- Low-Skew Propagation Delay Specifications for Clock-Driver Applications
- TTL-Compatible Inputs and CMOS-Compatible Outputs
- Flow-Through Architecture Optimizes PCB Layout
- Center-Pin V_{CC} and GND Pin Configurations Minimize High-Speed Switching Noise
- EPIC ™ (Enhanced-Performance Implanted CMOS) 1-µm Process
- 500-mA Typical Latch-Up Immunity at 125°C
- Package Options Include Plastic Small-Outline (DW)

(TOP VIEW) 20 1Y1 1Y2 1Y3 2 19**∏** 1A 18 10E1 1Y4 🛮 3 GND ∏4 17 1 1 OE2 GND 5 16 V_{CC} GND 6 15 V_{CC} GND ∏ 7 14∏2A 2Y1 🛮 8 13 2OE1 12 2 0E2 2Y2 **]** 9 2Y3 110 11 2Y4

DW PACKAGE

description

The CDC208 contains dual clock-driver circuits that fanout one input signal to four outputs with minimum skew for clock distribution (see Figure 2). The device also offers two output-enable (OE1 and OE2) inputs for each circuit that can force the outputs to be disabled to a high-impedance state or to a high- or low-logic level independent of the signal on the respective A input.

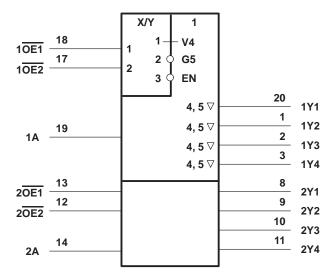
Skew parameters are specified for a reduced temperature and voltage range common to many applications.

The CDC208 is characterized for operation from −40°C to 85°C.

FUNCTION TABLES

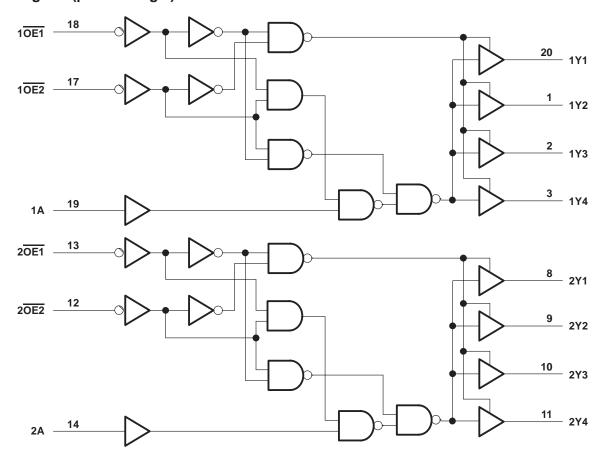
	INPUTS			OUTI	PUTS	
10E1	10E2	1A	1Y1	1Y2	1Y3	1Y4
L	L	L	L	L	L	L
L	L	Н	Н	Н	Н	Н
L	Н	Χ	L	L	L	L
Н	L	Χ	Н	Н	Н	Н
Н	Н	X	Z	Z	Z	Z

	INPUTS			OUT	PUTS	
2 0E1	2OE2	2A	2Y1	2Y2	2Y3	2Y4
L	L	L	L	L	L	L
L	L	Н	Н	Н	Н	Н
L	Н	Χ	L	L	L	L
Н	L	Χ	Н	Н	Н	Н
Н	Н	Χ	Z	Z	Z	Z



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC is a trademark of Texas Instruments Incorporated



logic symbol†

 $^{^\}dagger$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	0.5 V to 7 V
Input voltage range, V _I (see Note 1)	\dots -0.5 V to V _{CC} + 0.5 V
Output voltage range, VO (see Note 1)	$-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$)	±20 mA
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$)	±50 mA
Continuous output current, $I_O(V_O = 0 \text{ to } V_{CC})$	±50 mA
Continuous current through V _{CC} or GND	±200 mA
Maximum power dissipation at $T_A = 55^{\circ}C$ (in still air) (see Note 2).	
Storage temperature range	65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions

		MIN	NOM	MAX	UNIT
Vсс	Supply voltage	4.5	5	5.5	V
VIH	High-level input voltage	2			V
V_{IL}	Low-level input voltage			0.8	V
VI	Input voltage	0		VCC	V
ІОН	High-level output current			-24	mA
l _{OL}	Low-level output current			24	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	0		10	ns/V
fclock	Input clock frequency			60	MHz
TA	Operating free-air temperature	-40		85	°C

^{2.} The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils. For more information, refer to the *Package Thermal Considerations* application note in the 1994 *ABT Advanced BiCMOS Technology Data Book*, literature number SCBD002B.

CDC208 DUAL 1-LINE TO 4-LINE CLOCK DRIVER WITH 3-STATE OUTPUTS SCAS109F - APRIL 1990 - REVISED OCTOBER 1998

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	vcc	T _A = 25°C			MIN	MAX	UNIT
PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	IVIIIV	IVIAA	ONII
	1 50	4.5 V	4.4			4.4		
	IOH = -50 μA		5.4			5.4		
VOH		4.5 V	3.94			3.8		V
	I _{OH} = -24 mA	5.5 V	4.94			4.8		
	$I_{OH} = -75 \text{ mA}^{\dagger}$	5.5 V				3.85		
	I _{OL} = 50 μA	4.5 V			0.1		0.1	
		5.5 V			0.1		0.1	V
V_{OL}	I _{OL} = 24 mA	4.5 V			0.36		0.44	
		5.5 V			0.36		0.44	
	$I_{OL} = 75 \text{ mA}^{\dagger}$	5.5 V					1.65	
lį	$V_I = V_{CC}$ or GND	5.5 V			±0.1		±1	μΑ
loz	$V_O = V_{CC}$ or GND	5.5 V			±0.5		±5	μΑ
Icc	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			8		80	μΑ
∆l _{CC} ‡	One input at 3.4 V, Other inputs at V _{CC} or GND	5.5 V		·	0.9		1	mA
C _i	$V_I = V_{CC}$ or GND	5 V		4				pF
Co	$V_O = V_{CC}$ or GND	5 V		10				рF

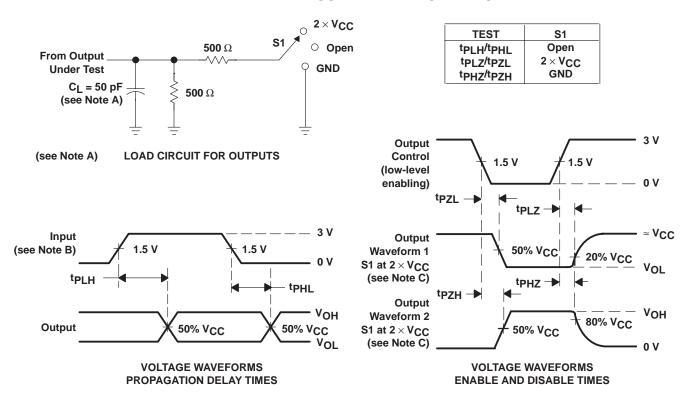
[†] Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

[‡] This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0 V or VCC.

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	T _A = 25°C			MIN	MAX	UNIT
FARAWIETER	(INPUT)	(OUTPUT)		TYP	MAX	l will v	WAA	ONIT
t _{PLH}	1A and 2A	Any Y	5.3	8.5	10.9	5.3	11.7	
^t PHL			3.6	7.7	11	3.6	11.5	ns
t _{PLH}	1 0E1 , 1 0E2 , and	Any Y	4.7	8.5	11.7	4.7	12.8	ns
^t PHL	20E1, 20E2		4.4	8.4	11.3	4.4	12.4	115
^t PZH	10E2 or 20E2	Any V	4.4	8.1	11.3	4.4	12.4	20
t _{PZL}	10E1 or 20E1	Any Y	5	9.6	13.3	5	14.9	ns
t _{PHZ}	10E2 or 20E2	Amy V	4.2	7.4	9.3	4.2	10.2	ns
tPLZ	10E1 or 20E1	Any Y	5.4	7.5	9.2	5.4	9.9	110

switching characteristics, V_{CC} = 5 V \pm 0.25 V, T_A = 25°C to 70°C (see Note 3 and Figures 1 and 2)

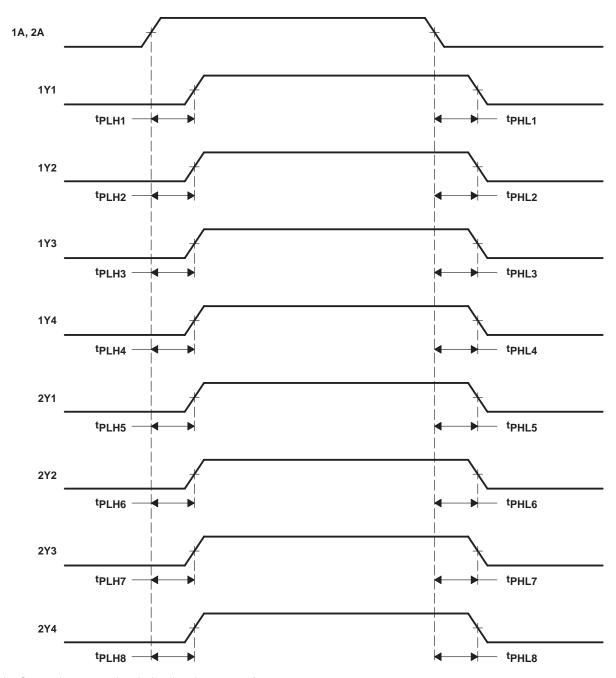

PARAMETER	FROM (INPUT)	TO (OUTPUT)		MAX	UNIT
t _{PLH}	1A and 2A	Any Y		10.2	ne
tPHL	TA and ZA	Ally 1	6.6	9.8	ns
t _{sk(o)}	1A and 2A	Any Y		1	ns

NOTE 3: All specifications are valid only for all outputs switching simultaneously and in phase.

operating characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER			TEST CONDITIONS	TYP	UNIT
	Down dissination constitutes not book	Outputs enabled	C. FO. F. 1 A.M. I	96	pF
Cpd	Power dissipation capacitance per bank	Outputs disabled	$C_L = 50 \text{ pF}, f = 1 \text{ MHz}$	12	pr

PARAMETER MEASUREMENT INFORMATION


NOTES: A. C_L includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \ \Omega$, $t_f \leq 3$ ns. For testing pulse duration: $t_f = t_f = 1$ to 3 ns. Pulse polarity can be either high-to-low-to-high or low-to-high-to-low.
- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

Figure 1. Load Circuit and Voltage Waveforms

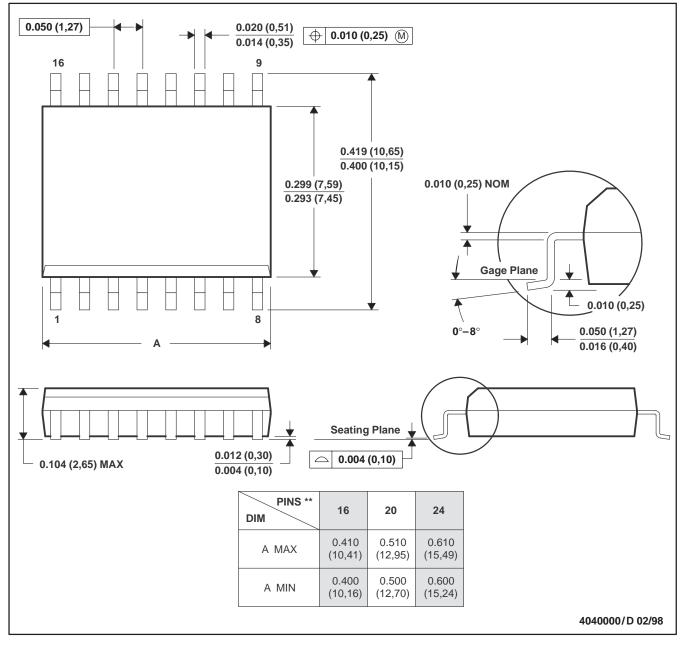
PARAMETER MEASUREMENT INFORMATION

- NOTE A: Output skew, $t_{Sk(0)}$, is calculated as the greater of:

 The difference between the fastest and slowest of t_{PLHn} (n = 1, 2, ..., 8)

 The difference between the fastest and slowest of t_{PHLn} (n = 1, 2, ..., 8)

Figure 2. Waveforms for Calculation of $t_{sk(o)}$



MECHANICAL INFORMATION

DW (R-PDSO-G**)

16 PIN SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
 - D. Falls within JEDEC MS-013

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated