SCES145C - OCTOBER 1998 - REVISED AUGUST 2002

 Member of the Texas Instruments Widebus+™ Family 		GG PACKAG (TOP VIEW)	
● UBT [™] Transceiver Combines D-Type	1CLKENAB] 1CLKENBA
Latches and D-Type Flip-Flops for	LEAB [LEBA
Operation in Transparent, Latched, or Clocked Mode	CLKAB		CLKBA
 Operates From 1.65 V to 3.6 V 	1ERRA		1ERRB
-	1APAR		BPAR
 Inputs Accept Voltages to 5.5 V 	GND [
 Max t_{pd} of 5.4 ns at 3.3 V 	1A1 [] 1B1
 Typical V_{OLP} (Output Ground Bounce) 	1A2 [1A3 [] 1B2
<0.8 V at V _{CC} = 3.3 V, T _A = 25°C	V _{CC}] 1B3] V _{CC}
 Typical V_{OHV} (Output V_{OH} Undershoot) 	⊻CC L 1A4 [」
>2 V at V _{CC} = 3.3 V, T _A = 25°C	1A5 [] 1B5
 Simultaneously Generates and Checks 	1A6 [] 1B6
Parity	GND		GND
 Option to Select Generate Parity and Check 	1A7 [15 50	1B7
or Feed-Through Data/Parity in A-to-B or	1A8 [16 49] 1B8
B-to-A Direction	2A1 [17 48] 2B1
 Supports Mixed-Mode Signal Operation on 	2A2 [] 2B2
All Ports (5-V Input/Output Voltage With	GND [] GND
3.3-V V _{CC})	2A3 [] 2B3
 I_{off} Supports Partial-Power-Down Mode 	2A4 [2B4
Operation	2A5 [] 2B5
 Bus Hold on Data Inputs Eliminates the 	V _{CC}		
Need for External Pullup/Pulldown	2A6 [2A7 [] 2B6
Resistors	2A7 [2A8 [] 2B7] 2B8
 Latch-Up Performance Exceeds 100 mA Per 	GND [] 260] GND
JESD 78, Class I	2APAR		2BPAR
 ESD Protection Exceeds JESD 22 	2ERRA		2ERRB
– 2000-V Human-Body Model (A114-A)			
 200-V Machine Model (A115-A) 	SEL		ODD/EVEN
description/ordering information	2CLKENAB	32 33	2CLKENBA

description/ordering information

This 18-bit (dual-octal) noninverting registered transceiver is designed for 1.65-V to 3.6-V V_{CC} operation.

The SN74LVCH16901 is a dual 9-bit to dual 9-bit parity transceiver with registers. The device can operate as a feed-through transceiver, or it can generate/check parity from the two 8-bit data buses in either direction.

ORDERING INFORMATION

т _А	PACKAGET		ORDERABLE PART NUMBER	TOP-SIDE MARKING
–40°C to 85°C	TSSOP – DGG	Tape and reel	SN74LVCH16901DGGR	LVCH16901

[†]Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus+ and UBT are trademarks of Texas Instruments

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2002, Texas Instruments Incorporated

SCES145C - OCTOBER 1998 - REVISED AUGUST 2002

description/ordering information (continued)

The SN74LVCH16901 features independent clock (CLKAB or CLKBA), latch-enable (LEAB or LEBA), and dual 9-bit clock-enable (CLKENAB or CLKENBA) inputs. It also provides parity-enable (SEL) and parity-select (ODD/EVEN) inputs and separate error-signal (ERRA or ERRB) outputs for checking parity. The direction of data flow is controlled by output-enable (OEAB and OEBA) inputs. When SEL is low, the parity functions are enabled. When SEL is high, the parity functions are disabled, and the device acts as an 18-bit registered transceiver.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

FUNCTION									
	INPUTS								
CLKENAB	OEAB	LEAB	CLKAB	Α	В				
Х	Н	Х	Х	Х	Z				
Х	L	Н	Х	L	L				
Х	L	Н	Х	Н	н				
н	L	L	Х	Х	в ₀ ‡				
L	L	L	\uparrow	L	L				
L	L	L	\uparrow	Н	н				
L	L	L	L	Х	в ₀ ‡ в ₀ §				
L	L	L	Н	Х	в ₀ §				

Function Tables FUNCTION

[†]A-to-B data flow is shown: B-to-A flow is similar, but uses OEBA, LEBA, and CLKENBA.

[‡] Output level before the indicated steady-state input conditions were established

§ Output level before the indicated steady-state input conditions were established, provided that CLKAB was low before LEAB went low

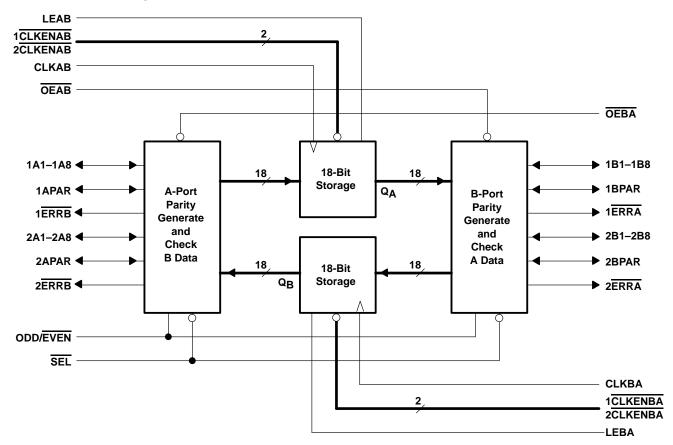
PARITY ENABLE

	INPUTS						
SEL	OEBA	OEAB	OPERATION O				
L	Н	L	Parity is checked on port A and is generated on port B.				
L	L	Н	Parity is checked on port B and is generated on port A.				
L	Н	Н	Parity is checked on port B and port A.				
L	L	L	Parity is generated on port A and B if device is in FF mode.				
н	L	L		Q _A data to B, Q _B data to A			
н	L	Н	Parity functions are disabled; device acts as a standard	Q _B data to A			
н	н	L	18-bit registered transceiver.	Q _A data to B			
н	Н	Н	-	Isolation			

SN74LVCH16901 **18-BIT UNIVERSAL BUS TRANSCEIVER** WITH PARITY GENERATORS/CHECKERS SCES145C - OCTOBER 1998 - REVISED AUGUST 2002

Function Tables (Continued)

					PARITY						
				INPUTS					OUTE	PUTS	
SEL	OEBA	OEAB	ODD/EVEN	Σ OF INPUTS A1–A8 = H	Σ OF INPUTS B1-B8 = H	APAR	BPAR	APAR	ERRA	BPAR	ERRB
L	Н	L	L	0, 2, 4, 6, 8	N/A	L	N/A	N/A	Н	L	Z
L	н	L	L	1, 3, 5, 7	N/A	L	N/A	N/A	L	н	Z
L	н	L	L	0, 2, 4, 6, 8	N/A	н	N/A	N/A	L	L	Z
L	Н	L	L	1, 3, 5, 7	N/A	Н	N/A	N/A	Н	Н	Z
L	L	Н	L	N/A	0, 2, 4, 6, 8	N/A	L	L	Z	N/A	Н
L	L	Н	L	N/A	1, 3, 5, 7	N/A	L	н	Z	N/A	L
L	L	н	L	N/A	0, 2, 4, 6, 8	N/A	н	L	Z	N/A	L
L	L	Н	L	N/A	1, 3, 5, 7	N/A	н	н	Z	N/A	Н
L	Н	L	Н	0, 2, 4, 6, 8	N/A	L	N/A	N/A	L	Н	Z
L	н	L	Н	1, 3, 5, 7	N/A	L	N/A	N/A	н	L	Z
L	н	L	Н	0, 2, 4, 6, 8	N/A	н	N/A	N/A	н	н	Z
L	Н	L	Н	1, 3, 5, 7	N/A	н	N/A	N/A	L	L	Z
L	L	Н	Н	N/A	0, 2, 4, 6, 8	N/A	L	н	Z	N/A	L
L	L	н	Н	N/A	1, 3, 5, 7	N/A	L	L	Z	N/A	н
L	L	н	Н	N/A	0, 2, 4, 6, 8	N/A	н	н	Z	N/A	н
L	L	н	Н	N/A	1, 3, 5, 7	N/A	н	L	Z	N/A	L
L	Н	Н	L	0, 2, 4, 6, 8	0, 2, 4, 6, 8	L	L	Z	Н	Z	Н
L	Н	Н	L	1, 3, 5, 7	1, 3, 5, 7	L	L	z	L	Z	L
L	Н	Н	L	0, 2, 4, 6, 8	0, 2, 4, 6, 8	н	н	z	L	Z	L
L	н	н	L	1, 3, 5, 7	1, 3, 5, 7	н	н	z	н	Z	н
L	Н	Н	Н	0, 2, 4, 6, 8	0, 2, 4, 6, 8	L	L	Z	L	Z	L
L	н	н	Н	1, 3, 5, 7	1, 3, 5, 7	L	L	z	н	Z	н
L	н	н	Н	0, 2, 4, 6, 8	0, 2, 4, 6, 8	н	н	z	н	Z	н
L	Н	Н	Н	1, 3, 5, 7	1, 3, 5, 7	н	Н	Z	L	Z	L
L	L	L	L	N/A	N/A	N/A	N/A	PE†	Z	PE†	Z
L	L	L	Н	N/A	N/A	N/A	N/A	PO‡	Z	PO‡	Z


[†] Parity output is set to the level so that the specific bus side is set to even parity.

[‡] Parity output is set to the level so that the specific bus side is set to odd parity.

SCES145C - OCTOBER 1998 - REVISED AUGUST 2002

functional block diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} –0.5 V t Input voltage range, V _I (see Note 1)–0.5 V t	
Voltage range applied to any output in the high-impedance or power-off state, V _O (see Note 1)0.5 V t	
Voltage range applied to any output in the high or low state, VO	
(see Notes 1 and 2)0.5 V to V _{CC}	+ 0.5 V
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I _{OK} (V _O < 0)	-50 mA
Continuous output current, I _O	
Continuous current through each V _{CC} or GND	
Package thermal impedance, θ_{JA} (see Note 3)	
Storage temperature range, T _{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

- 2. The value of V_{CC} is provided in the recommended operating conditions table.
- 3. The package thermal impedance is calculated in accordance with JESD 51-7.

SN74LVCH16901 **18-BIT UNIVERSAL BUS TRANSCEIVER** WITH PARITY GENERATORS/CHECKERS SCES145C - OCTOBER 1998 - REVISED AUGUST 2002

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT
Vee	Supply voltage	Operating	1.65	3.6	V
Vcc	Supply voltage	Data retention only	1.5		v
		V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$		
VIH	High-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2		
		V _{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$	
VIL	Low-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	V
		V _{CC} = 2.7 V to 3.6 V		0.8	
VI	Input voltage	•	0	5.5	V
N/	Output voltage	High or low state	0	VCC	M
VO		3-state	0	5.5	V
		V _{CC} = 1.65 V		-4	
1	Lish lavel even to mark	V _{CC} = 2.3 V		-8	A
ЮН	High-level output current	V _{CC} = 2.7 V		-12	mA
		V _{CC} = 3 V		-24	
		V _{CC} = 1.65 V		4	
		V _{CC} = 2.3 V		8	
IOL	Low-level output current	V _{CC} = 2.7 V		12	mA
		V _{CC} = 3 V		24	
$\Delta t / \Delta v$	Input transition rise or fall rate	•		5	ns/V
TA	Operating free-air temperature		-40	85	°C

NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCES145C - OCTOBER 1998 - REVISED AUGUST 2002

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PAR	RAMETER	TEST CO	ONDITIONS	Vcc	MIN	түр†	MAX	UNIT	
		I _{OH} = -100 μA		1.65 V to 3.6 V	V _{CC} -0.2				
		I _{OH} = -4 mA		1.65 V	1.2				
Maria		IOH = -8 mA		2.3 V	1.7			V	
VOH		1011 - 12 mA		2.7 V	2.2			v	
		I _{OH} = -12 mA		3 V	2.4				
		I _{OH} = -24 mA		3 V	2.2				
		I _{OL} = 100 μA		1.65 V to 3.6 V			0.2		
		I _{OL} = 4 mA		1.65 V			0.45		
VOL		I _{OL} = 8 mA		2.3 V			0.7	V	
		I _{OL} = 12 mA	2.7 V			0.4			
		I _{OL} = 24 mA		3 V			0.55		
IJ .	Control inputs	V _I = 0 to 5.5 V		3.6 V			±5	μA	
		VI = 0.58 V		1.65 V	25				
		VI = 1.07 V	V _I = 1.07 V		-25				
		VI = 0.7 V		2.3 V	45				
ll(hold)	A or B ports	VI = 1.7 V		2.3 V	-45			μΑ	
		V _I = 0.8 V		3 V	75				
		V _I = 2 V		51	-75				
		V _I = 0 to 3.6 V‡		3.6 V			±600		
loff		$V_I \text{ or } V_O = 5.5 \text{ V}$		0			±10	μΑ	
Ioz§		$V_{O} = 0$ to 5.5 V		3.6 V			±10	μΑ	
laa		$V_I = V_{CC}$ or GND		3.6 V			20	μA	
ICC		$3.6 \text{ V} \le \text{V}_{I} \le 5.5 \text{ V}^{\text{P}}$	IO = 0	5.0 V			20	20 µA	
ΔICC		One input at V _{CC} – 0.6 V,	Other inputs at V_{CC} or GND	2.7 V to 3.6 V			500	μA	
Ci	Control inputs	$V_{I} = V_{CC}$ or GND		3.3 V		7		pF	
Cio	A or B ports	$V_{O} = V_{CC}$ or GND		3.3 V		9.5		pF	
	-								

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

[‡] This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

§ For I/O ports, the parameter I_{OZ} includes the input leakage current, but not I_{I(hold)}.

This applies in the disabled state only.

SCES145C - OCTOBER 1998 - REVISED AUGUST 2002

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

			$V_{CC} = 1.8 V^{\dagger}$ $V_{CC} = 2.5 V_{\pm 0.2 V}$		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT			
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
fclock	Clock frequenc	ý		125		125		125		125	MHz	
	Pulse	CLK↑	4		3		3		3		ns	
t _w	duration	LE high	3		3		3		3		115	
		A, APAR or B, BPAR before $CLK\uparrow$	4.7		2.7		2.8		2.5			
t _{su}	Setup time	CLKEN before CLK [↑]	4.5		2.9		2.9		2.5		ns	
		A, APAR or B, BPAR before LE \downarrow	0		2.2		2.1		2			
		A, APAR or B, BPAR after $CLK\uparrow$	0		1.2		1.2		1.3			
th	Hold time	CLKEN after CLK [↑]	0		1.3		1.3		1.5		ns	
		A, APAR or B, BPAR after LE \downarrow	1		1.7		1.9		1.7			

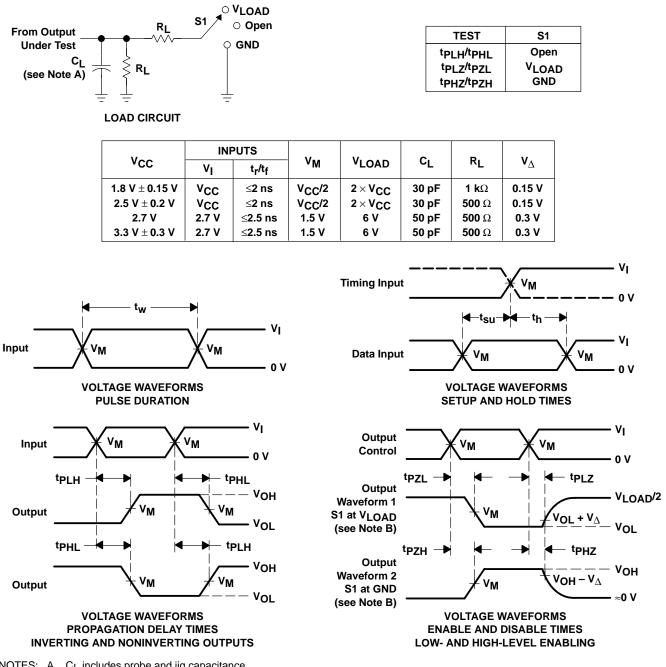
† Texas Instruments SPICE simulation data

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

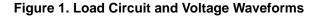
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = ²	1.8 V†	= ۷ _{CC} ± 0.2		V _{CC} =	2.7 V	= ۷ _{CC} ± 0.3		UNIT
	(INFOT)	(001701)	MIN	TYP	MIN	MAX	MIN	MAX	MIN	MAX	
fmax			125		125		125		125		MHz
	A or B	B or A		5.9	1	6.2		5.8	1	5.4	
	AUB	BPAR or APAR		12.7	2	9.9		8.6	2	7.7	
	APAR or BPAR	BPAR or APAR		7	1	6.7		6.2	1	5.7	
		ERRA or ERRB		13	2	10.7		9.7	2	8.5	
	ODD/EVEN	ERRA or ERRB		9.9	1.5	9.7		8.9	1.5	7.8	
	ODD/EVEN	BPAR or APAR		10.4	1.5	9.3		8.6	1.5	7.5	
	SEL	BPAR or APAR		6.9	1	7.1		6.9	1	6.1	
	CLKAB or CLKBA	A or B		6.9	1	7.4		6.8	1	6.1	ns
^t pd		BPAR or APAR parity feedthrough		8.5	1.5	8.1		7.3	1.5	6.6	
		BPAR or APAR parity generated		14.1	2.5	11.2		9.7	2	8.7	
		ERRA or ERRB		14.3	2.5	11.5		9.9	2	8.9	
		A or B		6.8	1	7		6.5	1	5.8	
		BPAR or APAR parity feedthrough		7.9	1.5	7.7		7	1.5	6.3	
	LEAB or LEBA	BPAR or APAR parity generated		13.6	2.5	10.8		9.3	2	8.4	
		ERRA or ERRB		13.5	2.5	10.9		9.5	2	8.5	
ten	OEAB or OEBA	B, BPAR or A, APAR		6.8	1.4	7.3		7.1	1	6.3	ns
^t dis	OEAB or OEBA	B, BPAR or A, APAR		6.9	1.3	7.1		6.2	1.5	5.9	ns
t _{en}	OEAB or OEBA	ERRA or ERRB		7.4	1.4	7.2		6.5	1	5.9	ns
^t dis	OEAB or OEBA	ERRA or ERRB		9.3	1.3	8.3		7.5	1	6.7	ns
t _{en}	SEL	ERRA or ERRB		7.6	1.4	7.7		7.5	1	6.5	ns
tdis	SEL	ERRA or ERRB		7.8	1.3	7.4		6.4	1.5	5.9	ns

[†] Texas Instruments SPICE simulation data

SN74LVCH16901 18-BIT UNIVERSAL BUS TRANSCEIVER WITH PARITY GENERATORS/CHECKERS SCES145C - OCTOBER 1998 - REVISED AUGUST 2002


operating characteristics, $T_A = 25^{\circ}C$

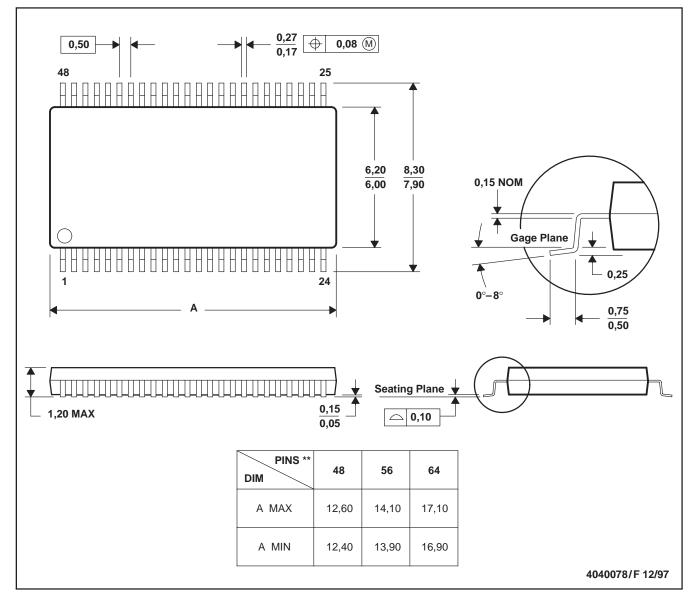
	PARAMETER			V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V	UNIT	
				TYP	TYP	ТҮР	ONIT	
Cpd	Power dissipation capacitance	Outputs enabled	f = 10 MHz	37	52	68	рF	
Фра	per transceiver	Outputs disabled		16	22	28	рг	


SCES145C - OCTOBER 1998 - REVISED AUGUST 2002

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CI includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω .
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpl 7 and tpH7 are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.


MECHANICAL DATA

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated