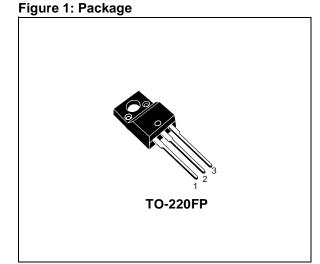


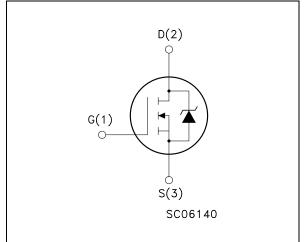
STF40NF06 N-CHANNEL 60V - 0.024Ω - 23A - TO-220FP STripFET™II MOSFET

Table 1: General Features

ТҮРЕ	V _{DSS}	R _{DS(on)}	Ι _D
STF40NF06	60 V	< 0.028 Ω	23 A


- TYPICAL R_{DS}(on) = 0.024Ω
- EXCEPTIONAL dv/dt CAPABILITY
- LOW GATE CHARGE AT 100°C
- APPLICATION ORIENTED CHARACTERIZATION
- 100% AVALANCHE TESTED

DESCRIPTION


This MOSFET is the latest development of STMicroelectronics unique "Single Feature SizeTM" strip-based process. The resulting transistor shows extremely high packing density for low onresistance, rugged avalance characteristics and less critical alignment steps therefore a remarkable manufacturing reproducibility.

APPLICATIONS

- DC-DC & DC-AC CONVERTERS
- MOTOR CONTROL, AUDIO AMPLIFIERS
- HIGH CURRENT, HIGH SPEED SWITCHING
- SOLENOID AND RELAY DRIVERS

Figure 2: Internal Schematic Diagram

Table 2: Order Codes

Part Number	Marking	Package	Packaging	
STF40NF06	F40NF06	TO-220FP	TUBE	

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	60	V
V _{DGR}	Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	60	V
V _{GS}	Gate- source Voltage	± 20	V
I _D	Drain Current (continuous) at T _C = 25°C	23	A
I _D	Drain Current (continuous) at T _C = 100°C	16	А
I _{DM} (•) Drain Current (pulsed)		92	А
P _{TOT}	Total Dissipation at $T_C = 25^{\circ}C$	30	W
	Derating Factor	0.2	W/°C
dv/dt (1)	Peak Diode Recovery voltage slope	10	V/ns
E _{AS} (2)	Single Pulse Avalanche Energy	250	mJ
VISO	Insulation Withstand Voltage (DC)	2500	V
T _{stg}	Storage Temperature	55 to 175	°C
Tj	Operating Junction Temperature	– –55 to 175	

Table 3: Absolute Maximum ratings

 $\begin{array}{l} (1) \ I_{SD} \leq 40A, \ di/dt \leq 300A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_j \leq T_{JMAX.} \\ (2) \ Starting \ T_j=25^\circ C, \ I_D=20A, \ V_{DD}=30V \\ (\bullet) \ Pulse \ width \ limited \ by \ safe \ operating \ area \end{array}$

Table 4: Thermal Data

Rthj-case	Thermal Resistance Junction-case Max	5.0	°C/W
Τ _Ι	Maximum Lead Temperature For Soldering Purpose	275	°C

ELECTRICAL CHARACTERISTICS (T_{CASE} =25°C UNLESS OTHERWISE SPECIFIED) Table 5: Off

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0	60			V
I _{DSS}	Zero Gate Voltage	V _{DS} = Max Rating			1	μA
	Drain Current ($V_{GS} = 0$)	V _{DS} = Max Rating, T _C = 125°C			10	μA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	$V_{GS} = \pm 20V$			±100	nA

Table 6: On

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	2		4	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10V, I _D = 11.5 A		0.024	0.028	Ω

ELECTRICAL CHARACTERISTICS (CONTINUED)

Table 7: Dynamic

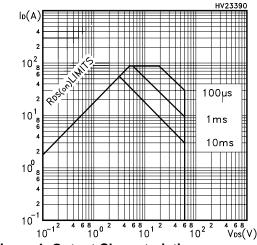
Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance	V _{DS} = 30 V	I _D =11.5A		12		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25V, f = 1 MHz,	$V_{GS} = 0$		920 225 80		pF pF pF

Table 8: Switching On

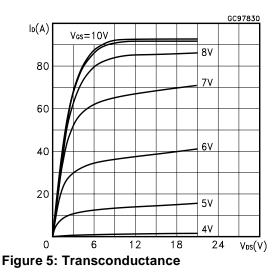
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time	$\label{eq:VD} \begin{array}{l} V_{DD} = 30V, \mbox{ I}_{D} = 20A \\ R_{G} = 4.7\Omega \ V_{GS} = 10V \\ (see \ Figure \ 16) \end{array}$		27 11		ns ns
Qg Qgs Qgd	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V _{DD} = 48V, I _D = 10A, V _{GS} = 10V		32 6.5 15	43	nC nC nC

Table 9: Switching Off

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(off)} t _f	Turn-off-Delay Time Fall Time	$\label{eq:VDD} \begin{array}{l} V_{DD} = 30V, \ I_D = 20A, \\ R_G = 4.7 \Omega, \ V_{GS} = 10V \\ (see \ Figure \ 16) \end{array}$		27 11		ns ns


Table 10: Source Drain Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain Current				23	A
I _{SDM} (2)	Source-drain Current (pulsed)			92	А	
V _{SD} (1)	Forward On Voltage	$I_{SD} = 23A, V_{GS} = 0$			1.3	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_{SD} = 40A$, di/dt = 100A/µs, V _{DD} = 10V, T _j = 150°C (see test circuit, Figure 5)		63 150 4.8		ns nC A


(1) Pulsed: Pulse duration = 300 μ s, duty cycle 1.5 %.

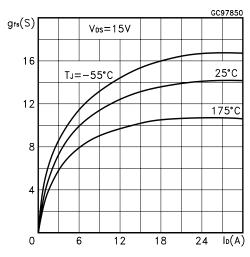

(2) Pulse width limited by safe operating area.

Figure 3: Safe Operating Area

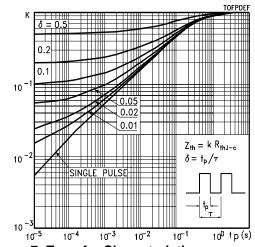


Figure 4: Output Characteristics

Figure 6: Thermal Impedance

Figure 7: Transfer Characteristics

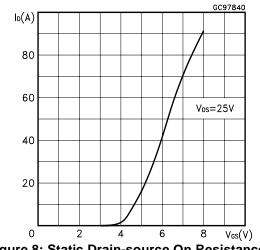
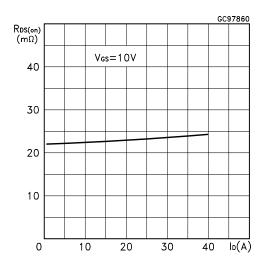



Figure 8: Static Drain-source On Resistance

Figure 9: Gate Charge vs Gate-source Voltage

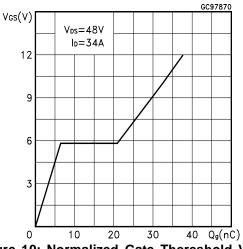


Figure 10: Normalized Gate Thereshold Voltage vs Temperature

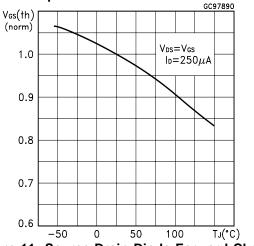
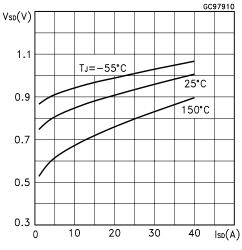



Figure 11: Source-Drain Diode Forward Characteristics

Figure 12: Capacitance Variations

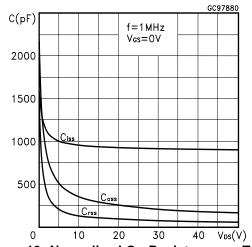


Figure 13: Normalized On Resistance vs Temperature

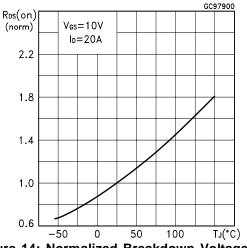


Figure 14: Normalized Breakdown Voltage vs Temperature

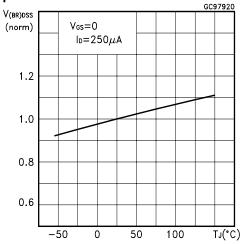


Figure 15: Unclamped Inductive Load Test Circuit

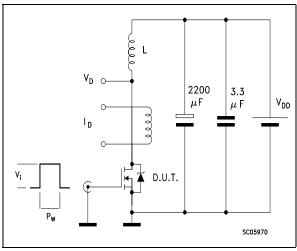


Figure 16: Switching Times Test Circuit For Resistive Load

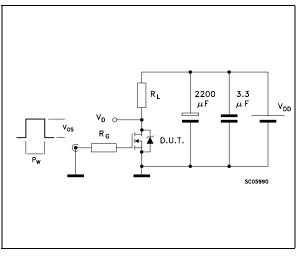
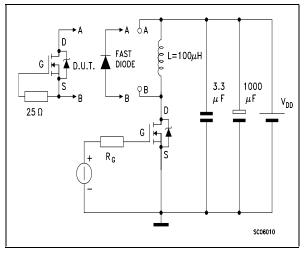



Figure 17: Test Circuit For Inductive Load Switching and Diode Recovery Times

Figure 18: Unclamped Inductive Wafeform

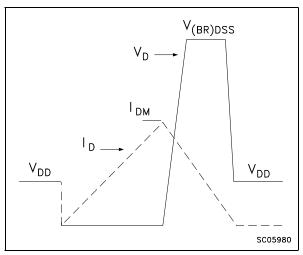
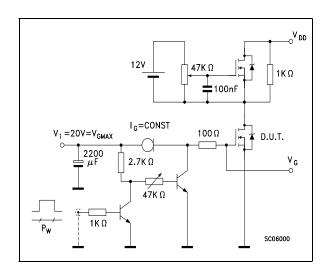
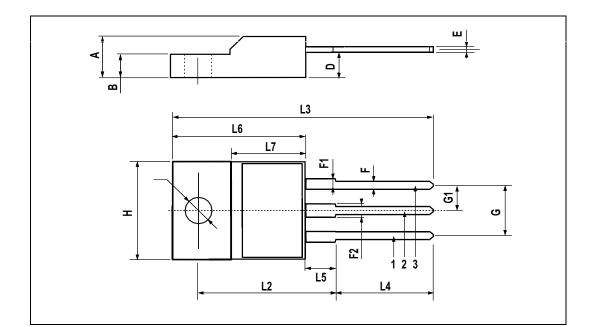




Figure 19: Gate Charge Test Circuit

DIM.		mm.			inch	
	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX
А	4.4		4.6	0.173		0.181
В	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
Е	0.45		0.7	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.7	0.045		0.067
F2	1.15		1.7	0.045		0.067
G	4.95		5.2	0.195		0.204
G1	2.4		2.7	0.094		0.106
Н	10		10.4	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	.0385		0.417
L5	2.9		3.6	0.114		0.141
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366

TO-220FP MECHANICAL DATA

Table 11: Revision History

Date	Revision	Description of Changes
07-Oct-2004	1	First release
11-Nov-2004	2	Final datasheet

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
