SCAS619A - OCTOBER 1998 - REVISED JUNE 1999

- Member of the Texas Instruments
 Widebus™ Family
- EPIC[™] (Enhanced-Performance Implanted CMOS) Submicron Process
- Typical V_{OLP} (Output Ground Bounce)
 < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot)
 2 V at V_{CC} = 3.3 V, T_A = 25°C
- Power Off Disables Outputs, Permitting Live Insertion

- Supports Mixed-Mode Signal Operation on All Ports (5-V Input and Output Voltages With 3.3-V V_{CC})
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- Packaged in Plastic Fine-Pitch Ball Grid Array Package

description

This 32-bit edge-triggered D-type flip-flop is designed for 1.65-V to 3.6-V V_{CC} operation.

The SN74LVCH32374A is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers. It can be used as four 8-bit flip-flops, two 16-bit flip-flops, or one 32-bit flip-flop. On the positive transition of the clock (CLK) input, the Q outputs of the flip-flop take on the logic levels set up at the data (D) inputs.

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components.

OE does not affect internal operations of the flip-flop. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

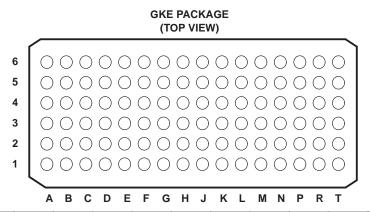
Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN74LVCH32374A is characterized for operation from -40°C to 85°C.

FUNCTION TABLE (each flip-flop)

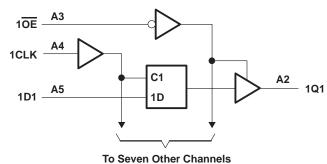
	INPUTS	OUTPUT	
OE	CLK	D	Q
L	\uparrow	Н	Н
L	\uparrow	L	L
L	H or L	Χ	Q ₀
Н	Χ	Χ	Z



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

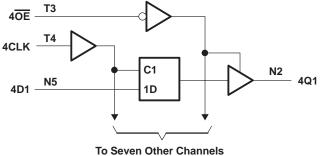
EPIC and Widebus are trademarks of Texas Instruments Incorporated.

terminal assignments


6	1D2	1D4	1D6	1D8	2D2	2D4	2D6	2D7	3D2	3D4	3D6	3D8	4D2	4D4	4D6	4D7
5	1D1	1D3	1D5	1D7	2D1	2D3	2D5	2D8	3D1	3D3	3D5	3D7	4D1	4D3	4D5	4D8
4	1CLK	GND	VCC	GND	GND	VCC	GND	2CLK	3CLK	GND	VCC	GND	GND	VCC	GND	4CLK
3	10E	GND	VCC	GND	GND	VCC	GND	2OE	3OE	GND	VCC	GND	GND	VCC	GND	4OE
2	1Q1	1Q3	1Q5	1Q7	2Q1	2Q3	2Q5	2Q8	3Q1	3Q3	3Q5	3Q7	4Q1	4Q3	4Q5	4Q8
1	1Q2	1Q4	1Q6	1Q8	2Q2	2Q4	2Q6	2Q7	3Q2	3Q4	3Q6	3Q8	4Q2	4Q4	4Q6	4Q7
	Α	В	С	D	Е	F	G	Н	J	K	L	М	N	Р	R	Т

Н3

20E -


2CLK

logic diagram (positive logic)

2D1 E5 C1 1D

3OE J3
3CLK J4
3D1 J5 J2 3Q

To Seven Other Channels

E2

2Q1

To Seven Other Channels

TEXAS INSTRUMENTS

SN74LVCH32374A 32-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOP WITH 3-STATE OUTPUTS

SCAS619A - OCTOBER 1998 - REVISED JUNE 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	0.5 V to 6.5 \
Input voltage range, V _I (see Note 1)	0.5 V to 6.5 \
Voltage range applied to any output in the high-impedance or power-off state, VO	
(see Note 1)	0.5 V to 6.5 \
Voltage range applied to any output in the high or low state, VO	
(see Notes 1 and 2)	. -0.5 V to V _{CC} + 0.5 \
Input clamp current, I_{IK} ($V_I < 0$)	
Output clamp current, I_{OK} ($V_O < 0$)	
Continuous output current, IO	±50 mA
Continuous current through each V _{CC} or GND	±100 mA
Package thermal impedance, θ _{JA} (see Note 3)	40°C/V
Storage temperature range, T _{stg}	–65°C to 150°C

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

- 2. The value of V_{CC} is provided in the recommended operating conditions table.
- 3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT
VCC	Supply voltage	Operating	1.65	3.6	V
vCC.	Supply voltage	Data retention only	1.5		V
		V _{CC} = 1.65 V to 1.95 V	0.65 × V _{CC}		
V_{IH}	High-level input voltage	V _{CC} = 2.3 V to 2.7 V	1.7		V
Data retention or V _{CC} = 1.65 V to V _{CC} = 2.3 V to 2 V _{CC} = 2.7 V to 3 V _{CC} = 2.3 V to 2 V _{CC} = 2.7 V to 3 V _{CC} = 2	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2			
		V _{CC} = 1.65 V to 1.95 V		0.35 × V _{CC}	
V_{IL}	Low-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	V
VI		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8	
٧ _I	Input voltage	·	0	5.5	V
\/ -	Output voltage	High or low state	0	VCC	V
VO	3 state	3 state	0	5.5	
		V _{CC} = 1.65 V		-4	
la	High lovel output ourrent	V _{CC} = 2.3 V		-8	mA
ЮН	nigri-level output current	V _{CC} = 2.7 V		-12	mA
	Low-level input voltage Input voltage Output voltage High-level output current Low-level output current	V _{CC} = 3 V		-24	
		V _{CC} = 1.65 V		4	
1	Lour lovel output ourrent	V _{CC} = 2.3 V		8	A
'OL	Low-level output current			12	mA
		V _{CC} = 3 V		24	
Δt/Δν	Input transition rise or fall rate		0	10	ns/V
TA	Operating free-air temperature		-40	85	°C

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

SN74LVCH32374A 32-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOP WITH 3-STATE OUTPUTS

SCAS619A - OCTOBER 1998 - REVISED JUNE 1999

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CO	ONDITIONS	Vcc	MIN	TYP [†]	MAX	UNIT
	I _{OH} = -100 μA		1.65 V to 3.6 V	V _{CC} -0.	2		
VOH	$I_{OH} = -4 \text{ mA}$		1.65 V	1.2			
	I _{OH} = -8 mA	2.3 V	1.7			V	
VOH	I _{OH} = -12 mA		2.7 V	2.2			V
V _{OL}	IOH = -12 IIIA		3 V	2.4			
	I _{OH} = -24 mA		3 V	2.2			
	I _{OL} = 100 μA		1.65 V to 3.6 V			0.2	
	$I_{OL} = 4 \text{ mA}$		1.65 V			0.45	
VOL	$I_{OL} = 8 \text{ mA}$		2.3 V			0.7	V
	I _{OL} = 12 mA		2.7 V			0.4	
	I _{OL} = 24 mA		3 V			0.55	
lį	V _I = 0 to 5.5 V	3.6 V			±5	μΑ	
	V _I = 0.58 V	1.65 V	25				
	V _I = 1.07 V		1.05 V	-25			
	V _I = 0.7 V	2.3 V	45]	
l(hold)	V _I = 1.7 V		2.5 V	-45			μΑ
	V _I = 0.8 V		3 V	75			
	V _I = 2 V			-75			
	$V_{\parallel} = 0 \text{ to } 3.6 \text{ V}^{\ddagger}$		3.6 V			±500	
l _{off}	V_I or $V_O = 5.5 V$		0			±10	μΑ
loz	$V_0 = 0 \text{ to } 5.5 \text{ V}$		3.6 V			±10	μΑ
	$V_I = V_{CC}$ or GND	10	3.6 V			20	
lcc	$3.6 \text{ V} \le \text{V}_{\text{I}} \le 5.5 \text{ V}$	I _O = 0	3.6 V			20	μΑ
ΔlCC	One input at V _{CC} – 0.6 V,	Other inputs at V _{CC} or GND	2.7 V to 3.6 V			500	μΑ
C _i	$V_I = V_{CC}$ or GND	<u> </u>	3.3 V		5		pF
Со	$V_O = V_{CC}$ or GND	<u> </u>	3.3 V		6.5		pF

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

		V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
fclock	Clock frequency		¶		¶		150		150	MHz
t _W	Pulse duration, CLK high or low	¶		¶		3.3		3.3		ns
t _{su}	Setup time, data before CLK↑	¶		¶		1.9		1.9		ns
th	Hold time, data after CLK↑	¶		¶		1.1		1.1		ns

This information was not available at the time of publication.

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. ‡ This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

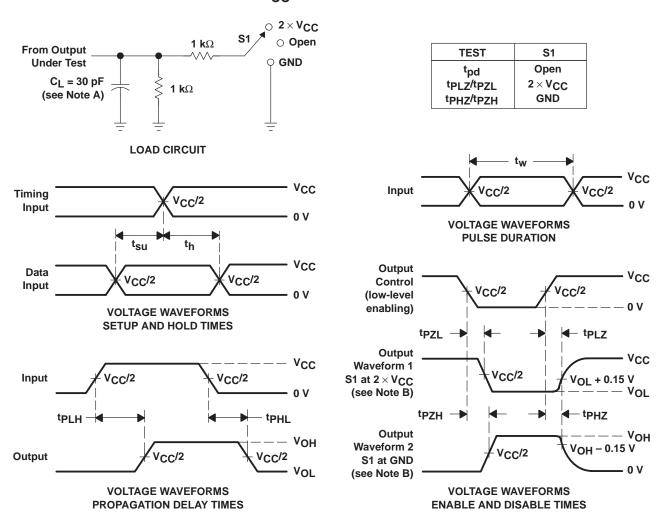
[§] This applies in the disabled state only.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} =	1.8 V 5 V	VCC =	2.5 V 2 V	V _{CC} =	$V_{CC} = 2.7 \text{ V}$ $V_{CC} = 3.3 \text{ V}$ $\pm 0.3 \text{ V}$ UN		V _{CC} = 3.3 V ± 0.3 V	
	(INFOT)	(001F01)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
fmax			†		†		150		150		MHz
^t pd	CLK	Q	†	†	†	†		4.9	1.5	4.5	ns
t _{en}	ŌĒ	Q	†	†	†	†		5.3	1.5	4.6	ns
^t dis	ŌĒ	Q	†	†	†	†		6.1	1.5	5.5	ns
t _{sk(o)} ‡										1.5	ns

[†] This information was not available at the time of publication.

operating characteristics, $T_A = 25^{\circ}C$

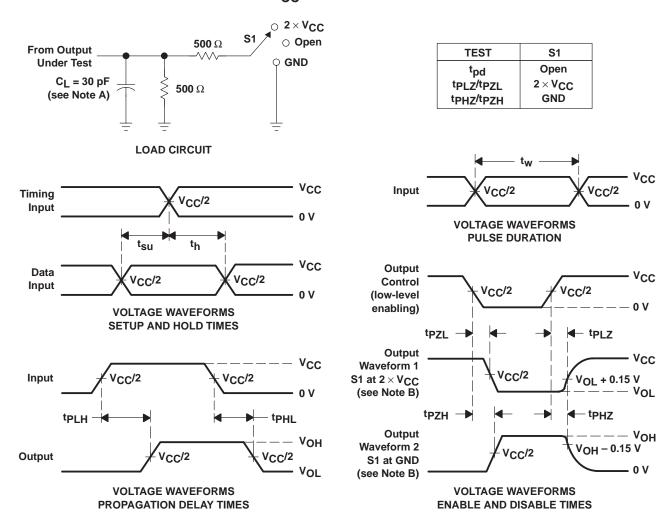

	PARAMETER	TEST	V _{CC} = 1.8 V	V _{CC} = 2.5 V	VCC = 3.3 V	UNIT		
	PARAMETER			TYP	TYP	TYP	UNIT	
	Power dissipation capacitance	Outputs enabled	f = 10 MHz	†	†	58	pF	
C _{pd}	per flip-flop	Outputs disabled	I = IU MHZ	†	†	24	þг	

[†] This information was not available at the time of publication.

[‡] Skew between any two outputs of the same package switching in the same direction

SCAS619A - OCTOBER 1998 - REVISED JUNE 1999

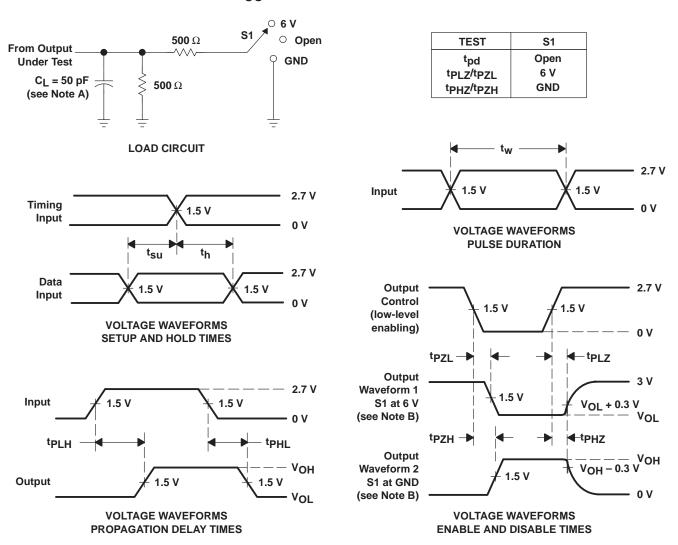
PARAMETER MEASUREMENT INFORMATION $V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}$


NOTES: A. C_I includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_{Ω} = 50 Ω , $t_{f} \leq$ 2 ns, $t_{f} \leq$ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpl H and tpHI are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$



NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \ \Omega$, $t_f \leq$ 2 ns, $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.7 V AND 3.3 V \pm 0.3 V

NOTES: A. C_I includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \Omega$, $t_f \leq 2.5 \text{ ns.}$
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLZ and tpHZ are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 3. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated