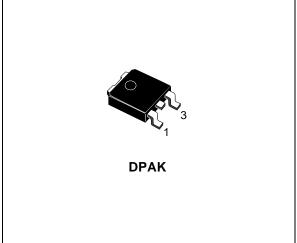


STD60NF55LA N-CHANNEL 55V - 0.012Ω - 60A DPAK STripFET™II MOSFET

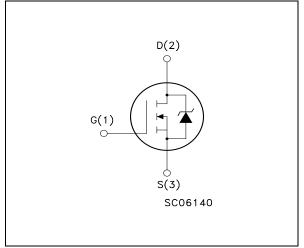
Table 1: General Features

TYPE	V _{DSS}	R _{DS(on)}	I _D (1)
STD60NF55LA	55V	< 0.015Ω	60A

- TYPICAL $R_{DS(on)} = 0.012\Omega$
- LOW THRESHOLD DRIVE


DESCRIPTION

This MOSFET is the latest development of STMicroelectronics unique "Single Feature SizeTM" strip-based process. The resulting transistor shows extremely high packing density for low onresistance, rugged avalance characteristics and less critical alignment steps therefore a remarkable manufacturing reproducibility.


APPLICATIONS

■ HIGH CURRENT, HIGH SWITCHING SPEED

Figure 1: Package

Figure 2: Internal Schematic Diagram

Table 2: Order Codes

Part Number	Marking	Package	Packaging
STD60NF55LAT4	D60NF55LA	DPAK	TAPE & REEL

Table 3: Absolute Maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	55	V
V _{GS}	Gate- source Voltage	± 15	V
ID	Drain Current (continuous) at T _C = 25°C	60	A
I _D	Drain Current (continuous) at T _C = 100°C	42	А
I _{DM} (•)	Drain Current (pulsed)	240	A
P _{TOT}	Total Dissipation at $T_C = 25^{\circ}C$	110	W
	Derating Factor	0.73	W/°C
dv/dt (1)	Peak Diode Recovery voltage slope	16	V/ns
E _{AS} (2)	Single Pulse Avalanche Energy	400	mJ
T _{stg}	Storage Temperature	- 55 to 175	
Тj	Operating Junction Temperature	- 55 10 175	°C

(•) Pulse width limited by safe operating area (1)I_{SD} \leq 40A, di/dt \leq 350A/µs, V_{DD} \leq V_{(BR)DSS}, T_j \leq T_{JMAX}. (2) Starting T_j=25°C, I_D=30A, V_{DD}=20V

Table 4: Thermal Data

Rthj-case	Thermal Resistance Junction-case Max	1.36	°C/W	
Rthj-amb	Thermal Resistance Junction-ambient Max62.5			
TI	Maximum Lead Temperature For Soldering Purpose	275	°C	

ELECTRICAL CHARACTERISTICS (T_{CASE} =25°C UNLESS OTHERWISE SPECIFIED)

Table 5: On /Off

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0$	55			V
I _{DSS}	Zero Gate Voltage	V _{DS} = Max Rating			1	μA
	Drain Current (V _{GS} = 0)	V _{DS} = Max Rating, T _C = 125°C			10	μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 15 V			±100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	1		2	V
R _{DS(on)}	Static Drain-source On	V _{GS} = 10 V, I _D = 30 A		0.012	0.015	Ω
	Resistance	$V_{GS} = 5 V, I_D = 30 A$		0.014	0.017	Ω

Table 6: Dynamic

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance	$V_{DS} = 10 \text{ V}, I_D = 30 \text{ A}$		35		S
C _{iss}	Input Capacitance	V _{DS} = 25V, f= 1 MHz, V _{GS} = 0		1950		pF
Coss	Output Capacitance			390		pF
C _{rss}	Reverse Transfer Capacitance			130		pF

ELECTRICAL CHARACTERISTICS (CONTINUED)

Table 7: Switching On

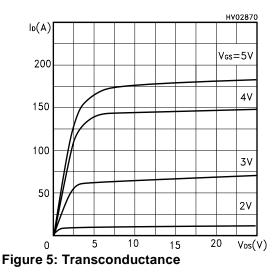
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Delay Time	V _{DD} = 25 V, I _D = 30 A		30		ns
tr	Rise Time	$R_G = 4.7\Omega V_{GS} = 4.5V$ (see test circuit, Figure 3)		180		ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 40 \text{ V}, I_D = 60 \text{ A},$ $V_{GS} = 5 \text{ V}$		40 10 20		nC nC nC

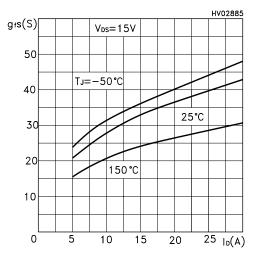
Table 8: Switching

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(off)} t _f	Turn-off-Delay Time Fall Time	$V_{DD} = 25 \text{ V}, I_D = 30 \text{ A},$ $R_G = 4.7\Omega, V_{GS} = 4.5V$ (see test circuit, Figure 3)		80 35		ns ns

Table 9: Source Drain Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain Current				60	А
I _{SDM} (2)	Source-drain Current (pulsed)				240	А
V _{SD} (1)	Forward On Voltage	$I_{SD} = 60A, V_{GS} = 0$			1.3	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_{SD} = 40 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}, \text{V}_{DD}$ = 25 V, T _j = 150 °C (see test circuit, Figure 5)		65 130 4		ns nC A


Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %.
Pulse width limited by safe operating area.


Figure 3: Safe Operating Area

$I_D(A)$ 10² 100µs 1ms 10¹ 10ms 10⁰ Tj=175°C Tc=25°C D.C. OPERATION Single pulse 10^{-1} 10¹ 10° 10² V_{DS} (V)

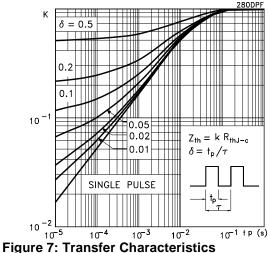

HV02915

Figure 4: Output Characteristics

Figure 6: Thermal Impedance

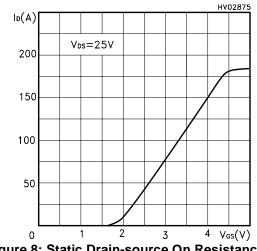
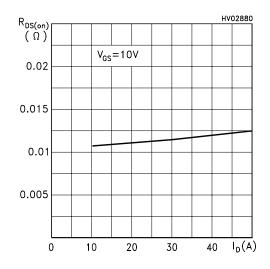



Figure 8: Static Drain-source On Resistance

لرک

Figure 9: Gate Charge vs Gate-source Voltage

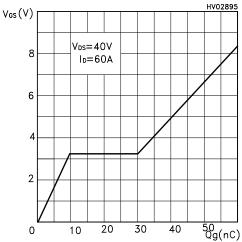


Figure 10: Normalized Gate Thereshold Voltage vs Temperature

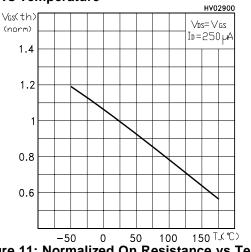
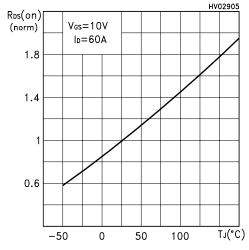



Figure 11: Normalized On Resistance vs Temperature

Figure 12: Capacitance Variation

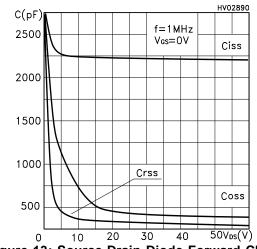


Figure 13: Source-Drain Diode Forward Characteristics

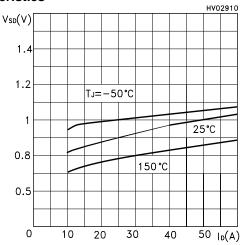
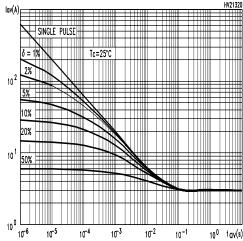



Figure 14: Allowable lav vs Time in Avalanche

The previous curve gives the safe operating area for unclamped inductive loads, single pulse or repetitive, under the following conditions:

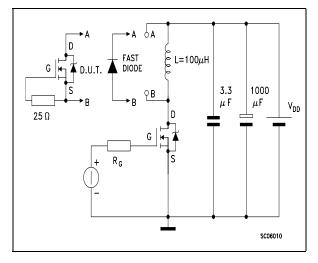
$$\begin{split} \mathsf{P}_{\mathsf{D}(\mathsf{AVE})} &= 0.5 * (1.3 * \mathsf{BV}_{\mathsf{DSS}} * \mathsf{I}_{\mathsf{AV}}) \\ \mathsf{E}_{\mathsf{AS}(\mathsf{AR})} &= \mathsf{P}_{\mathsf{D}(\mathsf{AVE})} * \mathsf{t}_{\mathsf{AV}} \end{split}$$

Where:

$$\begin{split} I_{AV} & \text{is the Allowable Current in Avalanche} \\ P_{D(AVE)} & \text{is the Average Power Dissipation in Avalanche (Single Pulse)} \\ t_{AV} & \text{is the Time in Avalanche} \end{split}$$

To derate above 25 °C, at fixed $I_{AV,}$ the following equation must be applied:

 $I_{AV} = 2 * (T_{jmax} - T_{CASE}) / (1.3 * BV_{DSS} * Z_{th})$ Where:


 $Z_{th} = K * R_{th}$ is the value coming from Normalized Thermal Response at fixed pulse width equal to T_{AV} .

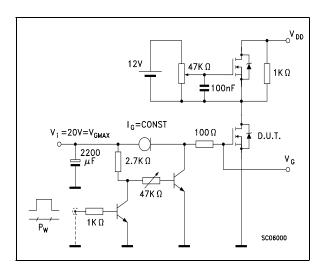
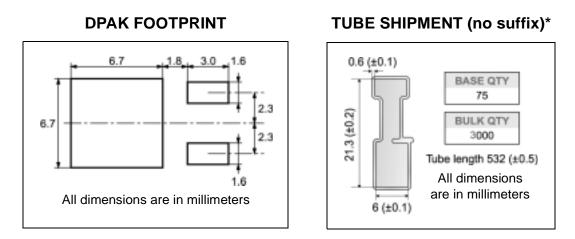
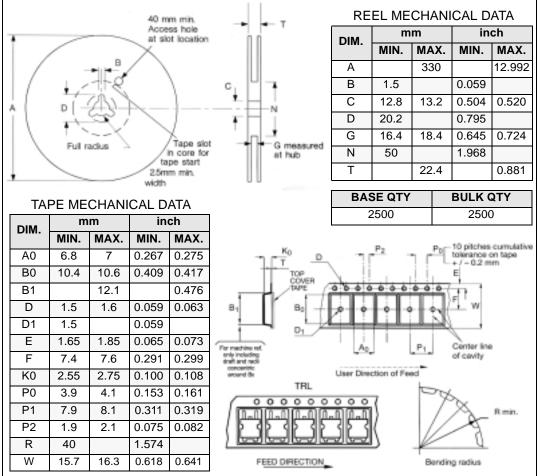

Figure 15: Switching Times Test Circuit For Resistive Load

Figure 16: Test Circuit For Diode Recovery Times


Figure 17: Gate Charge Test Circuit


DIM.		mm			inch	
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	2.20		2.40	0.087		0.094
A1	0.90		1.10	0.035		0.043
A2	0.03		0.23	0.001		0.009
В	0.64		0.90	0.025		0.035
B2	5.20		5.40	0.204		0.213
С	0.45		0.60	0.018		0.024
C2	0.48		0.60	0.019		0.024
D	6.00		6.20	0.236		0.244
E	6.40		6.60	0.252		0.260
G	4.40		4.60	0.173		0.181
Н	9.35		10.10	0.368		0.398
L2		0.8			0.031	
L4	0.60		1.00	0.024		0.039
V2	0°		8°	0°		0 ⁰

TO-252 (DPAK) MECHANICAL DATA

TAPE AND REEL SHIPMENT (suffix "T4")*

on sales type

Table 10: Revision History

Date	Revision	Description of Changes
15-Feb-2005	1	First Release.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

All other names are the property of their respective owners

© 2005 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America