V				
t _s	Storage Time	$R_G = 47 \Omega$ $V_{Clamp} = 1200 V$		690		ns
t _f	Fall Time	$t_p = 4 \mu s$ $I_C = 0.7 A$ $I_B = 70 mA$		32		ns
V _{CSW}	Maximum Collector-Source Voltage without Snubber	$R_G = 47 \Omega$ $h_{FE} = 5 A$ $I_C = 3 A$	1500			V
V _{CS(dyn)}	Collector-Source Dynamic Voltage (500 ns)	$\begin{aligned} &V_{\mathrm{CC}} = V_{\mathrm{Clamp}} = 400 \; V & V_{\mathrm{GS}} = 10 \; V \\ &R_{\mathrm{G}} = 47 \; \Omega & I_{\mathrm{C}} = 0.5 \; A \\ &I_{\mathrm{B}} = 0.1 \; A & I_{\mathrm{Bpeak}} = 1 \; A \\ &t_{\mathrm{peak}} = 500 \; \mathrm{ns} \end{aligned}$		3.9		V
V _{CS(dyn)}	Collector-Source Dynamic Voltage (1μs)	$V_{CC} = V_{Clamp} = 400 \text{ V}$ $V_{GS} = 10 \text{ V}$ $V_{GS} = 10 \text{ V}$ $V_{GS} = 10 \text{ V}$ $V_{CC} = V_{Clamp} = 400 \text{ V}$ $V_{CS} = 10 \text{ V}$		2.2		V

Figure 3: Safe Operating Area

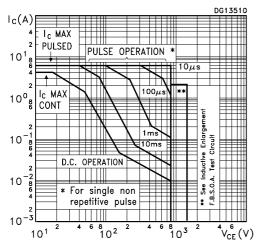


Figure 4: Reverse Biased Safe Operating Area

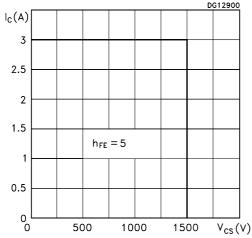
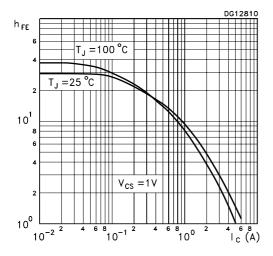



Figure 5: DC Current Gain

Figure 6: Output Characteristics

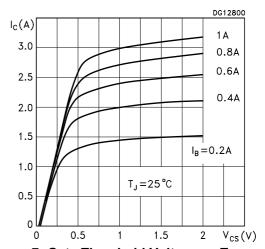


Figure 7: Gate Threshold Voltage vs Temperature

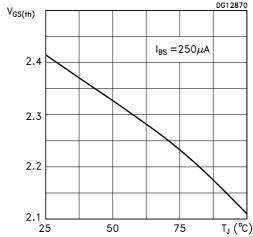


Figure 8: DC Current Gain

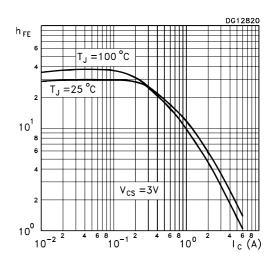


Figure 9: Collector-Source On Voltage

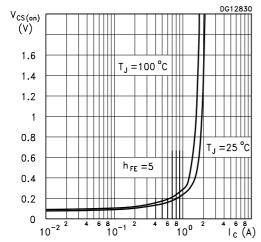


Figure 10: Base-Source On Voltage

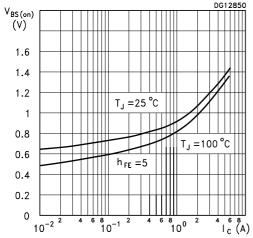


Figure 11: Inductive Load Switching Time

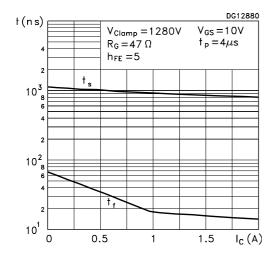


Figure 12: Collector-Source On Voltage

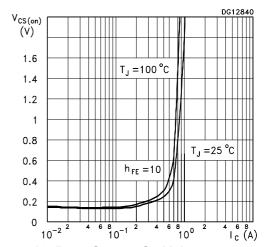


Figure 13: Base-Source On Voltage

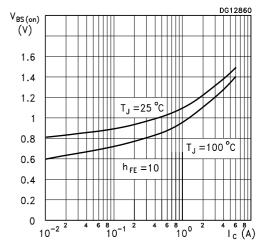


Figure 14: Inductive Load Switching Time

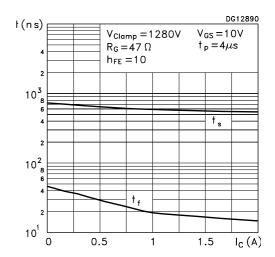


Figure 15: Dynamic Collector-Emitter Saturation Voltage

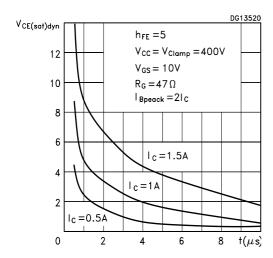
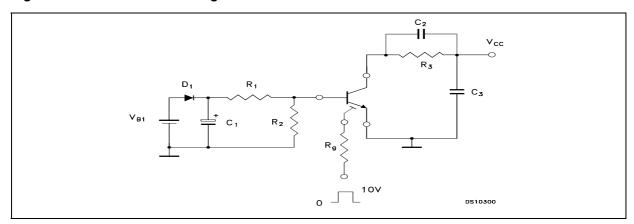



Figure 16: Inductive Load Enlargement FBSOA Circuit

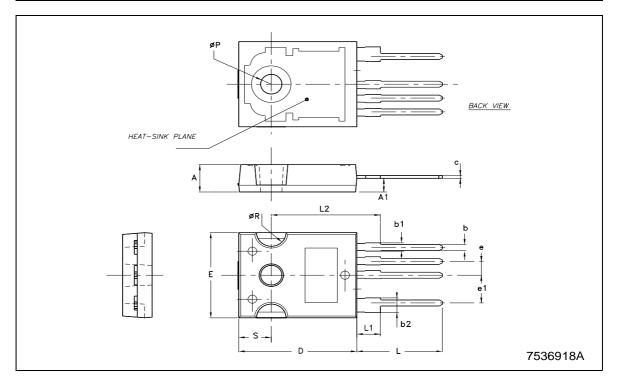


Table 6: Components, Values

V _{B1} = 4.16 V	C ₁ = 220 nF
D ₁ = BA157	C ₂ ≤ 70 pF
$R_1 = 1 \Omega$	C ₃ = 50 nF
$R_2 = 100 \Omega$	V _g = 10 V
$R_3 = V_{CC} / I_{Cn}$	Pulse Time = 5 μ s
R_g = 47 Ω	

TO247-4L MECHANICAL DATA

DIM.	mm			
DIW.	MIN.	TYP.	MAX.	
А	4.85		5.15	
A1	2.20		2.60	
b	0.95	1.10	1.30	
b1	1.30		1.70	
b2	2.50		2.90	
С	0.40		0.80	
D	19.85		20.15	
E	15.45		15.75	
е		2.54		
e1		5.08		
L	14.20		14.80	
L1	3.70		4.30	
L2		18.50		
ØP	3.55		3.65	
ØR	4.50		5.50	
S		5.50		

STC03DE150

Table 7: Revision History

Date	Release	Change Designator
13-Sep-2004	1	First Release.
04-Oct-2004	2	Figure 15 has been updated on page 6.

STC03DE150

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

