SCAS319H - NOVEMBER 1993 - REVISED AUGUST 2003

•	Member of the Texas Instruments Widebus™ Family		R DL PACKAGE VIEW)
•	Operates From 1.65 V to 3.6 V		756 10EBA
•	Inputs Accept Voltages to 5.5 V	10EAB [] 1 1CLKAB [] 2	55 1 1CLKBA
•	Max t _{pd} of 6.3 ns at 3.3 V		54 1 1SBA
•	Typical V _{OLP} (Output Ground Bounce)		53 GND
	<0.8 V at V_{CC} = 3.3 V, T_A = 25°C	1A1 🚺 5	52 🚺 1B1
•	Typical V _{OHV} (Output V _{OH} Undershoot)	1A2 🛛 6	51 🛛 1B2
	>2 V at $V_{CC} = 3.3$ V, $T_A = 25^{\circ}C$	V _{CC} []7	50 🛛 V _{CC}
•	Supports Mixed-Mode Signal Operation on	1A3 🛛 8	49 🛛 1B3
	All Ports (5-V Input/Output Voltage With	1A4 🛛 9	48 1 1B4
	3.3-V V _{CC})		47 1 1B5
•	Ioff Supports Partial-Power-Down Mode		46 GND 45 11B6
	Operation	1A6 [12 1A7 [13	45 1B0 44 1B7
•	Bus Hold on Data Inputs Eliminates the	1A8 14	43 1B8
	Need for External Pullup/Pulldown	2A1 115	42 2B1
	Resistors	2A2 16	41 2B2
•	Latch-Up Performance Exceeds 250 mA Per	2A3 🚺 17	40 🛛 2B3
	JESD 17	GND 🛿 18	39 🛛 GND
•	ESD Protection Exceeds JESD 22	2A4 🚺 19	38 🛛 2B4
	– 2000-V Human-Body Model (A114-A)	2A5 🛛 20	37 🛛 2B5
	 200-V Machine Model (A115-A) 	2A6 🛛 21	36 2 B6
	 1000-V Charged-Device Model (C101) 	V _{CC} 22	35 V _{CC}
daa	printian/ordering information		34 2B7
des	cription/ordering information	2A8 24 GND 25	33 2B8 32 GND
	This 16-bit bus transceiver and register is		32 GND 31 2SBA
	designed for 1.65-V to 3.6-V V_{CC} operation.	2CLKAB 27	30 200 200 200 200 200 200 200 200 200 2
	The SN74LVCH16652A consists of D-type	20EAB 28	29 20EBA

flip-flops and control circuitry arranged for multiplexed transmission of data directly from the data bus or from the internal storage registers. The device can be used as two 8-bit transceivers or one 16-bit transceiver.

TA	PACKAGET		ORDERABLE PART NUMBER	TOP-SIDE MARKING	
	SSOP – DL	Tube	SN74LVCH16652ADL	LVCH16652A	
4000 to 0500	330F - DL	Tape and reel	SN74LVCH16652ADLR	LVCH10052A	
-40°C to 85°C	TSSOP – DGG	Tape and reel	SN74LVCH16652ADGGR	LVCH16652A	
	TVSOP – DGV	Tape and reel	SN74LVCH16652ADGVR	LDH652A	

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SN74LVCH16652A 16-BIT BUS TRANSCEIVER AND REGISTER WITH 3-STATE OUTPUTS SCAS319H – NOVEMBER 1993 – REVISED AUGUST 2003

description/ordering information (continued)

Complementary output-enable (OEAB and OEBA) inputs control the transceiver functions. Select-control (SAB and SBA) inputs select whether real-time or stored data is transferred. A low input level selects real-time data, and a high input level selects stored data. The circuitry used for select control eliminates the typical decoding glitch that occurs in a multiplexer during the transition between stored and real-time data. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the SN74LVCH16652A.

Data on the A or B bus, or both, can be stored in the internal D flip-flops by low-to-high transitions at the appropriate clock (CLKAB or CLKBA) inputs, regardless of the levels on the select-control or output-enable inputs. When SAB and SBA are in the real-time transfer mode, it also is possible to store data without using the internal D-type flip-flops by simultaneously enabling OEAB and OEBA. In this configuration, each output reinforces its input. When all other data sources to the two sets of bus lines are at high impedance, each set of bus lines remains at its last level configuration.

To ensure the high-impedance state during power up or power down, \overline{OEBA} should be tied to V_{CC} through a pullup resistor and OEAB should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sinking/current-sourcing capability of the driver.

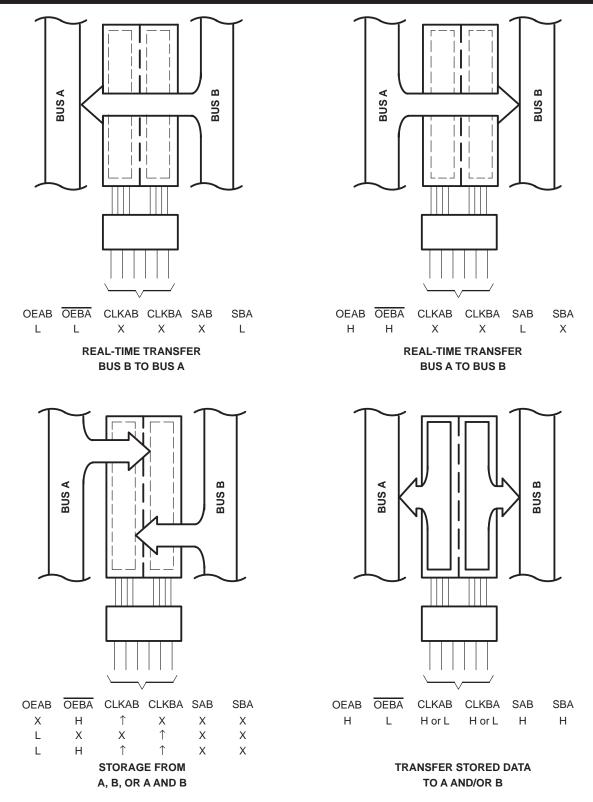
Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended. The bus-hold circuitry is part of the input circuit and is not disabled by \overline{OE} or DIR.

		INP	INPUTS			DATA	a I/o†	
OEAB	OEBA	CLKAB	CLKBA	SAB	SBA	A1–A8	B1–B8	OPERATION OR FUNCTION
L	Н	H or L	H or L	Х	Х	Input	Input	Isolation
L	Н	\uparrow	\uparrow	Х	Х	Input	Input	Store A and B data
Х	Н	\uparrow	H or L	Х	Х	Input	Unspecified [‡]	Store A, hold B
Н	Н	\uparrow	\uparrow	х‡	Х	Input	Output	Store A in both registers
L	Х	H or L	\uparrow	Х	Х	Unspecified [‡]	Input	Hold A, store B
L	L	\uparrow	\uparrow	Х	х‡	Output	Input	Store B in both registers
L	L	Х	Х	Х	L	Output	Input	Real-time B data to A bus
L	L	Х	H or L	Х	Н	Output	Input	Stored B data to A bus
Н	Н	Х	Х	L	Х	Input	Output	Real-time A data to B bus
Н	Н	H or L	Х	Н	Х	Input	Output	Stored A data to B bus
Н	L	H or L	H or L	Н	Н	Output	Output	Stored A data to B bus and stored B data to A bus

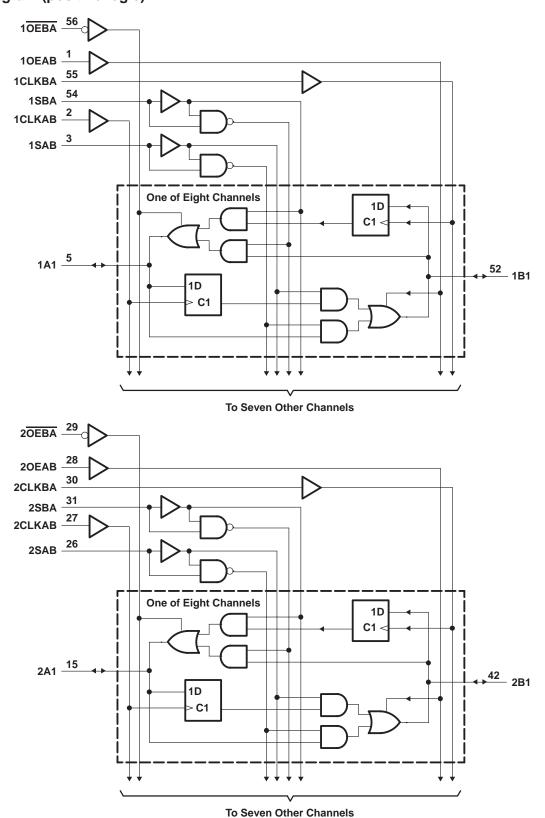
FUNCTION TABLE

[†] The data-output functions may be enabled or disabled by a variety of level combinations at OEAB or OEBA. Data-input functions always are enabled; i.e., data at the bus terminals is stored on every low-to-high transition of the clock inputs.


‡ Select control = L; clocks can occur simultaneously.

Select control = H; clocks must be staggered to load both registers.

SCAS319H - NOVEMBER 1993 - REVISED AUGUST 2003



SN74LVCH16652A 16-BIT BUS TRANSCEIVER AND REGISTER WITH 3-STATE OUTPUTS SCAS319H – NOVEMBER 1993 – REVISED AUGUST 2003

logic diagram (positive logic)

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SCAS319H - NOVEMBER 1993 - REVISED AUGUST 2003

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V_{CC} Input voltage range, V_{I} : (see Note 1)	
Voltage range applied to any output in the high-impedance or power-off state, V_O	
(see Note 1)	$\dots \dots -0.5$ V to 6.5 V
Voltage range applied to any output in the high or low state, V _O	
(see Notes 1 and 2)	$\dots -0.5$ V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, I _O	
Continuous current through V_{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 3): DGG package	64°C/W
DGV package	48°C/W
DL package	56°C/W
Storage temperature range, T _{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The value of V_{CC} is provided in the recommended operating conditions table.

3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT			
Vee	Supplyveltere	Operating	1.65	3.6	V			
Vcc	Supply voltage	Data retention only	1.5		V			
		V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$					
VIH	High-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		V			
		V _{CC} = 2.7 V to 3.6 V	2					
		V _{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$				
VIL	Low-level input voltage	$V_{CC} = 2.3 V \text{ to } 2.7 V$		0.7	V			
		V _{CC} = 2.7 V to 3.6 V		0.8				
VI	Input voltage	•	0	5.5	V			
VO	Output voltage	High or low state	0	VCC	v			
		3-state	0	5.5	v			
		V _{CC} = 1.65 V		-4				
	Park to a landar dan	V _{CC} = 2.3 V		-8	mA			
ЮН	High-level output current	V _{CC} = 2.7 V		-12				
		V _{CC} = 3 V		-24				
		V _{CC} = 1.65 V		4				
		V _{CC} = 2.3 V		8	mA			
IOL	Low-level output current	V _{CC} = 2.7 V						
		V _{CC} = 3 V		24				
$\Delta t/\Delta v$	Input transition rise or fall rate			10	ns/V			
Т _А	Operating free-air temperature	-40	85	°C				

NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCAS319H - NOVEMBER 1993 - REVISED AUGUST 2003

electrical	characteristics	over	recommended	operating	free-air	temperature	range	(unless
otherwise						•	•	

PARAMETER		TEST CONDITIONS	Vcc	MIN	TYP [†]	MAX	UNIT
		I _{OH} = -100 μA	1.65 V to 3.6 V	V _{CC} -0.2			
		$I_{OH} = -4 \text{ mA}$	1.65 V	1.2			
VOH		I _{OH} = -8 mA	2.3 V	1.7			V
		I _{OH} = -12 mA	2.7 V	2.2			v
		OH = -12 MA	3 V	2.4			
		$I_{OH} = -24 \text{ mA}$	3 V	2.2			
		I _{OL} = 100 μA	1.65 V to 3.6 V			0.2	
		I _{OL} = 4 mA	1.65 V			0.45	
VOL		I _{OL} = 8 mA	2.3 V			0.7	V
		I _{OL} = 12 mA	2.7 V			0.4	
		I _{OL} = 24 mA	3 V			0.55	
lj	Control inputs	V _I = 0 to 5.5 V	3.6 V			±5	μΑ
		VI = 0.58 V	1.65 V	‡			
		VI = 1.07 V	1.05 V	‡			μΑ
	A or B ports	$V_{I} = 0.7 V$	2.3 V	45			
l _{l(hold)}		VI = 1.7 V	2.3 V	-45			
		V _I = 0.8 V	3 V	75			
		$V_{I} = 2 V$	5 V	-75			
		$V_{I} = 0 \text{ to } 3.6 \text{ V}$	3.6 V			±500	
loff		$V_{I} \text{ or } V_{O} = 5.5 \text{ V}$	0			±10	μΑ
loz¶		$V_{O} = 0 V \text{ or } (V_{CC} \text{ to } 5.5 V)$	3.6 V			±10	μΑ
		$V_{I} = V_{CC} \text{ or } GND$	2.01/			20	
ICC		$\frac{1}{3.6 \text{ V} \le \text{V}_{\text{I}} \le 5.5 \text{ V}^{\text{\#}}} \text{ I}_{\text{O}} = 0$	3.6 V			20	μA
∆ICC		One input at $V_{CC} - 0.6 V$, Other inputs at V_{CC} or GND	2.7 V to 3.6 V		500		μΑ
Ci	Control inputs	$V_{I} = V_{CC}$ or GND	3.3 V		5		pF
Cio	A or B ports	$V_{O} = V_{CC}$ or GND	3.3 V		8		pF

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. [‡] This information was not available at the time of publication.

§ This is the bus-hold maximum dynamic current required to switch the input from one state to another.

I For the total leakage current in an I/O port, please consult the II(hold) specification for the input voltage condition 0 V < VI < VCC, and the IOZ specification for the input voltage conditions $V_I = 0$ V or $V_I = V_{CC}$ to 5.5 V. The bus-hold current, at input voltage greater than V_{CC} , is negligible. # This applies in the disabled state only.

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2)

		V _{CC} = ± 0.1	1.8 V 5 V	V _{CC} = ± 0.2		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
fclock	Clock frequency		‡		‡		150		150	MHz
tw	Pulse duration, CLK high or low	‡		‡		3.3		3.3		ns
t _{su}	Setup time, A or B before CLKAB \uparrow or CLKBA \uparrow	‡		‡		3.4		3		ns
th	Hold time, A or B after CLKAB \uparrow or CLKBA \uparrow	‡		‡		0		0.2		ns

[‡] This information was not available at the time of publication.

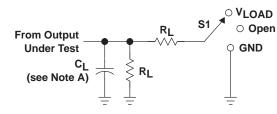
SN74LVCH16652A **16-BIT BUS TRANSCEIVER AND REGISTER** WITH 3-STATE OUTPUTS SCAS319H – NOVEMBER 1993 – REVISED AUGUST 2003

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.8 V ± 0.15 V						V _{CC} = 2.5 V ± 0.2 V				V _{CC} = 2.7 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX									
fmax			†		†		150		150		MHz								
	A or B	B or A	†	†	†	†		6.4	1.4	6.3									
^t pd	CLKAB or CLKBA	A or B	†	†	†	†		7.3	2.4	6.4	ns								
	SAB or SBA	B or A	†	†	†	†		8.8	1.9	7.4									
ten	OE or OE	A or B	†	†	†	†		6.6	1.6	6.3	ns								
^t dis	OE or OE	A or B	†	†	†	†		6.6	1.2	6.2	ns								

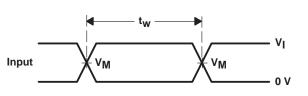
[†] This information was not available at the time of publication.

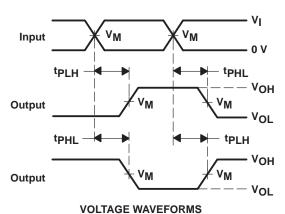
operating characteristics, $T_A = 25^{\circ}C$

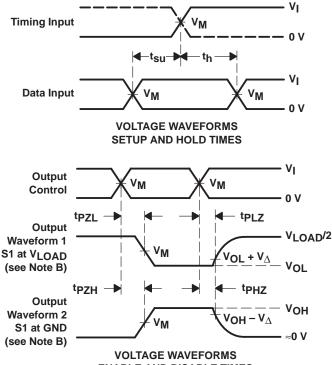

	PARAMETER Down discipation experience		TEST CONDITIONS	V_{CC} = 1.8 V ± 0.15 V	$\begin{array}{c} \text{V}_{CC} = 2.5 \text{ V} \\ \pm 0.2 \text{ V} \end{array}$	$\begin{array}{c} V_{\textbf{CC}} \texttt{=} \texttt{ 3.3 V} \\ \pm \texttt{ 0.3 V} \end{array}$	UNIT
		CONDITIONS	TYP	TYP	TYP		
Power dissipation capacitance		Outputs enabled	f = 10 MHz	†	†	55	рF
Cpd	per transceiver	Outputs disabled		†	†	12	μr

[†] This information was not available at the time of publication.

SCAS319H - NOVEMBER 1993 - REVISED AUGUST 2003


PARAMETER MEASUREMENT INFORMATION

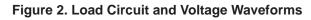

TEST	S1
^t PLH ^{/t} PHL	Open
tPLZ/tPZL	VLOAD
^t PHZ ^{/t} PZH	GND


LOAD CIRCUIT

V	INPUTS		V	V	сL		N
Vcc	VI	t _r /t _f	VМ	V _M V _{LOAD}		RL	v_Δ
$\textbf{1.8 V} \pm \textbf{0.15 V}$	Vcc	≤2 ns	V _{CC} /2	$2 \times V_{CC}$	30 pF	1 k Ω	0.15 V
$\textbf{2.5 V} \pm \textbf{0.2 V}$	Vcc	≤2 ns	V _{CC} /2	2 × V _{CC}	30 pF	500 Ω	0.15 V
2.7 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
3 V \pm 0.3 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V

VOLTAGE WAVEFORMS PULSE DURATION

ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

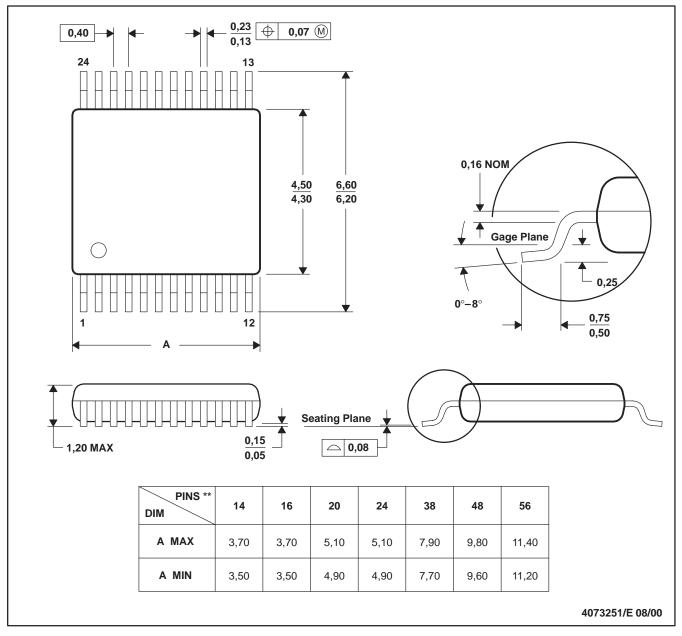

NOTES: A. C₁ includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_Q = 50 Ω.
- C. All input pulses are supplied by generators having the following characteristics: PKR \leq 10 MHz, Z_{O} = 5
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .

PROPAGATION DELAY TIMES

INVERTING AND NONINVERTING OUTPUTS

- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.


MECHANICAL DATA

PLASTIC SMALL-OUTLINE

MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

DGV (R-PDSO-G**)

24 PINS SHOWN

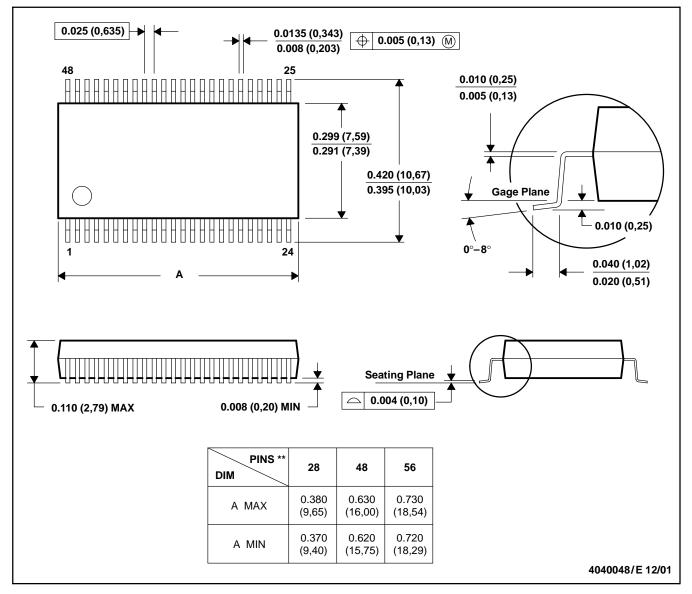
NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

D. Falls within JEDEC: 24/48 Pins - MO-153

14/16/20/56 Pins – MO-194



MECHANICAL DATA

MSSO001C - JANUARY 1995 - REVISED DECEMBER 2001

PLASTIC SMALL-OUTLINE PACKAGE

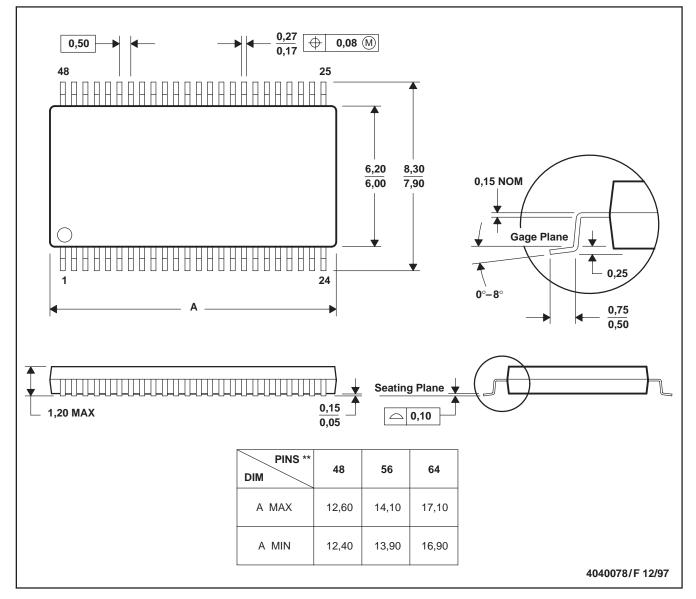
DL (R-PDSO-G**) 48 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MO-118


MECHANICAL DATA

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated